# LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

# Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

### FRESHMAN ENGINEERING DEPARTMENT

# **COURSE HANDOUT**

# **PART-A**

PROGRAM : B.Tech., II-Sem., AI&DS -B

ACADEMIC YEAR : 2023-24

COURSE NAME & CODE : ENGINEERING PHYSICS

L-T-P STRUCTURE : 3-1-0

COURSE CREDITS : 3

COURSE INSTRUCTOR : Dr.N.Aruna

PRE-REQUISITE : Nil

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** To bring the gap between the physics in school at 10+2 level and UG level engineering courses by identifying the importance of the optical phenomenon like interference, diffraction, etc, enlightening the periodic arrangement of atoms in crystalline solids and concepts of quantum mechanics, introduce novel concepts of dielectric and magnetic materials, physics of semiconductors.

**COURSE OUTCOMES (COs):** At the end of this course, the student will be able to

| CO 1 | Analyze the intensity of variation of light due to interference, diffraction and           |
|------|--------------------------------------------------------------------------------------------|
|      | polarization                                                                               |
| CO 2 | Understand the basics of crystals and their structures                                     |
| CO 3 | Summarize various types of polarization of dielectrics and classify the magnetic materials |
| CO 4 | <b>Explain</b> the fundamentals of quantum mechanics and free electron theory of metals    |
| CO5  | Identify the type of semiconductor using Hall Effect                                       |

# **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

|                       | ENGINEERING PHYSICS |                                 |      |        |      |       |   |     |       |          |       |    |
|-----------------------|---------------------|---------------------------------|------|--------|------|-------|---|-----|-------|----------|-------|----|
| COURSE<br>DESIGNED BY | FRES                | FRESHMAN ENGINEERING DEPARTMENT |      |        |      |       |   |     |       |          |       |    |
| Course Outcomes       |                     | Programme Outcomes              |      |        |      |       |   |     |       |          |       |    |
| PO's →                | 1                   | 2                               | 3    | 4      | 5    | 6     | 7 | 8   | 9     | 10       | 11    | 12 |
| CO1.                  | 3                   | 3                               | 2    | 1      | 1    | 1     | 1 | -   | -     | -        | -     | 1  |
| CO2.                  | 3                   | 3                               | 2    | 1      | 1    | 1     | 1 | -   | -     | -        | -     | 1  |
| CO3.                  | 3                   | 3                               | 2    | 1      | 1    | 1     |   | -   | -     | -        | -     | 1  |
| CO4.                  | 3                   | 3                               | 2    | 1      | 1    | 1     | 1 | -   | -     | -        | -     | 1  |
| CO5.                  | 3                   | 3                               | 2    | 1      | 1    | 1     | 1 | -   | -     | -        | -     | 1  |
| 1 = slight (L         | ow)                 | 2                               | = Mo | derate | ( Me | dium) | 1 | 3 = | Subst | antial ( | High) |    |

### **BOS APPROVED TEXT BOOKS:**

T1: V. Rajendran, "Engineering Physics", TMH, New Delhi, 6<sup>th</sup> Edition, 2014. T2: M.N. Avadhanulu, P.G. Kshirsagar, "Engineering Physics", S. Chand & Co., 2<sup>nd</sup> Edition, 2014.

### **BOS APPROVED REFERENCE BOOKS:**

**R1**: M.N. Avadhanulu, TVS Arun Murthy, "Applied *Physics*", S. Chand & Co., 2<sup>nd</sup> Edition, 2007.

R2: P.K. Palani Samy, "Applied Physics", Sci. Publ. Chennai, 4th Edition, 2016.

**R3**: P. Sreenivasa Rao, K Muralidhar, "Applied Physics", Him. Publi. Mumbai,1st Edition, 2016.

**R4**: Hitendra K Mallik, AK Singh "Engineering Physics", TMH, New Delhi, 1st Edition, 2009.

# WEB REFERENCES AND E-TEXT BOOKS

- 1. http://www.freebookcentre.net/Physics/Solid-State-Physics-Books.html
- 2. http://physicsdatabase.com/free-physics-books/
- 3. http://www.e-booksdirectory.com
- 4. http://www.thphys.physics.ox.ac.uk

|      | TEACHING LEARNING METHODS |      |                                    |  |  |  |  |  |
|------|---------------------------|------|------------------------------------|--|--|--|--|--|
| TLM1 | Chalk and Talk            | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |  |  |
| TLM2 | LM2 PPT                   |      | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |  |  |
| TLM3 | Tutorial                  | TLM6 | Group Discussion/Project           |  |  |  |  |  |

# **PART-B**

# **COURSE DELIVERY PLAN (LESSON PLAN):**

# **UNIT-I: WAVE OPTICS**

Course Outcome :- CO 1; Text Book :- T1, R2

| S.No. | Topics to be covered | No. of<br>Classes<br>Require<br>d | Tentative Date of Completio n | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign | Remarks |
|-------|----------------------|-----------------------------------|-------------------------------|---------------------------------|---------------------------------|-------------|---------|
|       | Introduction to the  |                                   | 12/02/2024                    |                                 |                                 |             |         |
| 1.    | Subject, Course      | 1                                 |                               |                                 | TLM2                            |             |         |
|       | Outcomes             |                                   |                               |                                 |                                 |             |         |
|       | Superposition of     | 1                                 | 13/02/2024                    |                                 | TLM1                            |             |         |
| 2.    | Coherence,           |                                   |                               |                                 |                                 |             |         |
| ۷.    | Conditions for       |                                   |                               |                                 |                                 |             |         |
|       | Interference         |                                   |                               |                                 |                                 |             |         |
|       | Interference from    |                                   | 15/02/2024                    |                                 |                                 |             |         |
| 3.    | thin films, colours  | 1                                 |                               |                                 | TLM1                            |             |         |
|       | in thin films        |                                   |                               |                                 |                                 |             |         |
| 4.    | Newton's rings       | 1                                 | 16/02/2024                    |                                 | TLM2                            |             |         |

| 5.  | Introduction – Diffraction, Types                                | 1          | 19/02/2024            | TLM1 |  |
|-----|------------------------------------------------------------------|------------|-----------------------|------|--|
| 6.  | Single slit diffraction                                          | 1          | 20/02/2024            | TLM2 |  |
| 7.  | Double slit                                                      | 1          | 22/02/2024            | TLM4 |  |
| 8.  | N Slits Diffraction grating                                      | 1          | 23/02/2024            | TLM4 |  |
| 9.  | TUTORIAL                                                         | 1          | 26/02/2024            | TLM3 |  |
| 10. | Dispersive power & Resolving power of Grating                    | 1          | 27/03/2024            | TLM3 |  |
| 11. | Polarization introduction Polarization by reflection, refraction | 1          | 29/03/2024            | TLM1 |  |
| 12. | Double refraction,<br>Nicol's prism                              | 1          | 01/03/2024            | TLM1 |  |
| 13. | Half wave and quarter wave plate                                 | 1          | 04/03/2024            | TLM2 |  |
| No  | o. of classes required to                                        | complete l | No. of classes taken: |      |  |

# UNIT-II: CRYSTALLOGRAPHY AND X RAY DIFFRACTION

Course Outcome :- CO 2; Text Book :- T1, R2

| S.No. | Topics to be covered                                     | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual Date of Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign | Remarks |
|-------|----------------------------------------------------------|-------------------------------|------------------------------------|---------------------------|---------------------------------|-------------|---------|
| 1.    | Crystallography Basic defnitions                         | 1                             | 05/03/2024                         |                           | TLM2                            |             |         |
| 2.    | Bravais Lattices                                         | 1                             | 07/03/2024                         |                           | TLM1                            |             |         |
| 3.    | Packing fraction of SC, BCC                              | 1                             | 11/03/2024                         |                           | TLM1                            |             |         |
| 4.    | FCC                                                      | 1                             | 12/03/2024                         |                           | TLM2                            |             |         |
| 5.    | Miller Indices,<br>separation<br>between (hkl)<br>planes | 1                             | 14/03/2024                         |                           | TLM2                            |             |         |
| 6.    | Bragg's law                                              | 1                             | 15/03/2024                         |                           | TLM1                            |             |         |
| 7.    | X-ray<br>Diffractometer                                  | 1                             | 18/03/2024                         |                           | TLM2                            |             |         |
| 8.    | Laue's method powder method                              | 1                             | 19/03/2024                         |                           | TLM2                            |             |         |
| No.   | of classes required t                                    | o complete l                  | JNIT-II: 8                         | No. of                    | classes taken                   | ı:          |         |

# UNIT-III: DIELECTRIC AND MAGNETIC MATERIALS

Course Outcome :- CO 3; Text Book :- T1, R2

| S.No | Topics to be covered | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Date of | Teaching<br>Learning<br>Methods | HOD<br>Sign | Remarks |
|------|----------------------|-------------------------------|------------------------------------|---------|---------------------------------|-------------|---------|
|------|----------------------|-------------------------------|------------------------------------|---------|---------------------------------|-------------|---------|

|     | Basic Definitions      |            | 21/03/2024  |                       |  |
|-----|------------------------|------------|-------------|-----------------------|--|
| 1.  | Relation between       | 1          | 21/03/2024  | TLM1                  |  |
| 1.  | electric vectors       | 1          |             |                       |  |
|     | Electronic             |            | 22/03/2024  |                       |  |
| 2.  | polarization           | 1          | 22/03/2024  | TLM1                  |  |
|     | Ionic &                |            | 26/03/2024  |                       |  |
| 3.  | Orientation            | 1          | 20,00,202   | TLM1                  |  |
| ٥.  | polarization           | -          |             |                       |  |
| 4.  | Local field,           | 1          | 26/03/2024  | TLM1                  |  |
|     | Clausius Mosotti       |            | 28/03/2024  | TENT                  |  |
|     | equation,              |            | 25,55,252   |                       |  |
| 5   | complex dielectric     | 1          |             | TLM2                  |  |
|     | constant               |            |             |                       |  |
|     | Frequency              |            | 28/03/2024  |                       |  |
|     | dependence of          |            |             |                       |  |
| 6   | polarization           | 1          |             | TLM1                  |  |
|     | Dielectric loss and    |            |             |                       |  |
|     | problems               |            |             |                       |  |
|     | Introduction to        |            | 8/04/2024   |                       |  |
| 7   | Magnetic               |            |             |                       |  |
| /   | parameters origin      | 1          |             | TLM1                  |  |
|     | of magnetic            |            |             |                       |  |
|     | moment                 |            |             |                       |  |
|     | Classification of      |            | 12/04/2024  |                       |  |
| 8   | magnetic materials     | 1          |             | TY M1                 |  |
| 8   | – Dia, para &          | 1          |             | TLM1                  |  |
|     | Ferro                  |            |             |                       |  |
|     | Classification of      |            | 15/04/2024  |                       |  |
|     | magnetic               |            |             |                       |  |
| 9   | materials – Dia,       | 1          |             | TIMO                  |  |
| 9   | para & Ferro           | 1          |             | TLM2                  |  |
|     | Anti ferro and         |            |             |                       |  |
|     | ferri                  |            |             |                       |  |
|     | Domain                 |            | 16/04/2024  |                       |  |
|     | concept of             |            |             |                       |  |
| 10  | ferromagnetism         | 1          |             | TLM2                  |  |
|     | and domain             |            |             |                       |  |
|     | walls                  |            |             |                       |  |
|     | Hysteresis             |            | 18/04/2024  |                       |  |
|     | curve                  |            |             |                       |  |
| 11  | soft and hard          | 1          |             | TLM1                  |  |
|     | magnetic               |            |             |                       |  |
|     | materials              |            |             |                       |  |
| No. | of classes required to | complete U | NIT-III: 11 | No. of classes taken: |  |

# UNIT-IV QUANTUM MECHANICS & FREE ELECTRON THEORY

Course Outcome :- CO 4; Text Book :- T2, R1

| S.No. | Topics to be covered            | No. of<br>Classes<br>Required | Tentative Date of Completion | Actual Date of Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign | Remarks |
|-------|---------------------------------|-------------------------------|------------------------------|---------------------------|---------------------------------|-------------|---------|
| 1.    | Introduction quantum mechanics, | 1                             | 19/04/2024                   |                           | TLM1                            |             |         |

| r . | <u> </u>                                                                 |            | T T        |                       |  |
|-----|--------------------------------------------------------------------------|------------|------------|-----------------------|--|
|     | DeBroglie                                                                |            |            |                       |  |
|     | hypothesis                                                               |            |            |                       |  |
| 2.  | Heisenberg uncertainty principle, Physical significance of wave function | 1          | 22/04/2024 | TLM1                  |  |
| 3.  | Schrodinger time dependent & independent wave equations                  | 1          | 23/04/2024 | TLM1                  |  |
| 4.  | Particle in a box                                                        | 1          | 25/04/2024 | TLM1                  |  |
| 5.  | Classical free<br>electron theory-<br>postulates, Success<br>& Failures  | 1          | 26/05/2024 | TLM2                  |  |
| 6.  | Quantum free<br>electron theory,<br>electrical<br>conductivity           | 1          | 29/04/2024 | TLM1                  |  |
| 7.  | Tutorial                                                                 | 1          | 30/04/2024 | TLM3                  |  |
| 8.  | Fermi-Dirac distribution function-Temperature dependence                 | 1          | 02/05/2024 | TLM2                  |  |
| 9.  | Density of states<br>Fermi energy                                        | 1          | 03/05/2024 | TLM2                  |  |
| 10. | Assignment                                                               | 1          | 06/05/2024 |                       |  |
| 11. | Problem solutions                                                        | 1          | 07/05/2024 |                       |  |
| No  | . of classes required to                                                 | complete U | NIT-IV: 11 | No. of classes taken: |  |

# <u>UNIT-V :SEMICONDUCTOR PHYSICS</u>

Course Outcome :- CO 5; Text Book :- T2, R1

| S.No. | Topics to be covered                                     | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign | Remarks |
|-------|----------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-------------|---------|
| 1.    | Introduction -<br>Classification of<br>semiconductors    | 1                             | 09/05/2024                         |                                 | TLM1                            |             |         |
| 2.    | Density of Intrinsic and semiconductors Electrons, Holes | 1                             | 10/05/2024                         |                                 | TLM1                            |             |         |
| 3.    | Density of<br>Intrinsic and<br>semiconductors<br>Holes   | 1                             | 13/05/2024                         |                                 | TLM1                            |             |         |
| 4.    | Electrical conductivity                                  | 1                             | 14/05/2024                         |                                 | TLM1                            |             |         |

| 5.  | fermi level                                 |              | 16/05/2024 |                | TLM2   |  |
|-----|---------------------------------------------|--------------|------------|----------------|--------|--|
| 6.  | Density of Extrinsic semiconductors P- Type |              | 17/05/2024 |                | TLM1   |  |
| 7.  | Density of Extrinsic semiconductors N Type  | 1            | 20/06/2024 |                | TLM2   |  |
| 8.  | Fermi level-<br>Temperature                 | 1            | 21/06/2024 |                | TLM1   |  |
| 9.  | Drift and diffusion currents                | 1            | 23/06/2024 |                | TLM1   |  |
| 10. | Einstein equation                           |              | 24/06/2024 |                | TLM3   |  |
| 11. | Hall effect and applications                |              | 27/06/2024 |                | TLM3   |  |
| 12. | Tutorial                                    |              | 28/06/2024 |                | TLM4   |  |
| 13. | Assignment                                  |              | 30/06/2024 |                | TLM4   |  |
| 14. | Revision                                    |              | 31/06/2024 |                | TLM4   |  |
| No  | o. of classes required to                   | o complete U | JNIT-V: 14 | No. of classes | taken: |  |

# PART-C

# **EVALUATION PROCESS (R-20 Regulation):**

| Evaluation Task                                            | Marks  |
|------------------------------------------------------------|--------|
| Assignment-I (Unit-I)                                      | A1=5   |
| Assignment-II (Unit-II)                                    | A2=5   |
| I-Mid Examination (Units-I, II)                            | M-1=18 |
| I-Quiz Examination (Units-I, II)                           | Q1=07  |
| Assignment-III (Unit-III )                                 | A3=5   |
| Assignment-IV (Unit-IV)                                    | A4=5   |
| Assignment-V (Unit-V)                                      | A5=5   |
| II-Mid Examination (Units-III, IV & V)                     | M-2=18 |
| II-Quiz Examination (Units-III, IV & V)                    | Q2=07  |
| Assignment Marks = Best Four Average of A1, A2, A3, A4, A5 | A=5    |
| Mid Marks =75% of Max(M-1,M-2)+25% of Min(M-1,M-2)         | M=18   |
| Quiz Marks =75% of Max(Q-1,Q-2)+25% of Min(Q-1,Q-2)        | Q=07   |
| Cumulative Internal Examination (CIE): A+M+Q               | 30     |
| Semester End Examination (SEE)                             | 70     |
| Total Marks = CIE + SEE                                    | 100    |

|       | Engineering knowledge: Apply the knowledge of mathematics, science,                                                                                           |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1  | engineering fundamentals, and an engineering specialization to the solution of                                                                                |
|       | complex engineering problems.                                                                                                                                 |
|       | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze                                                                        |
| PO 2  | complex engineering problems reaching substantiated conclusions using first                                                                                   |
|       | principles of mathematics, natural sciences, and engineering sciences.                                                                                        |
|       | <b>Design/development of solutions</b> : Design solutions for complex engineering                                                                             |
| PO 3  | problems and design system components or processes that meet the specified                                                                                    |
|       | needs with appropriate consideration for the public health and safety, and the                                                                                |
|       | cultural, societal, and environmental considerations.                                                                                                         |
|       | Conduct investigations of complex problems: Use research-based knowledge                                                                                      |
| PO 4  | and research methods including design of experiments, analysis and                                                                                            |
|       | interpretation of data, and synthesis of the information to provide valid                                                                                     |
|       | conclusions.                                                                                                                                                  |
|       | Modern tool usage: Create, select, and apply appropriate techniques,                                                                                          |
| PO 5  | resources, and modern engineering and IT tools including prediction and                                                                                       |
|       | modelling to complex engineering activities with an understanding of the                                                                                      |
|       | limitations                                                                                                                                                   |
| PO 6  | The engineer and society: Apply reasoning informed by the contextual                                                                                          |
| POO   | knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice |
|       | Environment and sustainability: Understand the impact of the professional                                                                                     |
| PO 7  | engineering solutions in societal and environmental contexts, and demonstrate                                                                                 |
| 107   | the knowledge of, and need for sustainable development.                                                                                                       |
|       | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and                                                                                |
| PO 8  | responsibilities and norms of the engineering practice.                                                                                                       |
|       | Individual and team work: Function effectively as an individual, and as a                                                                                     |
| PO 9  | member or leader in diverse teams, and in multidisciplinary settings.                                                                                         |
|       | <b>Communication</b> : Communicate effectively on complex engineering activities                                                                              |
|       | with the engineering community and with society at large, such as, being able                                                                                 |
| PO 10 | to comprehend and write effective reports and design documentation, make                                                                                      |
|       | effective presentations, and give and receive clear instructions.                                                                                             |
|       | Project management and finance: Demonstrate knowledge and                                                                                                     |
| PO 11 | understanding of the engineering and management principles and apply these                                                                                    |
| PO 11 | to one's own work, as a member and leader in a team, to manage projects and                                                                                   |
|       | in multidisciplinary environments.                                                                                                                            |
|       | Life-long learning: Recognize the need for and have the preparation and                                                                                       |
| PO 12 | ability to engage in independent and life-long learning in the broadest context                                                                               |
|       | of technological change.                                                                                                                                      |

Course Instructor Course Coordinator Module Coordinator HOD

Dr. N. Aruna Dr. S. Yusub Dr. A. Rami Reddy

### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING, (AUTONOMOUS)



Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), ISO 21001: 2018, 50001: 2018, 14001: 2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

### FRESHMAN ENGINEERING DEPARTMENT

### **COURSE HANDOUT**

### Part-A

PROGRAM : I B. Tech., II-Sem., AI&DS-B

ACADEMIC YEAR : 2023-24

**COURSE NAME & CODE**: Differential Equations & Vector Calculus

L-T-P STRUCTURE : 3-0-0 COURSE CREDITS : 3

COURSE INSTRUCTOR : Dr. K.Bhanu lakshmi
COURSE COORDINATOR : Dr. K.R. Kavitha

**PRE-REQUISITES**: Basics of Vectors, Differentiation, Integration

### **COURSE EDUCATIONAL OBJECTIVES (CEOs):**

- To enlighten the learners in the concept of differential equations and multivariable calculus
- To furnish the learners with basic concepts and techniques at intermediate level to lead them into advanced level by handling various real-world applications.

### **COURSE OUTCOMES (COs)**

After completion of the course, the student will be able to

CO1: Solve the differential equations related to various engineering fields -L3

CO2: Apply knowledge of partial differentiation in modeling and solving of Partial differential equations -L3

CO3: Interpret the physical meaning of different operators such as gradient, curl and divergence - **L3** 

CO4: Evaluate the work done against a field, circulation and flux using Vector Calculus – **L3** 

# **COURSE ARTICULATION MATRIX (Correlation between Cos &POs, PSOs):**

| COs/POs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 |
|---------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1     | 3   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 1    |
| CO2     | 3   | 1   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 1    |
| CO3     | 3   | 2   | -   | -   | -   | -   | -   | -   | -   | -    | -    | 1    |
| CO4     | 3   | 2   | •   | -   | -   | -   | -   | -   | •   | -    | -    | 1    |

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

### **BOS APPROVED TEXT BOOKS:**

- **T1** Dr. B.S. Grewal, "Higher Engineering Mathematics", 44<sup>nd</sup>Edition, Khanna Publishers, New Delhi, 2017.
- **T2** Erwin Kreyszig, "Advanced Engineering Mathematics", 10<sup>th</sup> Edition, John Wiley & sons, New Delhi, 2018.

# **BOS APPROVED REFERENCE BOOKS:**

- **R1** George B. Thomas, Maurice D. Weir and Joel Hass, "*Thomas Calculus*", 14<sup>th</sup> Edition, Pearson Publishers, 2018.
- **R2** Dennis G. Zill and Warren S. Jones and Bartlett, "Advanced Engineering Mathematics", 2018.
- **R3** Glyn James, "Advanced Modern Engineering Mathematics", 5<sup>th</sup> Edition, Pearson Publishers, 2018.
- **R4** R.K. Jain and S.R.K. Iyengar, "Advanced Engineering Mathematics", 5<sup>th</sup> Edition (9<sup>th</sup> reprint), Alpha Science International Ltd., 2021.
- **R5** B. V. Ramana, "Higher Engineering Mathematics", 3<sup>rd</sup> Edition McGraw Hill Education, 2017.

Part-B
COURSE DELIVERY PLAN (LESSON PLAN):

| S. |                                      | No. of   | Tentative  | Actual     | Teaching | Learning | Text     | HOD    |
|----|--------------------------------------|----------|------------|------------|----------|----------|----------|--------|
| No | Topics to be covered                 | Classes  | Date of    | Date of    | Learning | Outcome  | Book     | Sign   |
|    |                                      | Required | Completion | Completion | Methods  | COs      | followed | Weekly |
| 1. | Introduction to the course           | 1        | 12-02-2024 |            | TLM2     |          |          |        |
| 2. | Course Outcomes,<br>Program Outcomes | 1        | 14-02-2024 | _          | TLM2     |          |          |        |

UNIT-I: Differential Equations of first order and first degree

| <u>C</u>                                                            |                               | N C      |            |            |          |          | T4       | HOD    |
|---------------------------------------------------------------------|-------------------------------|----------|------------|------------|----------|----------|----------|--------|
| S.                                                                  | m · · · ·                     | No. of   | Tentative  | Actual     | Teaching | Learning | Text     | HOD    |
| No.                                                                 | Topics to be covered          |          | Date of    | Date of    | Learning | Outcome  | Book     | Sign   |
|                                                                     |                               | Required | Completion | Completion | Methods  | COs      | followed | Weekly |
| 3.                                                                  | Introduction to UNIT I        | 1        | 15-02-2024 |            | TLM1     | CO1      | T1,T2    |        |
| 4.                                                                  | Linear Differential equation  | 1        | 16-02-2024 |            | TLM1     | CO1      | T1,T2    |        |
| 5.                                                                  | Bernoulli's DE                | 1        | 17-02-2024 |            | TLM1     | CO1      | T1,T2    |        |
| 6.                                                                  | Exact DE                      | 1        | 19-02-2024 |            | TLM1     | CO1      | T1,T2    |        |
| 7.                                                                  | Exact DE                      | 1        | 21-02-2024 |            | TLM1     | CO1      | T1,T2    |        |
| 8.                                                                  | Non-exact DE<br>Type I        | 1        | 22-02-2024 |            | TLM1     | CO1      | T1,T2    |        |
| 9.                                                                  | Non-exact DE<br>Type II       | 1        | 23-02-2024 |            | TLM1     | CO1      | T1,T2    |        |
| 10.                                                                 | Non-exact DE<br>Type III      | 1        | 24-02-2024 |            | TLM1     | CO1      | T1,T2    |        |
| 11.                                                                 | Non-exact DE<br>Type IV       | 1        | 26-02-2024 |            | TLM1     | CO1      | T1,T2    |        |
| 12.                                                                 | Newton's Law of coolin        | ag 1     | 28-02-2024 |            | TLM1     | CO1      | T1,T2    |        |
| 13.                                                                 | Newton's Law of coolin        | ng 1     | 29-02-2024 |            | TLM1     | CO1      | T1,T2    |        |
| 14.                                                                 | Law of natural growth a decay | nd 1     | 01-03-2024 |            | TLM1     | CO1      | T1,T2    |        |
| 15.                                                                 | Law of natural growth a decay | nd 1     | 02-03-2024 |            | TLM1     | CO1      | T1,T2    |        |
| 16.                                                                 | Electrical circuits           | 1        | 04-03-2024 |            | TLM1     | CO1      | T1,T2    |        |
| 17.                                                                 | TUTORIAL - I                  | 1        | 06-03-2024 |            | TLM3     | CO1      | T1,T2    |        |
| No. of classes required to complete UNIT-I 14 No. of classes taken: |                               |          |            |            |          |          |          |        |

**UNIT-II:** Linear Differential equations of higher order (Constant Coefficients)

|     | Civit-ii. Linear Differential equations of higher order (Constant Coefficients) |          |            |            |          |          |          |        |  |  |  |  |  |
|-----|---------------------------------------------------------------------------------|----------|------------|------------|----------|----------|----------|--------|--|--|--|--|--|
| S.  |                                                                                 | No. of   | Tentative  | Actual     | Teaching | Learning |          | HOD    |  |  |  |  |  |
| No. | Topics to be covered                                                            | Classes  | Date of    | Date of    | Learning | Outcome  | Book     | Sign   |  |  |  |  |  |
|     |                                                                                 | Required | Completion | Completion | Methods  | COs      | followed | Weekly |  |  |  |  |  |
| 18. | Introduction to UNIT II                                                         | 1        | 07-03-2024 |            | TLM1     | CO1      | T1,T2    |        |  |  |  |  |  |
| 19. | Solving a homogeneous DE                                                        | 1        | 09-03-2024 |            | TLM1     | CO1      | T1,T2    |        |  |  |  |  |  |
| 20. | Solving a homogeneous DE                                                        | 1        | 11-03-2024 |            | TLM1     | CO1      | T1,T2    |        |  |  |  |  |  |
| 21. | Finding Particular Integral, P.I for $e^{ax+b}$                                 | 1        | 13-03-2024 |            | TLM1     | CO1      | T1,T2    |        |  |  |  |  |  |
| 22. | P.I for Cos bx, or sin bx                                                       | 1        | 14-03-2024 |            | TLM1     | CO1      | T1,T2    |        |  |  |  |  |  |
| 23. | P.I for polynomial function                                                     | 1        | 15-03-2024 |            | TLM1     | CO1      | T1,T2    |        |  |  |  |  |  |

| 24. | P.I for $e^{ax+b}v(x)$                     | 1  | 16-03-2024 | TLM1 | CO1           | T1,T2     |  |
|-----|--------------------------------------------|----|------------|------|---------------|-----------|--|
| 25. | P.I for $x^k v(x)$                         | 1  | 18-03-2024 | TLM1 | CO1           | T1,T2     |  |
| 26. | Method of Variation of parameters          | 1  | 20-03-2024 | TLM1 | CO1           | T1,T2     |  |
| 27. | Method of Variation of parameters          | 1  | 21-03-2024 | TLM1 | CO1           | T1,T2     |  |
| 28. | Simultaneous linear equations              | 1  | 22-03-2024 | TLM1 | CO1           | T1,T2     |  |
| 29. | Simultaneous linear equations              | 1  | 23-03-2024 | TLM1 | CO1           | T1,T2     |  |
| 30. | L-C-R circuits                             | 1  | 27-03-2024 | TLM1 | CO1           | T1,T2     |  |
| 31. | Simple Harmonic motion                     | 1  | 28-03-2024 | TLM1 | CO1           | T1,T2     |  |
| 32. | TUTORIAL - II                              | 1  | 30-03-2024 | TLM3 | CO1           | T1,T2     |  |
| N   | o. of classes required to complete UNIT-II | 14 |            |      | No. of classe | es taken: |  |

# I MID EXAMINATIONS (01-04-2024 TO 06-04-2024)

# **UNIT-III: Partial Differential Equations**

|     |                                                         | <b>N.T.</b> 0 | TD 4 4           | A 4 T      |               | · ·       | TE 4     | TIOD   |
|-----|---------------------------------------------------------|---------------|------------------|------------|---------------|-----------|----------|--------|
| S.  |                                                         | No. of        | <b>Tentative</b> | Actual     | Teaching      | Learning  | Text     | HOD    |
| No. | Topics to be covered                                    | Classes       | Date of          | Date of    | Learning      | Outcome   | Book     | Sign   |
|     | •                                                       | Required      | Completion       | Completion | Methods       | COs       | followed | Weekly |
| 33. | Introduction to Unit III                                | 1             | 08-04-2024       |            | TLM1          | CO2       | T1,T2    |        |
| 34. | Formation of PDE by elimination of arbitrary constants  | 1             | 10-04-2024       |            | TLM1          | CO2       | T1,T2    |        |
| 35. | Formation of PDE by elimination of arbitrary functions  | 1             | 12-04-2024       |            | TLM1          | CO2       | T1,T2    |        |
| 36. | Formation of PDE by elimination of arbitrary functions  | 1             | 13-04-2024       |            | TLM1          | CO2       | T1,T2    |        |
| 37. | Solving of PDE                                          | 1             | 15-04-2024       |            | TLM1          | CO2       | T1,T2    |        |
| 38. | Lagrange's Method                                       | 1             | 18-04-2024       |            | TLM1          | CO2       | T1,T2    |        |
| 39. | Lagrange's Method                                       | 1             | 19-04-2024       |            | TLM1          | CO2       | T1,T2    |        |
| 40. | Homogeneous Linear<br>PDE with constant<br>coefficients | 1             | 20-04-2024       |            | TLM1          | CO2       | T1,T2    |        |
| 41. | TUTORIAL - III                                          | 1             | 22-04-2024       |            | TLM3          | CO2       | T1,T2    |        |
|     | of classes required to complete UNIT-III                | 09            |                  |            | No. of classo | es taken: |          |        |

# **UNIT-IV: Vector Differentia**

| S.<br>No. | Topics to be covered      | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcome<br>COs | Text<br>Book<br>followed | HOD<br>Sign<br>Weekly |
|-----------|---------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------------|--------------------------|-----------------------|
| 42.       | Introduction to UNIT IV   | 1                             | 24-04-2024                         |                                 | TLM1                            | CO3                        | T1,T2                    |                       |
| 43.       | Vector<br>Differentiation | 1                             | 25-04-2024                         |                                 | TLM1                            | CO3                        | T1,T2                    |                       |
| 44.       | Gradient                  | 1                             | 26-04-2024                         |                                 | TLM1                            | CO3                        | T1,T2                    |                       |
| 45.       | Directional Derivative    | 1                             | 27-04-2024                         |                                 | TLM1                            | CO3                        | T1,T2                    |                       |

| 46. | Directional<br>Derivative                                        | 1  | 29-04-2024 | TLM1 | CO3          | T1,T2       |  |
|-----|------------------------------------------------------------------|----|------------|------|--------------|-------------|--|
| 47. | Divergence                                                       | 1  | 01-05-2024 | TLM1 | CO3          | T1,T2       |  |
| 48. | Curl                                                             | 1  | 02-05-2024 | TLM1 | CO3          | T1,T2       |  |
| 49. | Problems                                                         | 1  | 03-05-2024 | TLM1 | CO3          | T1,T2       |  |
| 50. | Solenoidal fields,<br>Irrotational fields,<br>potential surfaces | 1  | 04-05-2024 | TLM1 | CO3          | T1,T2       |  |
| 51. | Solenoidal fields,<br>Irrotational fields,<br>potential surfaces | 1  | 06-05-2024 | TLM1 | CO3          | T1,T2       |  |
| 52. | Laplacian, second order operators                                | 1  | 08-05-2024 | TLM1 | CO3          | T1,T2       |  |
| 53. | Vector Identities                                                | 1  | 09-05-2024 | TLM1 | CO3          | T1,T2       |  |
| 54. | Vector Identities                                                | 1  | 10-05-2024 | TLM1 | CO3          | T1,T2       |  |
| 55. | TUTORIAL IV                                                      | 1  | 11-05-2024 | TLM3 | CO3          | T1,T2       |  |
|     | of classes required to omplete UNIT-IV                           | 14 |            |      | No. of class | sses taken: |  |

# **UNIT-V: Vector Integration**

| S.  |                                           | No. of   | Tentative  | Actual     | Teaching     | Learning   | Text     | HOD    |  |  |  |
|-----|-------------------------------------------|----------|------------|------------|--------------|------------|----------|--------|--|--|--|
|     | Topics to be covered                      | Classes  | Date of    | Date of    | Learning     | Outcome    | Book     | Sign   |  |  |  |
| No. | <b>P</b>                                  | Required | Completion | Completion | 0            | COs        | followed | Weekly |  |  |  |
| 57. | Introduction to Unit-V                    | 1        | 13-05-2024 | •          | TLM1         | CO4        | T1,T2    | •      |  |  |  |
| 58. | Line Integral                             | 1        | 15-05-2024 |            | TLM1         | CO4        | T1,T2    |        |  |  |  |
| 59. | Circulation                               | 1        | 16-05-2024 |            | TLM1         | CO4        | T1,T2    |        |  |  |  |
| 60. | Work done                                 | 1        | 17-05-2024 |            | TLM1         | CO4        | T1,T2    |        |  |  |  |
| 61. | Surface Integral                          | 1        | 18-05-2024 |            | TLM1         | CO4        | T1,T2    |        |  |  |  |
| 62. | Surface Integral                          | 1        | 20-05-2024 |            | TLM1         | CO4        | T1,T2    |        |  |  |  |
| 63. | Flux                                      | 1        | 22-05-2024 |            | TLM1         | CO4        | T1,T2    |        |  |  |  |
| 64. | Green's Theorem                           | 1        | 23-05-2024 |            | TLM1         | CO4        | T1,T2    |        |  |  |  |
| 65. | Green's Theorem                           | 1        | 24-05-2024 |            | TLM1         | CO4        | T1,T2    |        |  |  |  |
| 66. | Stoke's Thoerem                           | 1        | 25-05-2024 |            | TLM1         | CO4        | T1,T2    |        |  |  |  |
| 67. | Divergence Theorem                        | 1        | 27-05-2024 |            | TLM1         | CO4        | T1,T2    |        |  |  |  |
| 68. | TUTORIAL - V                              | 1        | 29-05-2024 |            | TLM3         | CO4        | T1,T2    |        |  |  |  |
| No  | o. of classes required to complete UNIT-V | 12       |            |            | No. of class | ses taken: |          |        |  |  |  |

**Content beyond the Syllabus** 

| S. No.         | Topics to be covered                                           | No. of<br>Classes<br>Required | Tentative Date of Completion | Actual Date of Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcome<br>COs | Text<br>Book<br>followed | HOD<br>Sign<br>Weekly |
|----------------|----------------------------------------------------------------|-------------------------------|------------------------------|---------------------------|---------------------------------|----------------------------|--------------------------|-----------------------|
| 69.            | Non-homogeneous<br>Linear PDE with<br>constant<br>coefficients | 2                             | 30-05-2024<br>31-05-2024     |                           | TLM2                            | CO2                        | T1,T2                    |                       |
| No. of classes |                                                                | 2                             |                              |                           | No. of clas                     | ses taken:                 |                          |                       |
|                | 1                                                              | II MID EXA                    | MINATIONS                    | (03-06-2024)              | CO 08-06-20                     | 24)                        |                          |                       |

# **II MID EXAMINATIONS (03-06-2024 TO 08-06-2024)**

| Teaching Learning Methods |                |      |                                 |  |  |  |  |  |
|---------------------------|----------------|------|---------------------------------|--|--|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) |  |  |  |  |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/SwayamPrabha/MOOCS)  |  |  |  |  |  |

| TLM3 | Tutorial  | TLM6 | Group Discussion/Project           |
|------|-----------|------|------------------------------------|
|      | 1 0001101 |      | 010 up 2 150 usb1011/1 1 0 j 0 0 0 |

<u>PART-CEVALUATION PROCESS (R23 Regulation):</u>

| Evaluation Task                                                                      | Marks           |
|--------------------------------------------------------------------------------------|-----------------|
| Assignment-I (Units-I, II)                                                           | A1=5            |
| I-Descriptive Examination (Units-I, II)                                              | M1=15           |
| I-Quiz Examination (Units-I, II)                                                     | Q1=10           |
| Assignment-II (Unit-III, IV & V)                                                     | A2=5            |
| II- Descriptive Examination (UNIT-III, IV & V)                                       | M2=15           |
| II-Quiz Examination (UNIT-III, IV & V)                                               | Q2=10           |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30            |
| Cumulative Internal Examination (CIE):                                               | <mark>30</mark> |
| Semester End Examination (SEE)                                                       | <mark>70</mark> |
| Total Marks = $CIE + SEE$                                                            | 100             |

|             | <u>PART-D</u> PROGRAMME OUTCOMES (POs):                                                                                                               |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1        | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals                                                          |
| 101         | and an engineering specialization to the solution of complex engineering problems.                                                                    |
|             | <b>Problem analysis</b> : Identify, formulate, review research literature and analyze complex engineering                                             |
| PO 2        | problems reaching substantiated conclusions using first principles of mathematics, natural sciences,                                                  |
|             | and engineering sciences.                                                                                                                             |
|             | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design                                                 |
| PO 3        | system components or processes that meet the specified needs with appropriate consideration for the                                                   |
|             | public health and safety and the cultural, societal and environmental considerations.                                                                 |
|             | Conduct investigations of complex problems: Use research-based knowledge and research                                                                 |
| PO 4        | methods including design of experiments, analysis and interpretation of data and synthesis of the                                                     |
|             | information to provide valid conclusions.                                                                                                             |
| <b>DO</b> - | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern                                                            |
| PO 5        | engineering and IT tools including prediction and modeling to complex engineering activities with                                                     |
|             | an understanding of the limitations                                                                                                                   |
| DO (        | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,                                                    |
| PO 6        | health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional                                            |
|             | engineering practice                                                                                                                                  |
| DO 7        | Environment and sustainability: Understand the impact of the professional engineering solutions                                                       |
| PO 7        | in societal and environmental contexts and demonstrate the knowledge of and need for sustainable                                                      |
|             | development. <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of                             |
| PO 8        |                                                                                                                                                       |
|             | the engineering practice.                                                                                                                             |
| PO 9        | <b>Individual and team work</b> : Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings. |
|             | Communication: Communicate effectively on complex engineering activities with the engineering                                                         |
| PO 10       | community and with society at large, such as being able to comprehend and write effective reports                                                     |
| 1010        | and design documentation, make effective presentations and give and receive clear instructions.                                                       |
|             | Project management and finance: Demonstrate knowledge and understanding of the engineering                                                            |
| PO 11       | and management principles and apply these to one's own work, as a member and leader in a team,                                                        |
| 1011        | to manage projects and in multidisciplinary environments.                                                                                             |
|             | <b>Life-long learning</b> : Recognize the need for and have the preparation and ability to engage in                                                  |
| PO 12       | independent and life-long learning in the broadest context of technological change.                                                                   |
|             | morphisms and me roughest and deciment of commongram change.                                                                                          |

| Dr. K.Bhanu lakshmi Dr. K.R. Kavitha |                    | Dr. A. RAMI REDDY  | Dr. A. RAMI REDDY |  |  |
|--------------------------------------|--------------------|--------------------|-------------------|--|--|
| Course Instructor                    | Course Coordinator | Module Coordinator | HOD               |  |  |

# LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING



(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

# **DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING**

# COURSE HANDOUT PART-A

Name of Course Instructor: Dr. A.V.G.A.MARTHANDA

Course Name & Code: BASIC ELECTRICAL & ELECTRONICS ENGINEERING - 23EE01L-T-P Structure: 3-0-0Credits: 3Program/Branch/Sem/Sec: B.Tech/AI&DS/II/BA.Y.: 2023-24

**Pre-requisites:** Physics

**Course Educational Objectives:** The objectives of this course are

- To expose to the field of electrical & electronics engineering, laws and principles of electrical/electronic engineering and to acquire fundamental knowledge in the relevant field.
- To teach the fundamentals of semiconductor devices and its applications, principles of digital electronics.

**COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| COURSE     | PART-A                                                                                                                          |  |  |  |  |  |  |  |  |
|------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
| CO1        | Extract electrical variables of AC & DC circuits using fundamental laws (Understand)                                            |  |  |  |  |  |  |  |  |
| CO2        | Understand the operation of electrical machines and measuring instruments (Understand)                                          |  |  |  |  |  |  |  |  |
| CO3        | Classify various energy resources, safety measures and interpret electricity bill generation in electrical systems (Understand) |  |  |  |  |  |  |  |  |
|            | PART-B                                                                                                                          |  |  |  |  |  |  |  |  |
| CO4        | Interpret the characteristics of various semiconductor devices (Knowledge)                                                      |  |  |  |  |  |  |  |  |
| <b>CO5</b> | Infer the operation of rectifiers, amplifiers (Understand)                                                                      |  |  |  |  |  |  |  |  |
| C06        | Contrast various logic gates, sequential and combinational logic circuits (Understand)                                          |  |  |  |  |  |  |  |  |

| CO/PO | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | P0<br>10 | P0<br>11 | P0<br>12 | PSO<br>1 | PSO2 | PSO3 | PSO4 |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|----------|----------|----------|------|------|------|
| CO1   |     |     |     |     |     |     |     |     |     |          |          |          |          |      |      |      |
| CO2   |     |     |     |     |     |     |     |     |     |          |          |          |          |      |      |      |
| CO3   |     |     |     |     |     |     |     |     |     |          |          |          |          |      |      |      |
| CO4   |     |     |     |     |     |     |     |     |     |          |          |          |          |      |      |      |
| CO5   |     |     |     |     |     |     |     |     |     |          |          |          |          |      |      |      |
| CO6   |     |     |     |     |     |     |     |     |     |          |          |          |          |      |      |      |

### **TEXT BOOKS:**

- 1. Basic Electrical Engineering, D. C. Kulshreshtha, Tata McGraw Hill, 2019, First Edition.
- 2. Power System Engineering, P.V. Gupta, M.L. Soni, U.S. Bhatnagar and A. Chakrabarti, Dhanpat Rai & Co. 2013.
- 3. Fundamentals of Electrical Engineering, Rajendra Prasad, PHI publishers, 2014, Third Edition.
- 4. R. L. Boylestad & Louis Nashlesky, Electronic Devices & Circuit Theory, Pearson Education, 2021
- 5. R. P. Jain, Modern Digital Electronics, 4th Edition, Tata Mc Graw Hill, 2009.

### REFERENCE BOOKS:

- 1. Basic Electrical Engineering, D. P. Kothari and I. J. Nagrath, Mc Graw Hill, 2019, Fourth Edition.
- 2. Principles of Power Systems, V.K. Mehtha, S.Chand Technical Publishers, 2020.
- 3. Basic Electrical Engineering, T. K. Nagsarkar and M. S. Sukhija, Oxford University Press, 2017.
- 4. Basic Electrical and Electronics Engineering, S. K. Bhatacharya, Person Publications, 2018, Second Edition.
- 5. R. S. Sedha, A Textbook of Electronic Devices and Circuits, S. Chand & Co., 2010.
- 6. Santiram Kal, Basic Electronics- Devices, Circuits and IT Fundamentals, Prentice Hall, India, 2002.
- 7. R. T. Paynter, Introductory Electronic Devices & Circuits Conventional Flow Version, Pearson Education, 2009.

# **PART-B**

# **COURSE DELIVERY PLAN (LESSON PLAN):**

### **UNIT-I: SEMICONDUCTOR DEVICES**

| S.<br>No. | Topics to be covered                                                       | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|----------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | Introduction, Evolution of electronics  – Vacuum tubes to nano electronics | 1                             | 14-02-2024                         |                                 | TLM2                            |                       |
| 2.        | Characteristics of PN Junction Diode                                       | 1                             | 14-02-2024                         |                                 | TLM1                            |                       |
| 3.        | Zener Effect - Zener Diode                                                 | 1                             | 15-02-2024                         |                                 | TLM1                            |                       |
| 4.        | Zener Diode Characteristics                                                | 1                             | 1602-2024                          |                                 | TLM1                            |                       |
| 5.        | Bipolar Junction Transistor — CB Configuration and Characteristics         | 1                             | 19-02-2024                         |                                 | TLM2                            |                       |
| 6.        | CE Configuration and Characteristics                                       | 1                             | 21-02-2024                         |                                 | TLM1                            |                       |
| 7.        | CC Configuration and Characteristics                                       | 1                             | 21-02-2024                         |                                 | TLM1                            |                       |
| 8.        | Elementary Treatment of Small Signal CE Amplifier                          | 1                             | 22-02-2024                         |                                 | TLM1                            |                       |
| No. o     | of classes required to complete UNIT-I: 08                                 | No. of classes                | taken:                             |                                 |                                 |                       |

### UNIT - II: BASIC ELECTRONIC CIRCUITS AND INSTRUMENTTAION

| S.<br>No. | Topics to be covered                                                              | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-----------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 9.        | Rectifiers and power supplies:<br>Introduction                                    | 1                             | 23-02-2024                         | -                               | TLM1                            | •                     |
| 10.       | Block diagram description of a dc power supply                                    | 1                             | 26-02-2024                         |                                 | TLM1                            |                       |
| 11.       | Working of a full wave bridge rectifier                                           | 1                             | 28-02-2024                         |                                 | TLM1                            |                       |
| 12.       | Capacitor filter                                                                  | 1                             | 28-02-2024                         |                                 | TLM1                            |                       |
| 13.       | Working of simple Zener voltage regulator                                         | 1                             | 29-02-2024                         |                                 | TLM1                            |                       |
| 14.       | Amplifiers: Block diagram of Public<br>Address system                             | 1                             | 01-03-2024                         |                                 | TLM2                            |                       |
| 15.       | Circuit diagram and working of common emitter (RC coupled) amplifier              | 1                             | 04-03-2024                         |                                 | TLM1                            |                       |
| 16.       | Common emitter (RC coupled) amplifier frequency response                          | 1                             | 06-03-2024                         |                                 | TLM1                            |                       |
| 17.       | Electronic Instrumentation: Block diagram of an electronic instrumentation system | 1                             | 06-03-2024                         |                                 | TLM1                            |                       |
| No. o     | of classes required to complete UNIT-II: 09                                       |                               | No. of classes                     | taken:                          |                                 |                       |

# **UNIT - III: DIGITAL ELECTRONICS**

| 2   |                      | No. of   | Tentative  | Actual     | Teaching | HOD    |
|-----|----------------------|----------|------------|------------|----------|--------|
| No. | Topics to be covered | Classes  | Date of    | Date of    | Learning | Sign   |
| NO. |                      | Required | Completion | Completion | Methods  | Weekly |

| 25    | XOR and XNOR Simple combinational circuits-Half and | 1 | 18-03-2024 | TLM2                  |          |
|-------|-----------------------------------------------------|---|------------|-----------------------|----------|
| 25.   | Simple combinational circuits–Half and Full Adders  | 1 | 18-03-2024 | TLM2                  |          |
| 26.   | Introduction to sequential circuits                 | 1 | 20-03-2024 | TLM2                  |          |
| 27.   | Flip flops                                          | 1 | 20-03-2024 | TLM1                  |          |
| 28.   | Flip flops                                          | 1 | 21-03-2024 | TLM2                  | 1        |
| 29.   | Registers                                           | 1 | 21-03-2024 | TLM2                  |          |
| 30.   | Counters                                            | 1 | 22-03-2024 | TLM1                  | 1        |
| 31.   | Counters                                            | 1 | 22-03-2024 | TLM2                  | 1        |
| No. o | f classes required to complete UNIT-III: 14         |   |            | No. of classes taken: | <u> </u> |

UNIT - IV: DC & AC CIRCUITS

| S.    |                                                                               | No. of              | Tentative             | Actual             | Teaching            | HOD            |
|-------|-------------------------------------------------------------------------------|---------------------|-----------------------|--------------------|---------------------|----------------|
| No.   | Topics to be covered                                                          | Classes<br>Required | Date of<br>Completion | Date of Completion | Learning<br>Methods | Sign<br>Weekly |
| 32.   | <b>DC Circuits:</b> Electrical circuit elements (R, L and C)                  | 1                   | 08-04-2024            |                    | TLM1                |                |
| 33.   | Ohm's Law and its limitations, KCL & KVL                                      | 1                   | 10-04-2024            |                    | TLM1                |                |
| 34.   | Series, parallel, series-parallel circuits                                    | 1                   | 10-04-2024            |                    | TLM1                |                |
| 35.   | Super Position theorem                                                        | 1                   | 11-04-2024            |                    | TLM1                |                |
| 36.   | Simple numerical problems                                                     | 1                   | 12-04-2024            |                    | TLM1                |                |
| 37.   | <b>AC Circuits:</b> A.C. Fundamentals: Equation of AC Voltage and current     | 1                   | 15-04-2024            |                    | TLM1                |                |
| 38.   | Waveform, Time period, frequency, amplitude, phase, phase difference          | 1                   | 17-04-2024            |                    | TLM2                |                |
| 39.   | Average value, RMS value, form factor, peak factor                            | 1                   | 17-04-2024            |                    | TLM1                |                |
| 40.   | Voltage and current relationship with phasor diagrams in R, L, and C circuits | 1                   | 18-04-2024            |                    | TLM1                |                |
| 41.   | Concept of Impedance                                                          | 1                   | 19-04-2024            |                    | TLM1                |                |
| 42.   | Active power, reactive power and apparent power                               | 1                   | 22-04-2024            |                    | TLM1                |                |
| 43.   | Concept of power factor                                                       | 1                   | 24-04-2024            | _                  | TLM1                |                |
| 44.   | Problems                                                                      | 1                   | 24-04-2024            |                    | TLM1                |                |
| 45.   | Problems                                                                      | 1                   | 25-04-2024            |                    | TLM1                |                |
| No. o | f classes required to complete UNIT-IV: 14                                    |                     |                       | No. of classes     | taken:              | ·              |

# **UNIT - V: MACHINES AND MEASURING INSTRUMENTS**

| S. No. | Topics to be covered                                                 | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|----------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 46.    | <b>Machines:</b> Construction, principle and operation of DC Motor   | 1                             | 29-04-2024                         |                                 | TLM2                            |                       |
| 47.    | Construction, principle and operation of DC Generator                | 1                             | 01-05-2024                         |                                 | TLM2                            |                       |
| 48.    | Construction, principle and operation of Single Phase Transformer    | 1                             | 01-05-2024                         |                                 | TLM2                            |                       |
| 49.    | Construction, principle and operation of Three Phase Induction Motor | 1                             | 02-05-2024                         |                                 | TLM2                            |                       |
| 50.    | Construction, principle and operation of Three Phase Induction Motor | 1                             | 06-05-2024                         |                                 | TLM2                            |                       |
| 51.    | Construction, principle and operation of Alternator                  | 1                             | 08-05-2024                         |                                 | TLM2                            |                       |

| 52.    | Construction, principle and operation of Alternator                                              | 1              | 08-05-2024 |  | TLM2 |  |
|--------|--------------------------------------------------------------------------------------------------|----------------|------------|--|------|--|
| 53.    | Applications of electrical machines                                                              | 1              | 9-05-2024  |  | TLM1 |  |
| 54.    | Measuring Instruments: Construction and working principle of Permanent Magnet Moving Coil (PMMC) | 1              | 10-05-2024 |  | TLM2 |  |
| 55.    | Construction and working principle of Permanent Magnet Moving Coil (PMMC)                        | 1              | 13-05-2024 |  | TLM2 |  |
| 56.    | Construction and working principle of Moving Iron (MI) Instruments                               | 1              | 15-05-2024 |  | TLM2 |  |
| 57.    | Construction and working principle of Wheat Stone bridge                                         | 1              | 15-05-2024 |  | TLM1 |  |
| No. of | classes required to complete UNIT-V: 12                                                          | No. of classes | taken:     |  |      |  |

# UNIT – VI: ENERGY RESOURCES, ELECTRICITY BILL & SAFETY MEASURES

| S. No.   | Topics to be covered                                                                                            | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|----------|-----------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.       | Energy Resources: Conventional and non-conventional energy resources                                            | 1                             | 16-05-2024                         |                                 | TLM2                            |                       |
| 2.       | Layout and operation of various Power Generation systems: Hydel                                                 | 1                             | 17-05-2024                         |                                 | TLM2                            |                       |
| 3.       | Layout and operation of various<br>Power Generation systems:<br>Nuclear                                         | 1                             | 20-05-2024                         |                                 | TLM2                            |                       |
| 4.       | Layout and operation of various<br>Power Generation systems: Solar                                              | 1                             | 22-05-2024                         |                                 | TLM2                            |                       |
| 5.       | Wind power generation                                                                                           | 1                             | 22-05-2024                         |                                 | TLM2                            |                       |
| 6.       | Electricity bill: Power rating of household appliances including air conditioners, PCs, Laptops, Printers, etc. | 1                             | 23-05-2024                         |                                 | TLM1                            |                       |
| 7.       | Definition of "unit" used for consumption of electrical energy, Two-part electricity tariff                     | 1                             | 24-05-2024                         |                                 | TLM1                            |                       |
| 8.       | Calculation of electricity bill for domestic consumers                                                          | 1                             | 27-05-2024                         |                                 | TLM1                            |                       |
| 9.       | Equipment Safety Measures: Working principle of Fuse and Miniature circuit breaker (MCB), Merits and demerits   | 1                             | 29-05-2024                         |                                 | TLM1                            |                       |
| 10.      | Personal safety measures: Electric Shock, Earthing and its types                                                | 1                             | 29-05-2024                         |                                 | TLM1                            |                       |
| 11.      | Personal safety measures: Electric Shock, Earthing and its types                                                | 1                             | 30-05-2024                         |                                 | TLM1                            |                       |
| 12.      | Safety Precautions to avoid shock                                                                               | 1                             | 31-05-2024                         |                                 | TLM1                            |                       |
| No. of c | classes required to complete UNIT-V: 1                                                                          | 2                             |                                    | No. of classes                  | taken:                          |                       |

| Teaching Learning Methods |                |      |                                 |  |  |  |
|---------------------------|----------------|------|---------------------------------|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) |  |  |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |  |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project        |  |  |  |

# PART-C

# **EVALUATION PROCESS (R23 Regulation):**

| Evaluation Task                                              | Marks |
|--------------------------------------------------------------|-------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus)) | A1=5  |

| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15         |
|--------------------------------------------------------------------------------------|---------------|
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10         |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5          |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15         |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10         |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30          |
| Cumulative Internal Examination (CIE): M                                             | 30            |
| Semester End Examination (SEE)                                                       | <del>70</del> |
| Total Marks = CIE + SEE                                                              | 100           |

# PART-D

# PROGRAMME OUTCOMES (POs):

| INOUN | AMME OUTCOMES (FOS).                                                                                                                                                                                                                                                                                      |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1  | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering                                                                                                                                                                                                                   |
| 101   | fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                                                                                                          |
| PO 2  | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |
| PO 3  | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.         |
| PO 4  | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO 5  | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations                                                                 |
| PO 6  | <b>The engineer and society</b> : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice                                                                |
| PO 7  | <b>Environment and sustainability</b> : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO 8  | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9  | <b>Individual and team work</b> : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
| PO 10 | <b>Communication</b> : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
| PO 11 | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| PO 12 | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.                                                                                                                 |

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

| PSO a | Specify, design and analyze systems that efficiently generate, transmit and distribute electrical power |
|-------|---------------------------------------------------------------------------------------------------------|
| PSO b | Design and analyze electrical machines, modern drive and lighting systems                               |
| PSO c | Specify, design, implement and test analog and embedded signal processing electronic systems            |
| PSO d | Design controllers for electrical and electronic systems to improve their performance.                  |

| Title               | Course Instructor     | Course Coordinator    | Module Coordinator      | Head of the<br>Department |
|---------------------|-----------------------|-----------------------|-------------------------|---------------------------|
| Name of the Faculty | Dr. A.V.G.A Marthanda | Dr. A.V.G.A Marthanda | Dr. G. Nageswara<br>Rao | Dr.J.S.V.PRASAD           |
| Signature           |                       |                       |                         |                           |

# THEODY COLLEGE OR THE PROPERTY OF THE PROPERTY

# LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I),

### ISO 9001:2015 Certified Institution

Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

### **DEPARTMENT OF Artificial Intelligence and Data Science**

### **COURSE HANDOUT**

### **PART-A**

Name of Course Instructor(s): Mr. Jonnala Subba Reddy (T668),

Mr. V. Sankar Rao (T721), Mr. A. Dhanujaya Kumar (T811)

Course Name & Code: Engineering Graphics – 23ME01Regulations: R23L-T-P Structure: 2-0-2Credits: 03Program/Sem/Sec: B.Tech/II SEM AI & DS - B SectionA.Y.: 2023-24

**PREREQUISITE**: Engineering Physics, Mathematics

### **COURSE EDUCATIONAL OBJECTIVES (CEOs):**

- > To enable the students with various concepts like dimensioning, conventions and standards related to Engineering Drawing
- > To impart knowledge on the projection of points, lines and plane surfaces
- > To improve the visualization skills for better understanding of projection of solids
- > To develop the imaginative skills of the students required to understand Section of solids and Developments of surfaces.
- > To make the students understand the viewing perception of a solid object in Isometric and Perspective projections.

# COURSE OUTCOMES (COs): At the end of the course, student will be able to

| CO1 | Understand the principles of engineering drawing, including engineering curves, scales, Orthographic and isometric projections. ( <b>Understanding Level –L2</b> ) |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Draw and interpret orthographic projections of points, lines, planes and solids in front, top and side views. (Applying Level –L3)                                 |
| CO3 | Understand and draw projection of solids in various positions in first quadrant. (Apply –L3)                                                                       |
| CO4 | Able to draw the development of surfaces of simple objects. (Applying Level –L3)                                                                                   |
| CO5 | Prepare isometric and orthographic sections of simple solids. (Applying Level –L3)                                                                                 |

# COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

| COs            | PO1 | PO2 | РО3 | PO4 | PO5              | PO6 | PO7 | PO8 | PO9 | PO10            | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|----------------|-----|-----|-----|-----|------------------|-----|-----|-----|-----|-----------------|------|------|------|------|------|
| CO1            | 3   | 2   | 2   | -   | -                | -   | -   | -   | -   | -               | -    | 3    | 2    | 1    | 2    |
| CO2            | 3   | 2   | 1   | -   | -                | -   | -   | -   | -   | -               | -    | 3    | 1    | 1    | 2    |
| CO3            | 3   | 2   | 2   | -   | -                | -   | -   | -   | -   | -               | -    | 3    | -    | 1    | 2    |
| CO4            | 3   | 2   | 2   | -   | -                | -   | -   | -   | -   | 1               | 1    | 3    | 2    | 1    | 2    |
| CO5            | 2   | 2   | 2   | -   | -                | -   | -   | -   | -   | -               | - 1  | 3    | -    | -    | -    |
| <b>1</b> - Low |     |     |     | •   | <b>2</b> –Medium |     |     |     |     | <b>3</b> - High |      |      |      |      |      |

### **TEXTBOOKS:**

T1 N. D. Bhatt, Engineering Drawing, 51th Revised and Enlarged Edition, Charotar publishers, 2012

### **REFERENCE BOOKS:**

- R1 Narayana K L, Kannaiah P, Textbook on Engineering Drawing, 2nd Edition, SciTechpublishers.
- **R2** R.K.Dhawan, Engineering Drawing, S.Chand Company LTD.
- **R3** Venugopal, Engineering Drawing and Graphics, New Age publishers
- R4 Dhananjay A. Jolhe, Engineering Drawing, Tata McGraw Hill Publishers
- R5 N.S.Parthasarathy, Vela Murali, Engineering Drawing, Oxford Higher Education

# **COURSE DELIVERY PLAN (LESSON PLAN)**

PART-B

# UNIT - I: INTRODUCTION, GEOMETRICAL CONSTRUCTIONS, SCALES, CONICS, CYCLOIDS, INVOLUTES, ORTHOGRAPHIC PROJECTIONS OF POINTS

| S.No.                                                                                            | Topics to be covered                                                                                                                                                                  | No. of<br>Classes<br>Required | Tentative Date of Completion | Actual Date of Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcome<br>COs | Textbook<br>followed | HOD<br>Sign<br>Weekly |
|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------|---------------------------|---------------------------------|----------------------------|----------------------|-----------------------|
| 01                                                                                               | Introduction to Engineering Graphics: COs, CEOs, POs and PEOs  UNIT I: INTRODUCTION: Introduction to Engineering Drawing,  Principles of Engineering Graphics, and their Significance | 2                             | 13-02-2024                   |                           | TLM 1, 2                        | CO 1                       | T1, R1 to R5         |                       |
| 02                                                                                               | Drawing Instruments and their use-Conventions in Drawing, Lines, Lettering, and Dimensioning – BIS Conventions, Practice                                                              | 3                             | 16-02-2024                   |                           | TLM 1, 2, 3                     | CO 1                       | T1, R1 to R5         |                       |
| 03                                                                                               | <b>Geometrical Constructions</b> and Constructing regular polygons by general methods, <b>Scales</b> : Plain scales, diagonal scales, and vernier scales                              | 2                             | 20-02-2024                   |                           | TLM 1, 2                        | CO 1                       | T1, R1 to R5         |                       |
| 04                                                                                               | Engineering <b>Curves</b> : Conic Sections, Construction of Ellipse, Parabola, and Hyperbola by general method only                                                                   | 3                             | 23-02-2024                   |                           | TLM 1, 2, 3                     | CO 1                       | T1, R1 to R5         |                       |
| 05                                                                                               | Construction of Cycloids, Involutes, Normal and tangent to Curves, Practice                                                                                                           | 2                             | 27-02-2024                   |                           | TLM 1, 2                        | CO 1                       | T1, R1 to R5         |                       |
| 06                                                                                               | Orthographic Projections: Reference plane, importance of reference lines or Plane, Practice                                                                                           | 3                             | 01-03-2024                   |                           | TLM 1, 2, 3                     | CO 1                       | T1, R1 to R5         |                       |
| 07                                                                                               | Projections of a point situated in any one of the four quadrants,  Practice                                                                                                           | 2                             | 05-03-2024                   |                           | TLM 1, 2, 3                     | CO 1                       | T1, R1 to R5         |                       |
| No. of classes required to complete UNIT - I: 17 (Lecture:08 Practice: 09)  No. of classes taken |                                                                                                                                                                                       |                               |                              |                           |                                 | 1                          | l                    |                       |

# **UNIT-II: PROJECTIONS OF STRAIGHT LINES AND PLANES**

| S.No. | Topics to be covered                                                                                                                                                                          | No. of<br>Classes<br>Required | Tentative Date of Completion | Actual Date of Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcome<br>COs | Textbook<br>followed | HOD<br>Sign<br>Weekly |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------|---------------------------|---------------------------------|----------------------------|----------------------|-----------------------|
| 08    | <b>Projections of straight lines:</b> Projections of straight lines parallel to both reference planes, perpendicular to one reference plane, and parallel to other reference planes, Practice | 2                             | 12-03-2024                   |                           | TLM 1, 2, 3                     | CO 2                       | T1, R1 to R5         |                       |
| 09    | Projections of lines inclined to one reference plane and parallel to the other reference plane, Practice                                                                                      | 3                             | 15-03-2024                   |                           | TLM 1, 2, 3                     | CO 2                       | T1, R1 to R5         |                       |
| 10    | Projections of Straight Line Inclined to both the reference planes, Practice                                                                                                                  | 2                             | 19-03-2024                   |                           | TLM 1, 2, 3                     | CO 2                       | T1, R1 to R5         |                       |
| 11    | <b>Projections of Planes:</b> Projections of Regular planes Perpendicular to both reference planes, parallel to one reference plane and inclined to the other reference plane, Practice       | 3                             | 22-03-2024                   |                           | TLM 1, 2, 3                     | CO 2                       | T1, R1 to R5         |                       |
| 12    | Projections of planes inclined to both the reference planes, Practice                                                                                                                         | 2                             | 26-03-2024                   |                           | TLM 1, 2                        | CO 2                       | T1, R1 to R5         |                       |
| 13    | Practice                                                                                                                                                                                      | 2                             | 02-04-2024                   |                           | TLM 1, 2                        | CO 2                       | T1, R1 to R5         |                       |
| •     | I Mid Examinations: From 01-04-2024 to 06-04-2024 (Covered CO 1 & C                                                                                                                           | (O 2)                         | ,                            | 1                         | •                               |                            |                      |                       |
| No of | classes required to complete LINIT III 14/Lecture 00 Drestice 06                                                                                                                              |                               | No of classes                | s takan /inskudi          | na Dunatina).                   |                            |                      | •                     |

No. of classes required to complete UNIT - II: 14 (Lecture:08 Practice: 06)

No. of classes taken (including Practice):

### **UNIT-III: PROJECTIONS OF SOLIDS**

| S.No.                                                                        | Topics to be covered                                                                                                               | No. of<br>Classes<br>Required | Tentative Date of Completion | Actual Date of Completion                  | Teaching<br>Learning<br>Methods | Learning<br>Outcome<br>COs | Textbook<br>followed | HOD<br>Sign<br>Weekly |  |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------|--------------------------------------------|---------------------------------|----------------------------|----------------------|-----------------------|--|
| 14                                                                           | Types of solids: Polyhedra and Solids of revolution. Projections of solids in simple positions: Axis perpendicular to HP, Practice | 3                             | 12-04-2024                   |                                            | TLM 1, 2, 3                     | CO 3                       | T1, R1 to R5         |                       |  |
| 15                                                                           | Projections of solids in simple positions: Axis perpendicular to vertical plane and Axis parallel to both the reference planes     | 2                             | 16-04-2024                   |                                            | TLM 1, 2                        | CO 3                       | T1, R1 to R5         |                       |  |
| 16                                                                           | Projection of Solids with axis inclined to one reference plane and parallel to another plane, Practice                             | 3                             | 19-04-2024                   |                                            | TLM 1, 2, 3                     | CO 3                       | T1, R1 to R5         |                       |  |
| 17                                                                           | Numericals                                                                                                                         | 2                             | 23-04-2024                   |                                            | TLM 1, 2                        | CO 3                       | T1, R1 to R5         |                       |  |
| 18                                                                           | Practice                                                                                                                           | 3                             | 26-04-2024                   |                                            | TLM 1, 2, 3                     | CO 3                       | T1, R1 to R5         |                       |  |
| No. of classes required to complete UNIT - III: 13 (Lecture:06 Practice: 07) |                                                                                                                                    |                               |                              | No. of classes taken (including Practice): |                                 |                            |                      |                       |  |

# **UNIT-IV: SECTIONS OF SOLIDS & DEVELOPMENT OF SURFACES:**

| S.No.  | Topics to be covered                                                                                                                     | No. of<br>Classes<br>Required              | Tentative<br>Date of<br>Completion | Actual Date of Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcome<br>COs | Textbook<br>followed | HOD<br>Sign<br>Weekly |
|--------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------|---------------------------|---------------------------------|----------------------------|----------------------|-----------------------|
| 19     | Introduction to Sections of Solids and Development of Surfaces: Perpendicular and inclined section planes                                | 2                                          | 30-04-2024                         |                           | TLM 1, 2                        | CO 4                       | T1, R1 to R5         |                       |
| 20     | Sectional views and True shape of section, Practice                                                                                      | 3                                          | 03-05-2024                         |                           | TLM 1, 2, 3                     | CO 4                       | T1, R1 to R5         |                       |
| 21     | Sections of solids in simple position only, Numericals                                                                                   | 2                                          | 07-05-2024                         |                           | TLM 1, 2                        | CO 4                       | T1, R1 to R5         |                       |
| 22     | <b>Development of Surfaces:</b> Introduction to Methods of Development of Surfaces, Parallel Line Development (Plane Surfaces), Practice | 3                                          | 10-05-2024                         |                           | TLM 1, 2, 3                     | CO 4                       | T1, R1 to R5         |                       |
| 23     | Radial Line Development, Numericals                                                                                                      | 2                                          | 14-05-2024                         |                           | TLM 1, 2, 3                     | CO 4                       | T1, R1 to R5         |                       |
| 24     | Practice                                                                                                                                 | 3                                          | 17-05-2024                         |                           | TLM 1, 2, 3                     | CO 4                       | T1, R1 to R5         |                       |
| No. of | classes required to complete UNIT - IV: 15 (Lecture:06 Practice: 09)                                                                     | No. of classes taken (including Practice): |                                    |                           |                                 |                            |                      |                       |

### **UNIT-V: CONVERSION VIEWS & COMPUTER GRAPHICS:**

| S.No.  | Topics to be covered                                                                                                                                           | No. of<br>Classes<br>Required | Tentative Date of Completion               | Actual Date of Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcome<br>COs | Textbook<br>followed | HOD<br>Sign<br>Weekly |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------|---------------------------|---------------------------------|----------------------------|----------------------|-----------------------|
| 25     | Introduction to Isometric Views, Conversion of Views: Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views | 2                             | 21-05-2024                                 |                           | TLM 1, 2                        | CO 5                       | T1, R1 to R5         |                       |
| 26     | Practice                                                                                                                                                       | 3                             | 24-05-2024                                 |                           | TLM 1, 2, 3                     | CO 5                       | T1, R1 to R5         |                       |
| 27     | <b>Computer Graphics</b> : Creating 2D&3D drawings of objects, including PCB and Transformations using Auto CAD                                                | 2                             | 28-05-2024                                 |                           | TLM 1, 2                        | CO 5                       | T1, R1 to R5         |                       |
| 28     | Practice                                                                                                                                                       | 3                             | 31-05-2024                                 |                           | TLM 1, 2, 3                     | CO 5                       | T1, R1 to R5         |                       |
| No. of | classes required to complete UNIT - V: 10 (Lecture:04 Practice: 06)                                                                                            |                               | No. of classes taken (including Practice): |                           |                                 |                            |                      |                       |

II Mid Examinations: From 01-04-2024 to 06-04-2024 (Covered CO 3, CO 4 & CO 5)

# **Teaching Learning Methods:**

| TLM1: Chalk and Talk                 | TLM2: PPT | TLM3: Tutorial                 | TLM4: Demonstra | TLM4: Demonstration (Lab/Field Visit) |  |  |
|--------------------------------------|-----------|--------------------------------|-----------------|---------------------------------------|--|--|
| TLM5: ICT (NPTEL/SwayamPrabha/MOOCS) |           | TLM6: Group Discussion/Project |                 |                                       |  |  |

# PART-C

# **EVALUATION PROCESS for EG Course (R23 Regulation):**

| Evaluation Task                                         | Marks           |
|---------------------------------------------------------|-----------------|
| I - Descriptive Examination (Units - I, II)             | M1=15           |
| II- Descriptive Examination (UNITs - III, IV & V)       | M2=15           |
| Day – to – Day Evaluation (UNITs - I, II, III, IV & V)  | DDE=15          |
| Mid Marks for 80% of Max (M1, M2) + 20% of Min (M1, M2) | M=15            |
| Cumulative Internal Examination (CIE): M+ DDE           | <mark>30</mark> |
| Semester End Examination (SEE)                          | <mark>70</mark> |
| Total Marks = CIE + SEE                                 | 100             |

# ACADEMIC CALENDER - B.Tech - II Semester (R23):

| Commencement of Class work          | Commencement of Class work |            |         |  |  |  |  |
|-------------------------------------|----------------------------|------------|---------|--|--|--|--|
| Description                         | From                       | То         | Weeks   |  |  |  |  |
| I Phase of Instructions             | 12-02-2024                 | 06-04-2024 | 8 Weeks |  |  |  |  |
| I Mid Examinations                  | 01-04-2024                 | 06-04-2024 | 1 Week  |  |  |  |  |
| II Phase of Instructions            | 08-04-2024                 | 01-06-2024 | 8 Weeks |  |  |  |  |
| II Mid Examinations                 | 03-06-2024                 | 08-06-2024 | 1 Week  |  |  |  |  |
| Preparation and Practicals          | 10-06-2024                 | 15-06-2024 | 1 Week  |  |  |  |  |
| Semester End Examinations           | 17-06-2024                 | 29-06-2024 | 1 Week  |  |  |  |  |
| Commencement of Next (III) Semester | 01-07-2024                 |            |         |  |  |  |  |

# Class Time Table - B.Tech - II Sem: AI &DS Section - B (R23)

| L Day/Data        | 09.00 - | 09.50 - | 10.50 - | 11.40 - | 12.30 - | 13.30 - | 14.20 - | 15.10 - |
|-------------------|---------|---------|---------|---------|---------|---------|---------|---------|
| <b>↓Day/Date→</b> | 09.50   | 10.40   | 11.40   | 12.30   | 13.30   | 14.20   | 15.10   | 16.00   |
| Monday            |         |         |         |         |         |         |         |         |
| Tuesday           |         |         | EG      |         |         |         |         |         |
| Wednesday         |         |         |         |         | LUNCH   |         |         |         |
| Thursday          |         |         |         |         | BREAK   |         |         |         |
| Friday            |         |         |         |         |         | EG      |         |         |
| Saturday          |         |         |         |         |         |         |         |         |

# Day - to - Day work / Submission of Sheets

| S.No | Unit No | Course Outcome | Sheet No. and Content                                                                                                                                                              |
|------|---------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | ı       | CO 1           | <ol> <li>Geometrical Constructions, Engineering Curves: Ellipse,<br/>Parabola, Hyperbola</li> <li>Construction of Cycloids, involutes</li> <li>Projections of Points</li> </ol>    |
| 2    | II      | CO 2           | <ul><li>4. Projections of straight lines</li><li>5. Projections of Planes</li></ul>                                                                                                |
| 3    | III     | CO 3           | 6. Projections of Solids                                                                                                                                                           |
| 4    | IV      | CO 4           | <ul><li>7. Sections of Solids</li><li>8. Development of Surfaces</li></ul>                                                                                                         |
| 5    | V       | CO 5           | <ul> <li>Isometric views of simple solids, conversion of Isometric views to Orthographic Projections</li> <li>Conversion of Orthographic Projections to Isometric Views</li> </ul> |

### **PART-D**

# **Program Educational Objectives (PEOs):**

PEO1: To develop intelligent systems with a cutting-edge combination of machine learning, analytics, and visualization technologies.

PEO2: To adapt the new technologies and develop the solutions to real world problems with ethical practices thereby contributing to the society.

PEO3: To continue education for fulfilling their long-term goals and achieve satisfaction as successful professionals in industry, academia and research.

### **Program Outcomes (POs):**

- PO1 Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- PO2 Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- PO3 Design / Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4 Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- PO5 Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- PO6 The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- PO7 Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- PO8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- PO9 Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10 Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11 Project Management and Finance: Demonstrate knowledge and understanding of the ring and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12 Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

### **Program Specific Outcomes (PSOs):**

PSO1: To apply fundamental engineering knowledge, computational principles, and methods for extracting knowledge from data to identify, formulate and solve real time problems.

PSO2: To develop multidisciplinary projects with advanced technologies and tools to address social and environmental issues.

PSO3: To provide a concrete foundation and enrich their abilities for Employment and Higher studies in Artificial Intelligence and Data science with ethical values.

| Signature              |                    |                    |                    |                        |
|------------------------|--------------------|--------------------|--------------------|------------------------|
| Name of the<br>Faculty | Mr. J. Subba Reddy | Mr. J. Subba Reddy | Mr. J. Subba Reddy | Dr. O. Rama Devi       |
| Title                  | Course Instructor  | Course Coordinator | Module Coordinator | Head of the Department |

# AT PLANAR AS

# LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade, ISO 21001:2018, 50001:2018, 14001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada. L.B.REDDY NAGAR, MYLAVARAM. NTR District, AP, India. 521230.

hodads@lbrce.ac.in, ads@lbrce.ac.in, Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

# COURSE HANDOUT

# PART-A

Name of Course Instructor: Mr. S.V.V.D. JAGADEESH Course Name & Code : DATA STRUCTURES 23CS02

L-T-P Structure : 3-0-0 Credits: 3
Program/Sem/Sec : B.Tech/AI&DS/II /B A.Y.: 2023-24

PREREQUISITE: Programming for Problem Solving Using C-20CS01

### **COURSE EDUCATIONAL OBJECTIVES (CEO):**

The objective of the course is to make students familiar with writing algorithms to implement different data structures like stacks, queues, trees and graphs, and various sorting techniques.

**COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| CO1        | Understand the role of linear and nonlinear data structures in organizing and accessing data (Understand-L2) |
|------------|--------------------------------------------------------------------------------------------------------------|
| CO2        | Implement abstract data type (ADT) and data structures for given application.  (Apply-L3)                    |
| CO3        | Design algorithms based on techniques like linked list, stack, queue, trees etc. <b>(Apply-L3)</b>           |
| <b>CO4</b> | Apply the appropriate linear and nonlinear data structure techniques for solving a problem. (Apply-L3)       |
| CO5        | Design hash-based solutions for specific problems. (Apply-L3)                                                |

# **COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs            | P01 | P02 | P03 | P04 | P05                               | P06 | P07 | P08 | P09 | PO10 | P011 | PO12 | PSO1 | PSO2 | PSO3 |
|----------------|-----|-----|-----|-----|-----------------------------------|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1            | 3   | 2   |     |     |                                   |     |     |     |     |      |      |      | 2    |      |      |
| CO2            | 3   | 2   | 2   | 1   |                                   |     |     |     |     |      |      |      | 2    |      |      |
| CO3            | 3   | 2   | 2   | 1   |                                   |     |     |     |     |      |      |      | 2    |      |      |
| CO4            | 3   | 2   | 2   | 1   |                                   |     |     |     |     |      |      |      | 2    |      |      |
| <b>CO5</b>     | 3   | 2   | 2   | 1   |                                   |     |     |     |     |      |      |      | 2    |      |      |
| <b>1 -</b> Low |     |     |     | 2   | <b>2</b> – Medium <b>3</b> - High |     |     |     |     |      |      |      |      |      |      |

### **TEXTBOOKS:**

- **T1** Data Structures and algorithm analysis in C, Mark Allen Weiss, Pearson, 2nd Edition.
- T2 Fundamentals of data structures in C, Ellis Horowitz, Sartaj Sahni, Susan AndersonFreed, Silicon Press, 2008

### REFERENCE BOOKS:

- **R1** Algorithms and Data Structures: The Basic Toolbox by Kurt Mehlhorn and Peter Sanders
- **R2** C Data Structures and Algorithms by Alfred V. Aho, Jeffrey D. Ullman, and John E. Hopcroft
- **R3** Problem Solving with Algorithms and Data Structures" by Brad Miller and David Ranum
- **R4** Introduction to Algorithms by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein
- **R5** Algorithms in C, Parts 1-5 (Bundle): Fundamentals, Data Structures, Sorting, Searching, and Graph Algorithms" by Robert Sedgewick

# PART-B

# **COURSE DELIVERY PLAN (LESSON PLAN):**

# **UNIT-I: Introduction to Linear Data Structures**

| S.<br>No. | Topics to be covered                                   | No. of<br>Classes<br>Required | Tentative Date of Completion | Actual Date of Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|--------------------------------------------------------|-------------------------------|------------------------------|---------------------------|---------------------------------|-----------------------|
| 1.        | Introduction and Discussion of CO's                    | 1                             | 14-02-2024                   |                           | TLM1                            |                       |
| 2.        | Definition and Importance of<br>Linear Data Structures | 1                             | 15-02-2024                   |                           | TLM1                            |                       |
| 3.        | Abstract Data Types and Implementation                 | 1                             | 16-02-2024                   |                           | TLM1                            |                       |
| 4.        | Overview of time and space complexity                  | 1                             | 17-02-2024                   |                           | TLM1                            |                       |
| 5.        | Analysis of Liner Data structures                      | 2                             | 19-02-2024<br>21-02-2024     |                           | TLM1                            |                       |
| 6.        | Revise Arrays                                          | 1                             | 22-02-2024                   |                           | TLM1                            |                       |
| 7.        | Searching Techniques: Linear<br>Search                 | 1                             | 23-02-2024                   |                           | TLM1                            |                       |
| 8.        | Binary Search & Analysis                               | 2                             | 24-02-2024<br>26-02-2024     |                           | TLM1                            |                       |
| 9.        | Bubble Sort & Analysis                                 | 1                             | 28-02-2024                   |                           | TLM1                            |                       |
| 10.       | Insertion Sort & Analysis                              | 2                             | 29-02-2024<br>04-03-2024     |                           | TLM1                            |                       |
| 11.       | Selection Sort & Analysis                              | 2                             | 06-03-2024<br>07-03-2024     |                           | TLM1                            |                       |
| No.       | of classes required to compl                           | No. of cla                    | sses take                    | n:                        |                                 |                       |

# **UNIT-II: Linked Lists**

| S.<br>No. | Topics to be covered                                                  | No. of<br>Classes<br>Required | Tentative Date of Completion           | Actual Date of Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |  |
|-----------|-----------------------------------------------------------------------|-------------------------------|----------------------------------------|---------------------------|---------------------------------|-----------------------|--|
| 12.       | List Implementation using Arrays and Array Disadvantages              | 1                             | 11-03-2024                             |                           | TLM1                            |                       |  |
| 13.       | Linked List Representation                                            | 1                             | 13-03-2024                             |                           | TLM1                            |                       |  |
| 14.       | Sing Linked List : Operations                                         | 3                             | 14-03-2024<br>15-03-2024<br>16-03-2024 |                           | TLM1                            |                       |  |
| 15.       | Double Linked List : Operations                                       | 2                             | 18-03-2024<br>20-03-2024               |                           | TLM1                            |                       |  |
| 16.       | Circular Single Linked List                                           | 1                             | 21-03-2024                             |                           | TLM1                            |                       |  |
| 17.       | Circular Double Linked List                                           | 2                             | 22-03-2024<br>23-03-2024               |                           | TLM1                            |                       |  |
| 18.       | Comparing Arrays and Linked List                                      | 1                             | 27-03-2024                             |                           | TLM1                            |                       |  |
| 19.       | Applications of Linked Lists:<br>Polynomial Representation            | 1                             | 28-03-2024                             |                           | TLM1                            |                       |  |
| 20.       | Polynomial Addition                                                   | 1                             | 30-03-2024                             |                           | TLM1                            |                       |  |
| No.       | No. of classes required to complete UNIT-II: 13 No. of classes taken: |                               |                                        |                           |                                 |                       |  |

# **UNIT-III: Stacks:**

| S.<br>No. | Topics to be covered                | No. of<br>Classes<br>Require<br>d | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completi<br>on | Teachin<br>g<br>Learnin<br>g<br>Method<br>s | HOD<br>Sign<br>Weekly |
|-----------|-------------------------------------|-----------------------------------|------------------------------------|-------------------------------------|---------------------------------------------|-----------------------|
| 21.       | Introduction to Stacks : Properties | 1                                 | 08-04-2024                         |                                     | TLM1                                        |                       |

| No. of classes required to complete UNIT-III: 12 No. of classes taken: |                                       |   |                          |      |  |  |
|------------------------------------------------------------------------|---------------------------------------|---|--------------------------|------|--|--|
| 29.                                                                    | Backtracking                          | 1 | 26-04-2024               | TLM1 |  |  |
| 28.                                                                    | Reversing a List                      | 1 | 25-04-2024               | TLM1 |  |  |
| 27.                                                                    | Checking Balanced Parenthesis         | 2 | 22-04-2024<br>24-04-2024 | TLM1 |  |  |
| 26.                                                                    | Infix to Postfix Conversion           | 2 | 19-04-2024<br>20-04-2024 | TLM1 |  |  |
| 25.                                                                    | Expressions: Expression evaluation    | 2 | 15-04-2024<br>18-04-2024 | TLM1 |  |  |
| 24.                                                                    | Stacks using Linked List              | 1 | 13-04-2024               | TLM1 |  |  |
| 23.                                                                    | Implementation of stacks using arrays | 1 | 12-04-2024               | TLM1 |  |  |
| 22.                                                                    | Operations of Stacks                  | 1 | 10-04-2024               | TLM1 |  |  |

# **UNIT-IV: Queues**

| S.<br>No. | Topics to be covered                               | No. of<br>Classes<br>Required | Tentative Date of Completion | Actual Date of Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|----------------------------------------------------|-------------------------------|------------------------------|---------------------------|---------------------------------|-----------------------|
| 30.       | Introduction to queues: properties and operations, | 1                             | 27-04-2024                   |                           | TLM1                            |                       |
| 31.       | Implementing queues using arrays                   | 1                             | 29-04-2024                   |                           | TLM1                            |                       |
| 32.       | Implementing queues using<br>Linked List           | 1                             | 01-05-2024                   |                           | TLM1                            |                       |
| 33.       | Applications of Queue :<br>Scheduling              | 1                             | 02-05-2024                   |                           | TLM1                            |                       |
| 34.       | Breadth First Search                               | 1                             | 03-05-2024                   |                           | TLM1                            |                       |
| 35.       | Circular Queue                                     | 2                             | 04-05-2024<br>06-05-2024     |                           | TLM1                            |                       |
| 36.       | Double ended queue                                 | 2                             | 08-05-2024<br>09-05-2024     |                           | TLM1                            |                       |
| 37.       | Applications of Deque                              | 1                             | 10-05-2024                   |                           | TLM1                            |                       |
| No.       | of classes required to complet                     | No. of class                  | es taken:                    |                           |                                 |                       |

# UNIT-V: TREES & HASHING TECHNQIUES

| S.<br>No. | Topics to be covered                                    | No. of<br>Classes<br>Required | Tentative Date of Completion           | Actual Date of Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|---------------------------------------------------------|-------------------------------|----------------------------------------|---------------------------|---------------------------------|-----------------------|
| 38.       | Introduction to Trees,                                  | 1                             | 11-05-2024                             |                           | TLM1                            |                       |
| 39.       | Representation of Trees                                 | 1                             | 13-05-2024                             |                           | TLM1                            |                       |
| 40.       | Tree Traversals                                         | 1                             | 15-05-2024                             |                           | TLM1                            |                       |
| 41.       | Binary Search Trees-<br>Operations                      | 3                             | 16-05-2024<br>17-05-2024<br>18-05-2024 |                           | TLM1                            |                       |
| 42.       | Hashing Introduction                                    | 1                             | 20-05-2024                             |                           | TLM1                            |                       |
| 43.       | Hash Functions                                          | 1                             | 22-05-2024                             |                           | TLM1                            |                       |
| 44.       | Collison Resolution<br>Techniques: Separate<br>Chaining | 1                             | 23-05-2024                             |                           | TLM1                            |                       |
| 45.       | Open Addressing: Linear<br>Probing                      | 1                             | 24-05-2024                             |                           | TLM1                            |                       |
| 46.       | Quadratic Probing, Double<br>Hashing                    | 1                             | 25-05-2024                             |                           | TLM1                            |                       |
| 47.       | Rehashing                                               | 1                             | 30-05-2024                             |                           | TLM1                            |                       |
| 48.       | Applications of Hashing                                 | 1                             | 01-06-2024                             |                           | TLM1                            |                       |
| 49.       |                                                         |                               |                                        |                           | TLM1                            |                       |
| No. o     | No. of classes required to complete UNIT-V: 13          |                               |                                        |                           | es taken:                       |                       |

**Content Beyond Syllabus** 

| S.<br>No. | Topics to be covered                           | No. of<br>Classes<br>Requir<br>ed | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Compl<br>etion | Teachi<br>ng<br>Learni<br>ng<br>Method<br>s | Learni<br>ng<br>Outco<br>me<br>COs | Text<br>Book<br>follow<br>ed | HOD<br>Sign<br>Weekl<br>y |
|-----------|------------------------------------------------|-----------------------------------|------------------------------------|-------------------------------------|---------------------------------------------|------------------------------------|------------------------------|---------------------------|
| 1.        | Quick & Merge<br>Sort                          | 1                                 | 18-04-2024                         |                                     |                                             |                                    |                              |                           |
| 2.        | Towers of Hanoi                                | 1                                 | 25-04-2024                         |                                     |                                             |                                    |                              |                           |
| 3.        | Extendable<br>Hashing                          | 1                                 | 31-05-2024                         |                                     |                                             |                                    |                              |                           |
| N         | No. of classes aken:                           |                                   |                                    |                                     |                                             |                                    |                              |                           |
|           | II MID EXAMINATIONS (03-06-2024 TO 08-06-2024) |                                   |                                    |                                     |                                             |                                    |                              |                           |

| Teaching Learning Methods |                |      |                                    |  |  |  |  |
|---------------------------|----------------|------|------------------------------------|--|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project           |  |  |  |  |

# PART-C

# **EVALUATION PROCESS (R23 Regulation):**

| Evaluation Task                                                                      | Marks |
|--------------------------------------------------------------------------------------|-------|
| Assignment-I (Units-I, II )                                                          | A1=5  |
| I-Descriptive Examination (Units-I, II )                                             | M1=15 |
| I-Quiz Examination (Units-I, II )                                                    | Q1=10 |
| Assignment-II (Unit-III ,IV & V)                                                     | A2=5  |
| II- Descriptive Examination (Unit-III ,IV & V)                                       | M2=15 |
| II-Quiz Examination (Unit-III ,IV & V)                                               | Q2=10 |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | M=30  |
| Cumulative Internal Examination (CIE): M                                             | 30    |
| Semester End Examination (SEE)                                                       | 70    |
| Total Marks = CIE + SEE                                                              | 100   |

# PART-D

# PROGRAMME OUTCOMES (POs):

|             | Engineering knowledge: Apply the knowledge of mathematics, science,                                          |
|-------------|--------------------------------------------------------------------------------------------------------------|
| PO 1        | engineering fundamentals, and an engineering specialization to the solution of complex engineering problems. |
|             | <b>Problem analysis:</b> Identify, formulate, review research literature, and analyze                        |
| PO 2        | complex engineering problems reaching substantiated conclusions using first                                  |
| 102         | principles of mathematics, natural sciences, and engineering sciences.                                       |
|             | <b>Design/development of solutions</b> : Design solutions for complex engineering                            |
|             | problems and design system components or processes that meet the specified                                   |
| <b>PO</b> 3 | needs with appropriate consideration for the public health and safety, and the                               |
|             | cultural, societal, and environmental considerations.                                                        |
|             | Conduct investigations of complex problems: Use research-based knowledge                                     |
| 70.4        | and research methods including design of experiments, analysis and                                           |
| PO 4        | interpretation of data, and synthesis of the information to provide valid                                    |
|             | conclusions.                                                                                                 |
|             | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources,                      |
| PO 5        | and modern engineering and IT tools including prediction and modeling to                                     |
|             | complex engineering activities with an understanding of the limitations.                                     |
|             | The engineer and society: Apply reasoning informed by the contextual                                         |
| PO 6        | knowledge to assess societal, health, safety, legal and cultural issues and the                              |
|             | consequent responsibilities relevant to the professional engineering practice.                               |
|             | <b>Environment and sustainability</b> : Understand the impact of the professional                            |
| PO 7        | engineering solutions in societal and environmental contexts, and demonstrate                                |
|             | the knowledge of, and need for sustainable development.                                                      |
| PO 8        | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and                               |
| 103         | responsibilities and norms of the engineering practice.                                                      |
| PO 9        | Individual and team work: Function effectively as an individual, and as a                                    |
| 10 )        | member or leader in diverse teams, and in multidisciplinary settings.                                        |
|             | <b>Communication</b> : Communicate effectively on complex engineering activities with                        |
| PO 10       | the engineering community and with society at large, such as, being able to                                  |
| 10 10       | comprehend and write effective reports and design documentation, make effective                              |
|             | presentations, and give and receive clear instructions.                                                      |
|             | Project management and finance: Demonstrate knowledge and understanding                                      |
| PO 11       | of the engineering and management principles and apply these to one's own                                    |
|             | work, as a member and leader in a team, to manage projects and in                                            |
|             | multidisciplinary environments.                                                                              |
|             | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to                  |
| PO 12       | engage in independent and life-long learning in the broadest context of technological                        |
|             | change                                                                                                       |
|             |                                                                                                              |

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

| PSO : | To apply the fundamental engineering knowledge, computational principles, and methods for extracting knowledge from data to identify, formulate and solve real time problems. |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO : | To develop multidisciplinary projects with advanced technologies and tools to address social and environmental issues.                                                        |
| PSO : | To provide a concrete foundation and enrich their abilities for Employment and Higher studies in Artificial Intelligence and Data science with ethical values.                |

| Title               | Course Instructor        | Course<br>Coordinator    | Module<br>Coordinator | Head of the<br>Department |
|---------------------|--------------------------|--------------------------|-----------------------|---------------------------|
| Name of the Faculty | Mr.<br>S.V.V.D.Jagadeesh | Dr. S.Nagarjuna<br>Reddy | Dr. Y.V.B Reddy       | Dr. O. Rama<br>Devi       |
| Signature           |                          |                          |                       |                           |

# LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

# Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

# **COURSE HANDOUT**

### Part-A

PROGRAM : B.Tech., II-Sem., AI&DS-B

ACADEMIC YEAR : 2023-2024

**COURSE NAME & CODE** : ENGINEERING PHYSICS LAB

**L-T-P STRUCTURE** : 0-0-3

**COURSE CREDITS** : 1

**COURSE INSTRUCTOR** : Dr. N. Aruna & Mr.N.T.Sarma

**COURSE COORDINATOR** : Dr S Yusub

# **Course Objectives:**

To study the concepts of optical phenomenon like interference, diffraction etc., recognize the importance of energy gap in the study of conductivity and Hall effect in semiconductors and study the parameters and applications of dielectric and magnetic materials by conducting experiments.

### **Course Outcomes:**

CO1: Analyze the wave properties of light using optical instruments (Apply-L3).

CO2: Estimate the elastic modulii of various materials and acceleration due to gravity (Apply-L3).

CO3: Demonstrate the vibrations in stretched strings (Understand-L2).

CO4: Evaluate dielectric constant and magnetic field of circular coil carrying current (Apply-L3).

CO5: Examine the characteristics of semiconductor devices (Apply-L3).

# **COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs):**

| Engineering Physics Lab |   |                                 |   |   |   |   |   |   |   |    |    |    |
|-------------------------|---|---------------------------------|---|---|---|---|---|---|---|----|----|----|
| COURSE                  |   |                                 |   |   |   |   |   |   |   |    |    |    |
| DESIGNED BY             |   | FRESHMAN ENGINEERING DEPARTMENT |   |   |   |   |   |   |   |    |    |    |
| <b>Course Outcomes</b>  |   | Programme Outcomes              |   |   |   |   |   |   |   |    |    |    |
| PO's<br>→               | 1 | 2                               | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
| CO1.                    | 3 | 3                               | 2 | 1 |   |   |   | 1 | 1 |    |    | 1  |

| CO2.                                    | 3 | 3 | 2 | 1 |  |     | 1     | 1       |        |   | 1 |
|-----------------------------------------|---|---|---|---|--|-----|-------|---------|--------|---|---|
| CO3.                                    | 3 | 3 | 2 | 1 |  |     | 1     | 1       |        |   | 1 |
| CO4.                                    | 3 | 3 | 2 | 1 |  |     | 1     | 1       |        |   | 1 |
| CO5.                                    | 3 | 3 | 2 | 1 |  |     | 1     | 1       |        |   | 1 |
| 1 = slight (Low) 2 = Moderate ( Medium) |   |   |   |   |  | 3 = | Subst | tantial | ( High | ) |   |

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

# **BOS APPROVED TEXT BOOKS:**

1. Lab Manual Prepared by the LBRCE.

 $\label{eq:part-B} \mbox{COURSE DELIVERY PLAN (LESSON PLAN): Section- ( CSM) / B}$ 

| S.No. | Topics to be covered | No. of<br>Classes<br>Require<br>d | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Comple<br>tion | Teachin<br>g<br>Learnin<br>g<br>Methods | HOD<br>Sign<br>Weekly |
|-------|----------------------|-----------------------------------|------------------------------------|-------------------------------------|-----------------------------------------|-----------------------|
| 1.    | Introduction         | 3                                 | 13-02-2024                         |                                     | TLM4                                    |                       |
| 2.    | Demonstration        | 3                                 | 20-02-2024                         |                                     | TLM4                                    |                       |
| 3.    | Experiment 1         | 3                                 | 27-02-2024                         |                                     | TLM4                                    |                       |
| 4.    | Experiment 2         | 3                                 | 05-03-2024                         |                                     | TLM4                                    |                       |
| 5.    | Experiment 3         | 3                                 | 12-03-2024                         |                                     | TLM4                                    |                       |
| 6.    | Experiment 4         | 3                                 | 19-03-2024                         |                                     | TLM4                                    |                       |
| 7.    | Experiment 5         | 3                                 | 26-03-2024                         |                                     | TLM4                                    |                       |
| 8.    | MID -1               | 3                                 | 02-04-2024                         |                                     | TLM4                                    |                       |
| 9.    | Experiment 6         | 3                                 | 16-04-2024                         |                                     | TLM4                                    |                       |
| 10.   | Experiment 7         | 3                                 | 23-04-2024                         |                                     | TLM4                                    |                       |
| 11.   | Experiment 8         | 3                                 | 30-04-2024                         |                                     | TLM4                                    |                       |
| 12.   | Experiment 9         | 3                                 | 07-05-2024                         |                                     | TLM4                                    |                       |
| 13.   | Experiment 10        | 3                                 | 14-05-2024                         |                                     | TLM4                                    |                       |
| 14.   | Revision             | 3                                 | 21-05-2024                         |                                     | TLM4                                    |                       |
| 15.   | Internal Exam        | 3                                 | 28-05-2024                         |                                     | TLM4                                    |                       |
|       | No. of classes       | required to<br>Syllabus:          | 45                                 |                                     |                                         |                       |

| Teaching Learning Methods |                |      |                                    |  |  |  |  |
|---------------------------|----------------|------|------------------------------------|--|--|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project           |  |  |  |  |

### **EVALUATION PROCESS:**

| Evaluation Task                          | Marks           |
|------------------------------------------|-----------------|
| Cumulative Internal Examination (CIE): M | <mark>30</mark> |
| Semester End Examination (SEE)           | <mark>70</mark> |
| Total Marks = CIE + SEE                  | 100             |

### PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- 1.To Attain a solid foundation in Electronics & Communication Engineering fundamentals with an attitude to pursue continuing education.
- 2. To Function professionally in the rapidly changing world with advances in technology.
- 3. To Contribute to the needs of the society in solving technical problems using Electronics & Communication Engineering principles, tools and practices.
- 4. To Exercise leadership qualities, at levels appropriate to their experience, which addresses issues in a responsive, ethical, and innovative manner.

# **PROGRAM OUTCOMES:**

Engineering Graduates will be able to:

- (1). **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- (2). **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- (3). **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- (4). Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- (5). **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- (6). The engineer and society: Apply reasoning informed by the contextual knowledge to assess

societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

- (7). Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- (8). Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- (9). **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- (10). Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- (11). Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- (12).Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

# **PROGRAM SPECIFIC OUTCOMES (PSOs):**

Graduate of the ECE will have the ability to

- (1)Design and develop modern communication technologies for building the inter disciplinary skills to meet current and future needs of industry.
- (2) Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools
- (3) Apply the Signal processing techniques to synthesize and realize the issues related to real time applications.

| Dr N Aruna        | Dr. S. Yusub       | Dr. S. Yusub       | Dr A. Rami Reddy |
|-------------------|--------------------|--------------------|------------------|
| &Mr.N.T.Sarma     |                    |                    | -                |
| Course Instructor | Course Coordinator | Module Coordinator | HOD              |



# LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC(A) & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

# **DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING**

# **COURSE HANDOUT**

# **PART-A**

Name of Course Instructor: / Dr. A.V.G.A. Marthanda / MRS.HIMA BINDU

DR.B.Pangidaiah Mr. P. Rathnakar Kumar

**Course Name & Code** : ELECTRICAL & ELECTRONICS ENGINEERING WORKSHOP

23EE51

L-T-P Structure : 0-0-3 Credits: 1.5 Program/Branch/Sem/Sec: B.Tech/AI&DS /II/B A.Y.: 2023-24

**Course Educational Objective:** To impart knowledge on the fundamental laws & theorems of electrical circuits, functions of electrical machines and energy calculations.

**COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| <b>CO1</b> | Compute voltage, current and power in an electrical circuit. (Apply)                  |
|------------|---------------------------------------------------------------------------------------|
| CO2        | Compute medium resistance using Wheat stone bridge. (Apply)                           |
| соз        | Discover critical field resistance and critical speed of DC shunt generators. (Apply) |
| <b>CO4</b> | Estimate reactive power and power factor in electrical loads. (Understand)            |
| CO5        | Plot the characteristics of semiconductor devices. (Apply)                            |
| СО6        | Demonstrate the working of various logic gates using ICs. (Understand)                |

# Part - B COURSE DELIVERY PLAN (LESSON PLAN): SECTION-A SCHEDULE

DAY: MONDAY

Batches: 23761A5466

to 23761A54D1

| D.NO. | H.T. Nos       | I<br>Week | II<br>Week | III<br>Week | IV<br>Week | V<br>Week | VI<br>Week | VII<br>Week     | VIII<br>Week | IX<br>Week | X<br>Week | XI<br>Week | XIII<br>Week | XIV<br>Week | XV<br>Week       |
|-------|----------------|-----------|------------|-------------|------------|-----------|------------|-----------------|--------------|------------|-----------|------------|--------------|-------------|------------------|
| B.NO. | Tentative date | 12/02     | 19/02      | 26/02       | 04/03      | 11/03     | 18/03      | 25/03           | 1/04         | 15/04      | 22/04     | 29/04      | 6/05         | 13/05       | 20/05            |
|       | Actual date    |           |            |             |            |           |            |                 |              |            |           |            |              |             |                  |
| B-1   |                | 1         | 2          | 3           | 4          | 5         | 6          |                 | 7            | 8          | 9         | 10         | 11           | 12          |                  |
| B-2   |                | 1         | 2          | 3           | 4          | 5         | 6          |                 | 7            | 8          | 9         | 10         | 11           | 12          |                  |
| В-3   |                | 1         | 2          | 3           | 4          | 5         | 6          |                 | 7            | 8          | 9         | 10         | 11           | 12          |                  |
| B-4   | 23761A5466     | 1         | 2          | 3           | 4          | 5         | 6          |                 | 7            | 8          | 9         | 10         | 11           | 12          |                  |
| B-5   | то             | 1         | 2          | 3           | 4          | 5         | 6          | INTE            | 7            | 8          | 9         | 10         | 11           | 12          | INTE             |
| B-6   | 10             | 1         | 2          | 3           | 4          | 5         | 6          | INTERNAL EXAM-I | 7            | 8          | 9         | 10         | 11           | 12          | RNAL E           |
| B-7   | 23761A54D1     | 1         | 2          | 3           | 4          | 5         | 6          | EXAM-I          | 7            | 8          | 9         | 10         | 11           | 12          | INTERNAL EXAM-II |
| B-8   |                | 1         | 2          | 3           | 4          | 5         | 6          |                 | 7            | 8          | 9         | 10         | 11           | 12          |                  |
| B-9   |                | 1         | 2          | 3           | 4          | 5         | 6          |                 | 7            | 8          | 9         | 10         | 11           | 12          |                  |
| B-10  |                | 1         | 2          | 3           | 4          | 5         | 6          |                 | 7            | 8          | 9         | 10         | 11           | 12          |                  |

# **PART-C**

**EVALUATION PROCESS (R23 Regulations):** 

| = (11=0111101(11100125)(11100115)(           |       |
|----------------------------------------------|-------|
| Evaluation Task                              | Marks |
| Day – Day Evaluation                         | A=10  |
| Record                                       | B=05  |
| Internal Exam                                | C=15  |
| Cumulative Internal Examination (CIE): A+B+C | 30    |
| Semester End Examination (SEE)               | 70    |
| Total Marks = CIE + SEE                      | 100   |

# PART-D

# PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

| PEO1 | Design and develop innovative products and services in the field of Electrical and Electronics Engineering and allied engineering disciplines. |
|------|------------------------------------------------------------------------------------------------------------------------------------------------|
| PEO2 | Apply the knowledge of Electrical and Electronics Engineering to solve problems of social relevance, pursue higher education and research.     |
| PEO3 | Work effectively as individuals and as team members in multidisciplinary projects.                                                             |
| PEO4 | Engage in lifelong learning, career enhancement and adapt to changing professional and societal needs.                                         |

# PROGRAMME OUTCOMES (POs):

|       | PROGRAMME OUTCOMES (POS):                                                                                        |
|-------|------------------------------------------------------------------------------------------------------------------|
| PO 1  | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an     |
| 101   | engineering specialization to the solution of complex engineering problems.                                      |
|       | Problem analysis: Identify, formulate, review research literature, and analyze complex engineering               |
| PO 2  | problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and         |
|       | engineering sciences.                                                                                            |
|       | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design system     |
| PO 3  | components or processes that meet the specified needs with appropriate consideration for the public health       |
|       | and safety, and the cultural, societal, and environmental considerations.                                        |
|       | Conduct investigations of complex problems: Use research-based knowledge and research methods                    |
| PO 4  | including design of experiments, analysis and interpretation of data, and synthesis of the information to        |
|       | provide valid conclusions.                                                                                       |
|       | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering           |
| PO 5  | and IT tools including prediction and modelling to complex engineering activities with an understanding of       |
|       | the limitations                                                                                                  |
|       | The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,               |
| PO 6  | health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional       |
|       | engineering practice                                                                                             |
|       | Environment and sustainability: Understand the impact of the professional engineering solutions in               |
| PO 7  | societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable                  |
|       | development.                                                                                                     |
| PO 8  | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the |
| 100   | engineering practice.                                                                                            |
| PO 9  | <b>Individual and teamwork</b> : Function effectively as an individual, and as a member or leader in diverse     |
| 109   | teams, and in multidisciplinary settings.                                                                        |
|       | <b>Communication</b> : Communicate effectively on complex engineering activities with the engineering            |
| PO 10 | community and with society at large, such as, being able to comprehend and write effective reports and           |
|       | design documentation, make effective presentations, and give and receive clear instructions.                     |
|       | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the engineering and           |
| PO 11 | management principles and apply these to one's own work, as a member and leader in a team, to manage             |
|       | projects and in multidisciplinary environments.                                                                  |
| PO 12 | <b>Life-long learning</b> : Recognize the need for and have the preparation and ability to engage in independent |
| 1012  | and life-long learning in the broadest context of technological change.                                          |
|       |                                                                                                                  |

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

| PSO 1 | Specify, design and analyze systems that efficiently generate, transmit and distribute electrical power |
|-------|---------------------------------------------------------------------------------------------------------|
| PSO 2 | Design and analyze electrical machines, modern drive and lighting systems                               |
| PSO 3 | Specify, design, implement and test analog and embedded signal processing electronic systems            |
| PSO4  | Design controllers for electrical and electronic systems to improve their performance.                  |

| Title                     | Course Instructor                       | Course Coordinator       | Module<br>Coordinator   | Head of the<br>Department |
|---------------------------|-----------------------------------------|--------------------------|-------------------------|---------------------------|
| Name of<br>the<br>Faculty | Dr.A.V.G.A.M,/MRS.THB/<br>DR.BPH/MR.PRK | Dr.<br>A.V.G.A.MARTHANDA | Dr. G.<br>NAGESWARA RAO | Dr. J.S.V.<br>PRASAD      |
| Signature                 |                                         |                          |                         |                           |

# LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING



Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada L.B. Reddy Nagar, Mylavaram, NTR District, Andhra Pradesh - 521230

# DEPARTMENT OF MECHANICAL ENGINEERING

# COURSE HANDOUT

: B.Tech. II-Sem, B SECTION AI&DS **PROGRAM** 

**ACADEMIC YEAR** :2023-24

**COURSE NAME & CODE**: Engineering Workshop, 20ME51

**L-T-P STRUCTURE** : 0-0-3 **COURSE CREDITS** : 1.5

**COURSE INSTRUCTOR** : Mr. Mallikarjuna Rao Dandu, Sr. Assistant Professor,

Mr. S. Srinivasa Reddy, Sr. Assistant Professor

**COURSE COORDINATOR**: Seelam Srinivasa Reddy, Assoc. Professor

PRE-REQUISITE: Knowledge in dimensions and units, Usage of geometrical

instruments and analytical ability

# **COURSE OBJECTIVE:**

The objective of this course is to get familiarized with various trades used in Engineering Workshop and learn the safety pre-cautions to be followed in the workshops, while working with the different tools.

# **COURSE OUTCOMES (CO)**

| CO1 | Design and model different prototypes in the carpentry trade such as Cross lap joint, Dove tail joint.   |
|-----|----------------------------------------------------------------------------------------------------------|
| COI | Cross lap joint, Dove tail joint.                                                                        |
| CO2 | Fabricate and model various basic prototypes in the trade of fitting such                                |
| CO2 | as Straight fit, V-fit.                                                                                  |
| CO3 | Produce various basic prototypes in the trade of Tin smithy such as                                      |
| CO3 | Produce various basic prototypes in the trade of Tin smithy such as Rectangular tray, and open Cylinder. |
| CO4 | Perform various basic House Wiring techniques.                                                           |

# **COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs):**

| COs | PO | PSO | <b>PSO</b> | PSO |
|-----|----|----|----|----|----|----|----|----|----|----|----|----|-----|------------|-----|
| COS | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 1   | 2          | 3   |
| CO1 | 3  |    | 2  | 3  | 3  | 3  |    |    | 3  |    |    | 2  |     | 3          | 2   |
| CO2 | 3  |    | 2  | 3  | 3  | 3  |    |    | 3  |    |    | 2  |     | 3          | 2   |
| CO3 | 3  |    | 2  | 3  | 3  | 3  |    |    | 3  |    |    | 2  |     | 3          | 2   |
| CO4 | 3  |    | 2  | 3  | 3  | 3  |    |    | 3  |    |    | 2  |     | 3          | 2   |

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put"1 Slight (Low), 2-Moderate (Medium), 3-Substantial (High).

### **REFERENCE:**

| R1   Lab Manual |
|-----------------|
|-----------------|

COURSE DELIVERY PLAN (LESSON PLAN): Section-B (BATCH-B1)

| a   | E              | No. of    | Tentative        | Actual Date   | Teaching  |           | HOD GI   |
|-----|----------------|-----------|------------------|---------------|-----------|-----------|----------|
| S.  | Experiment to  | Classes   | Date of          | of            | Learning  | Reference | HOD Sign |
| No. | be conducted   | Required  | Completion       | Completion    | Methods   |           | Weekly   |
| 1.  | Induction      | 3         | 13-02-2024       |               | TLM8      | -         |          |
| 2.  | Demonstration  | 3         | 20-02-2024       |               | TLM8      | R1        |          |
| 3.  | Experiment-1   | 3         | 27-02-2024       |               | TLM8      | R1        |          |
| 4.  | Experiment-2   | 3         | 05-03-2024       |               | TLM8      | R1        |          |
| 5.  | Experiment-3   | 3         | 19-03-2024       |               | TLM8      | R1        |          |
| 6.  | Experiment-4   | 3         | 26-03-2024       |               | TLM8      | R1        |          |
|     |                | I-Mid Exa | aminations (01-0 | 04-2024 to 06 | -04-2024) |           |          |
| 7.  | Experiment-5   | 3         | 02-04-2024       |               | TLM8      | R1        |          |
| 8.  | Experiment-6   | 3         | 16-04-2024       |               | TLM8      | R1        |          |
| 9.  | Experiment-7   | 3         | 23-06-2024       |               | TLM8      | R1        |          |
| 10. | Experiment-8   | 3         | 30-05-2024       |               | TLM8      | R1        |          |
|     |                |           | 07-05-2024       |               |           |           |          |
| 11. | Repetition lab | 3         | 14-05-2024       |               | TLM8      |           |          |
|     |                |           | 21-05-2024       |               |           |           |          |
| 12. | Lab Internal   | 3         | 28-05-2024       |               | TLM6      |           |          |

COURSE DELIVERY PLAN (LESSON PLAN): Section-B (BATCH-B2)

| S.   | Experiment to  | No. of    | Tentative        | Actual Date   | Teaching  |           | HOD Sign                              |
|------|----------------|-----------|------------------|---------------|-----------|-----------|---------------------------------------|
| No.  | be conducted   | Classes   | Date of          | of            | Learning  | Reference | Weekly                                |
| 1100 |                | Required  | Completion       | Completion    | Methods   |           | · · · · · · · · · · · · · · · · · · · |
| 1.   | Induction      | 3         | 13-02-2024       |               | TLM8      | -         |                                       |
| 2.   | Demonstration  | 3         | 20-02-2024       |               | TLM8      | R1        |                                       |
| 3.   | Experiment-1   | 3         | 27-02-2024       |               | TLM8      | R1        |                                       |
| 4.   | Experiment-2   | 3         | 05-03-2024       |               | TLM8      | R1        |                                       |
| 5.   | Experiment-3   | 3         | 19-03-2024       |               | TLM8      | R1        |                                       |
| 6.   | Experiment-4   | 3         | 26-03-2024       |               | TLM8      | R1        |                                       |
|      |                | I-Mid Exa | aminations (01-0 | 04-2024 to 06 | -04-2024) |           |                                       |
| 7.   | Experiment-5   | 3         | 02-04-2024       |               | TLM8      | R1        |                                       |
| 8.   | Experiment-6   | 3         | 16-04-2024       |               | TLM8      | R1        |                                       |
| 9.   | Experiment-7   | 3         | 23-06-2024       |               | TLM8      | R1        |                                       |
| 10.  | Experiment-8   | 3         | 30-05-2024       |               | TLM8      | R1        |                                       |
|      |                |           | 07-05-2024       |               |           |           |                                       |
| 11.  | Repetition lab | 3         | 14-05-2024       |               | TLM8      |           |                                       |
|      |                |           | 21-05-2024       |               |           |           |                                       |
| 12.  | Lab Internal   | 3         | 28-05-2024       |               | TLM6      |           |                                       |

| Teach | Teaching Learning Methods |      |                    |      |                |  |  |  |  |  |
|-------|---------------------------|------|--------------------|------|----------------|--|--|--|--|--|
| TLM1  | Chalk and Talk            | TLM4 | Problem Solving    | TLM7 | Seminars or GD |  |  |  |  |  |
| TLM2  | PPT                       | TLM5 | Programming        | TLM8 | Lab Demo       |  |  |  |  |  |
| TLM3  | Tutorial                  | TLM6 | Assignment or Quiz | TLM9 | Case Study     |  |  |  |  |  |

# **ACADEMIC CALENDAR:**

| Description                 | From       | То         | Weeks |
|-----------------------------|------------|------------|-------|
| I Phase of Instructions-1   | 12-02-2024 | 06-04-2024 | 8W    |
| I Mid Examinations          | 01-04-2024 | 06-04-2024 | 1W    |
| II Phase of Instructions    | 08-04-2024 | 01-06-2024 | 8W    |
| II Mid Examinations         | 03-06-2024 | 08-06-2024 | 1W    |
| Preparation and Practical's | 10-06-2024 | 15-06-2024 | 1W    |
| Semester End Examinations   | 17-06-2024 | 29-06-2024 | 2W    |

# Part-C

# **EVALUATION PROCESS:**

| Parameter                                            | Marks            |
|------------------------------------------------------|------------------|
| Day-to-Day Work                                      | A1=10 Marks      |
| Record And Observation                               | B1= 05 Marks     |
| Internal Test                                        | C1 = 15 Marks    |
| Cumulative Internal Examination (CIE = A1 + B1 + C1) | A1+B1+C1=30Marks |
| Semester End Examinations (SEE)                      | D1 = 70 Marks    |
| Total Marks : A1+B1+C1+D1                            | 100 Marks        |

**Details of Batches: A-SEC** 

| Batch<br>No. | Reg. No. of<br>Students | Number of Students | Batch<br>No. | Reg. No. of<br>Students | Number of Students |
|--------------|-------------------------|--------------------|--------------|-------------------------|--------------------|
| B11          | 23761A05466-5474        | 9                  | B21          | 23761A054A0-54A7        | 8                  |
| B12          | 23761A05475-5483        | 8                  | B22          | 23761A054A8-54B5        | 8                  |
| B13          | 23761A05484-5491        | 8                  | B23          | 23761A054B6-54C3        | 8                  |
| B14          | 23761A05492-5499        | 8                  | B24          | 23761A054C4-54D1        | 8                  |

| Batch<br>No: | Exp.<br>01 | Exp.<br>02 | Exp. 03 | Exp.<br>04 | Exp.<br>05 | Exp.<br>06 | Exp.<br>07 | Exp.<br>08 | Exp.<br>09 |
|--------------|------------|------------|---------|------------|------------|------------|------------|------------|------------|
| B11          | F1         | F2         | P1      | P2         | C1         | C2         | E1         | E2         | T1         |
| B12          | F2         | F1         | P2      | P1         | C2         | C1         | E2         | E1         | T1         |
| B13          | P1         | P2         | C1      | C2         | E1         | E2         | F1         | F2         | T1         |
| B14          | P2         | P1         | C2      | C1         | E2         | E1         | F2         | F1         | T1         |
| B21          | C1         | C2         | E1      | E2         | F1         | F2         | P1         | P2         | T1         |
| B22          | C2         | C1         | E2      | E1         | F2         | F1         | P2         | P1         | T1         |
| B23          | E1         | E2         | F1      | F2         | P1         | P2         | C1         | C2         | T1         |
| B24          | E2         | E1         | F2      | F1         | P2         | P1         | C2         | C1         | T1         |

# LIST OF EXPERIMENTS:

| Exp. No. | Name of the Experiment                                      | Related CO |
|----------|-------------------------------------------------------------|------------|
| 1.       | Carpentry-1(C1)-Corner Bridle Joint                         | CO1        |
| 2.       | Carpentry-2(C2)-Dove Tail Joint                             | CO1        |
| 3.       | Fitting-1(F1)-L-Joint                                       | CO2        |
| 4.       | Fitting-2(F2)-V- <b>J</b> oint                              | CO2        |
| 5.       | Plumbing-1(P1)-Pipe Threading practice                      | CO3        |
| 6.       | Plumbing-2(P2)-Pipe Layout                                  | CO3        |
| 7.       | House Wiring-1(E1)-Series and Parallel connection           | CO4        |
| 8.       | HouseWiring-2(E2)-Fluorescent Lamp and Calling Bell Circuit | CO4        |
| 9.       | Tinsmity-1(T1)- Rectangular Tray                            | CO2        |
| 10.      | Demonstration- Welding and Foundry                          | CO2        |

### NOTIFICATION OF CYCLE:

| cycle | Exp. No. | Name of the Experiment                                       | Related CO |
|-------|----------|--------------------------------------------------------------|------------|
| H     | 1.       | Carpentry-1(C1)-Corner Bridle Joint                          | CO1        |
|       | 2.       | Carpentry-2(C2)-Dove tail Joint                              | CO1        |
| Cycle | 3.       | Fitting-1(F1)-T-Joint                                        | CO2        |
|       | 4.       | Fitting-2(F2)-V-Joint                                        | CO2        |
|       | 5.       | Plumbing-1(P1)-Pipe Threading practice                       | CO3        |
| 2     | 6.       | Plumbing-2(P2)-PipeLayout                                    | CO3        |
| Cycle | 7.       | House Wiring-1(E1)-Series and Parallel Connection            | CO4        |
|       | 8.       | House Wiring-2(E2)-Fluorescent Lamp and Calling bell Circuit | CO4        |
|       | 9.       | Tinsmity-1(T1)- Rectangular Tray                             | CO2        |
|       | 10.      | Demonstration- Welding and Foundry                           | CO2        |

### PROGRAMME EDUCATIONAL OBJECTIVES:

**PEO1:** To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

**PEO2:** To inculcate strong ethical values and leadership qualities for graduates to become successful in multi-disciplinary activities.

**PEO3:** To develop inquisitiveness towards good communication and lifelong learning. **PROGRAM OUT COMES (POs)** 

# Engineering Graduates will be able to:

- **1. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **2. Problem analysis**: Identify, formulate, review research literature, and analyses complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **6. The engineer and society**: Apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **7. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8. Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.
- **9. Individual and teamwork**: Function effectively as an individual, and as a member or leader in diverse teams, and in multi-disciplinary settings.
- **10.Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instruction

- **11**. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multi disciplinary environments.
- **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

- **1.** To apply the principles of thermal sciences to design and develop various thermal systems.
- **2.** To apply the principles of manufacturing technology, scientific management towards Improvement of quality and optimization of engineering systems in the design, analysis and manufacture ability of products.
- **3.** To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

| Course<br>Instructors                                         | Course<br>Coordinator     | Module<br>Coordinator | HOD                           |
|---------------------------------------------------------------|---------------------------|-----------------------|-------------------------------|
| Mr. Mallikarjuna<br>Rao Dandu<br>Mr. S.<br>Srinivasa<br>Reddy | Mr. S. Srinivasa<br>Reddy | Mr. J. Subba<br>Reddy | Dr. M. B. S<br>Sreekara Reddy |

# STANDAY TRIVES

# LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade, ISO 21001:2018, 50001:2018, 14001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada. L.B.REDDY NAGAR, MYLAVARAM. NTR District, AP, India. 521230.

hodads@lbrce.ac.in, ads@lbrce.ac.in, Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

# **COURSE HANDOUT**

# **PART-A**

Name of Course Instructor: Mr.S.V.V.D.JAGADEESH

Course Name & Code : DATA STRUCTURES LAB 23CS52

L-T-P Structure : 0-0-3 Credits: 1.5 Program/Sem/Sec : B.Tech/AI&DS/II/B A.Y.: 2023-24

PREREQUISITE: PPSC

# **COURSE EDUCATIONAL OBJECTIVE:**

The objective of this course is to make students familiar with writing algorithms to implement different data structures like stacks, queues, trees and graphs, and various sorting techniques.

# **COURSE OUTCOMES (CO):**

**CO1:** Apply Linear Data Structures for organizing the data efficiently **(Apply-L3) CO2:** Apply Non- Linear Data Structures for organizing the data efficiently **(Apply-L3) CO3:** Develop and implement hashing techniques for solving problems **(Apply - L3)** 

**CO4:** Improve individual / teamwork skills, communication & report writing skills with ethical values.

# **COURSE ARTICULATION MATRIX (Correlation between Cos, Pos & PSOs):**

| Cos        | P01 | P02 | P03 | P04 | P05 | P06 | P07 | P08 | P09 | P010 | P011 | P012 | PSO1 | PSO2 | PSO3 |
|------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1        | 3   | 2   | 2   | 1   | 3   |     |     |     |     |      |      |      | 3    |      |      |
| CO2        | 3   | 2   | 2   | 1   | 3   |     |     |     |     |      |      |      | 3    |      |      |
| CO3        | 3   | 2   | 2   | 1   | 3   |     |     |     |     |      |      |      | 3    |      |      |
| <b>CO4</b> |     |     |     |     |     |     |     | 2   | 2   | 2    | 2    | 2    |      |      |      |

Note: 1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High)

PART-B:
COURSE DELIVERY PLAN (LESSON PLAN):

| S.  |                                                 | No. of   | Tentative  | Actual     | HOD  |
|-----|-------------------------------------------------|----------|------------|------------|------|
| No. | Topics to be covered                            | Classes  | Date of    | Date of    | Sign |
|     |                                                 | Required | Completion | Completion |      |
| 1.  | Array Manipulations                             | 3        | 14-02-2024 |            |      |
| 2.  | Searching and Sorting<br>Techniques             | 3        | 21-02-2024 |            |      |
| 3.  | Single Linked List                              | 3        | 28-02-2024 |            |      |
| 4.  | Double Linked List                              | 3        | 06-03-2024 |            |      |
| 5.  | Circular Linked List                            | 3        | 13-03-2024 |            |      |
| 6.  | Polynomial Representation & Polynomial Addition | 3        | 20-03-2024 |            |      |
| 7.  | Linked List Applications                        | 3        | 27-03-2024 |            |      |
| 8.  | Stack Implementation                            | 3        | 16-04-2024 |            |      |
| 9.  | Stack Applications                              | 3        | 23-04-2024 |            |      |
| 10. | Queue Implementation &<br>Circular Queue        | 3        | 30-04-2024 |            |      |
| 11. | Double Ended Queue                              | 3        | 07-05-2024 |            |      |
| 12. | Trees                                           | 3        | 14-05-2024 |            |      |
| 13. | Hashing                                         | 3        | 21-05-2024 |            |      |
| 14. | Internal Exam                                   | 3        | 28-05-2024 |            |      |

# PART-C

# **EVALUATION PROCESS (R23 Regulation):**

| Evaluation Task                | Marks           |
|--------------------------------|-----------------|
| Day to Day Work:               | 15              |
| Internal Test                  | 15              |
| Continuous Internal Assessment | <mark>30</mark> |
| Procedure                      | 20              |
| Execution & Results            | 30              |
| Viva-voce                      | 20              |
| Semester End Examination (SEE) | <mark>70</mark> |
| Total Marks = CIE + SEE        | 100             |

# PART-D

# PROGRAMME OUTCOMES (POs):

| FO 1  fundamentals, and an engineering specialization to the solution of complex engineering problem  Problem analysis: Identify, formulate, review research literature, and analyze complex engineer problems reaching substantiated conclusions using first principles of mathematics, natural scienand engineering sciences.  Design/development of solutions: Design solutions for complex engineering problems and do system components or processes that meet the specified needs with appropriate consideration the public health and safety, and the cultural, societal, and environmental considerations.  Conduct investigations of complex problems: Use research-based knowledge and resembled including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.  Modern tool usage: Create, select, and apply appropriate techniques, resources, and more engineering and IT tools including prediction and modeling to complex engineering activities an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to associetal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solution in societal and environmental contexts, and demonstrate the knowledge of, and need for sustain development. | ıs.                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| PO 3  Design/development of solutions: Design solutions for complex engineering problems and design of system components or processes that meet the specified needs with appropriate consideration the public health and safety, and the cultural, societal, and environmental considerations.  Conduct investigations of complex problems: Use research-based knowledge and resementeds including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.  Modern tool usage: Create, select, and apply appropriate techniques, resources, and modelineering and IT tools including prediction and modeling to complex engineering activities an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to associetal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solu in societal and environmental contexts, and demonstrate the knowledge of, and need for sustain development.                                                                                                                                                                                                                                                                                                                          | ring                                    |
| PO 3  Design/development of solutions: Design solutions for complex engineering problems and design components or processes that meet the specified needs with appropriate considerations the public health and safety, and the cultural, societal, and environmental considerations.  Conduct investigations of complex problems: Use research-based knowledge and resempthods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.  Modern tool usage: Create, select, and apply appropriate techniques, resources, and modeline engineering and IT tools including prediction and modeling to complex engineering activities an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to associetal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solu in societal and environmental contexts, and demonstrate the knowledge of, and need for sustain development.                                                                                                                                                                                                                                                                                                                            | ices,                                   |
| system components or processes that meet the specified needs with appropriate consideration the public health and safety, and the cultural, societal, and environmental considerations.  Conduct investigations of complex problems: Use research-based knowledge and resementh of methods including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.  Modern tool usage: Create, select, and apply appropriate techniques, resources, and modeline engineering and IT tools including prediction and modeling to complex engineering activities an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to associetal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solu in societal and environmental contexts, and demonstrate the knowledge of, and need for sustain development.                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
| the public health and safety, and the cultural, societal, and environmental considerations.  Conduct investigations of complex problems: Use research-based knowledge and resementh of including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.  Modern tool usage: Create, select, and apply appropriate techniques, resources, and modeline engineering and IT tools including prediction and modeling to complex engineering activities an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to associetal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solu in societal and environmental contexts, and demonstrate the knowledge of, and need for sustain development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| PO 4  Conduct investigations of complex problems: Use research-based knowledge and resembled including design of experiments, analysis and interpretation of data, and synthesis of information to provide valid conclusions.  Modern tool usage: Create, select, and apply appropriate techniques, resources, and modeline engineering and IT tools including prediction and modeling to complex engineering activities an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to associetal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solu in societal and environmental contexts, and demonstrate the knowledge of, and need for sustain development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 for                                   |
| PO 4 methods including design of experiments, analysis and interpretation of data, and synthesis or information to provide valid conclusions.  Modern tool usage: Create, select, and apply appropriate techniques, resources, and modeline engineering and IT tools including prediction and modeling to complex engineering activities an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to as societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solu in societal and environmental contexts, and demonstrate the knowledge of, and need for sustain development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oroh                                    |
| information to provide valid conclusions.  Modern tool usage: Create, select, and apply appropriate techniques, resources, and modeline engineering and IT tools including prediction and modeling to complex engineering activities an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to as societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solu in societal and environmental contexts, and demonstrate the knowledge of, and need for sustain development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| PO 5  Modern tool usage: Create, select, and apply appropriate techniques, resources, and modeling engineering and IT tools including prediction and modeling to complex engineering activities an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to as societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solu in societal and environmental contexts, and demonstrate the knowledge of, and need for sustain development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uie                                     |
| PO 5 engineering and IT tools including prediction and modeling to complex engineering activities an understanding of the limitations.  The engineer and society: Apply reasoning informed by the contextual knowledge to as societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solu in societal and environmental contexts, and demonstrate the knowledge of, and need for sustain development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | dern                                    |
| PO 6  The engineer and society: Apply reasoning informed by the contextual knowledge to as societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solu in societal and environmental contexts, and demonstrate the knowledge of, and need for sustain development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |
| PO 6  The engineer and society: Apply reasoning informed by the contextual knowledge to as societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.  Environment and sustainability: Understand the impact of the professional engineering solu in societal and environmental contexts, and demonstrate the knowledge of, and need for sustain development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *************************************** |
| PO 6 societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.  PO 7 Environment and sustainability: Understand the impact of the professional engineering solu in societal and environmental contexts, and demonstrate the knowledge of, and need for sustain development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | sess                                    |
| PO 7 Environment and sustainability: Understand the impact of the professional engineering solu in societal and environmental contexts, and demonstrate the knowledge of, and need for sustain development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |
| PO 7 in societal and environmental contexts, and demonstrate the knowledge of, and need for sustain development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | able                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |
| PO 8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | orms                                    |
| of the engineering practice.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |
| PO 9 Individual and team work: Function effectively as an individual, and as a member or lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | er in                                   |
| diverse teams, and in multidisciplinary settings.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |
| Communication: Communicate effectively on complex engineering activities with the engineer of the community and with acciety at large graph as being able to community and write effective re-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |
| PO 10 community and with society at large, such as, being able to comprehend and write effective reand design documentation, make effective presentations, and give and receive clear instructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |
| Project management and finance: Demonstrate knowledge and understanding of the engineer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |
| PO 11 and management principles and apply these to one's own work, as a member and leader in a t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |
| to manage projects and in multidisciplinary environments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cuiii,                                  |
| Life-long learning: Recognize the need for, and have the preparation and ability to engage in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |
| PO 12 independent and life-long learning in the broadest context of technological change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |
| and the following in the condess content of teermological change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

| PSO 1 | To apply the fundamental engineering knowledge, computational principles, and methods for extracting knowledge from data to identify, formulate and solve real time problems. |
|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO 2 | To develop multidisciplinary projects with advanced technologies and tools to address social and environmental issues.                                                        |
| PSO 3 | To provide a concrete foundation and enrich their abilities for Employment and Higher studies in Artificial Intelligence and Data science with ethical values.                |

| Title               | Course Instructor        | Course Coordinator       | Module<br>Coordinator | Head of the<br>Department |
|---------------------|--------------------------|--------------------------|-----------------------|---------------------------|
| Name of the Faculty | Mr.<br>S.V.V.D.Jagadeesh | Dr. S.Nagarjuna<br>Reddy | Dr. Y.V.B Reddy       | Dr. O Rama Devi           |
| Signature           |                          |                          |                       |                           |