

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

L.B.Reddy Nagar, Mylavaram – 521 230.Andhra Pradesh, INDIA Affiliated to JNTUK, Kakinada & Approved by AICTE New Delhi NAAC Accredited with 'A' Grade , An ISO 9001:2015 Certified Institution **DEPARTMENT OF AEROSPACE ENGINEERING**

Website: http://lbrce.ac.in Email: hodaero@lbrce.ac.in Phone:08659-222933 Ext:513/515

COURSE HANDOUT

PART-A

Name of Course Instructor Course Name & Code	: Nazumuddin Shaik : Aero Engine Repair & Maintenance- 17AE42	
L-T-P Structure	: 3-0-0	Credits : 3
Program/Sem/Sec	: B.Tech., VIII-Sem.	A.Y: 2021-22

PRE-REQUISITE: Thermodynamics, Propulsion

COURSE EDUCATIONAL OBJECTIVES (CEOs): To learn the function of various components of piston engine and inspection, maintenance, troubleshooting of piston engine and overhauling procedures of piston engines, the function of jet engine components and overhauling procedures of Gas turbine components.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Classify the piston engine components (Underastand-L2)
CO 2	Inspect and troubleshoot the piston engines components (Underastand-L2)
CO 3	Illustrate the piston engine testing procedures (Underastand-L2)
CO 4	Describe the inspection procedure of jet engine components (Underastand-L2)
CO 5	Prepare overhaul procedures for jet engine components (Understand-L2)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	-	-	-	-	-	-	-	3	3	3
CO2	3	2	2	1	-	-	-	-	-	-	-	2	3	3
CO3	3	3	2	1	-	-	-	-	-	-	-	2	3	3
CO4	3	3	3	1	-	-	-	-	-	-	-	3	3	3
CO5	3	2	2	1	-	-	-	-	-	-	-	3	3	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

REFERENCE BOOKS:

- R1 Kroes & Wild, Aircraft Power plants, 7th Edition McGraw Hill, New York, 1994.
- **R2** Gas Turbine Engines, TURBOMECA, The English Book Store, New Delhi, 1993.
- R3 Pratt & Whitney, The Aircraft Gas Turbine Engine and its Operation, (latest edition), The English Book Store, New Delhi, 1974.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: CLASSIFICATION OF PISTON ENGINE COMPONENTS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Course and COs and Unit-I	1	31-01-2022		TLM1&2	
2.	Types of Piston Engines	1	01-02-2022		TLM1&2	
3.	Piston Engines Principles of Operation	1	03-02-2022		TLM1&2	
4.	Piston Engines Function of Components	1	04-02-2022		TLM1&2	
5.	Piston Engines Materials Used	1	07-02-2022		TLM1&2	
6.	Details of Starting the Engines	1	08-02-2022		TLM1&2	
7.	Details of Carburetion and Injection Systems for	1	09-02-2022		TLM1&2	
8.	Details of Injection Systems	1	10-02-2022		TLM1&2	
9.	Details of Small and Large Engines	1	11-02-2022		TLM1&2	
10.	Ignition System Components	1	14-02-2022		TLM1&2	
11.	Spark Plug Details	1	15-02-2022		TLM1&2	
12.	Engine Operating Conditions at Various Altitudes	1	16-02-2022		TLM1&2	
13.	Maintenance and Inspection Check to be Carried Out.	1	17-02-2022		TLM1&2	
No. o	f classes required to complete UN		No. of class	sses taken:		

UNIT-II: INSPECTIONS OF PISTON ENGINES

C No	Taria to be served	No. of	Tentative	Actual	Teaching	HOD
5.NO.	Topics to be covered	Required	Completion	Completion	Methods	Sign Weekly
1.	Introduction to Unit-II	1	21-02-2022		TLM1&2	
2.	Piston engines inspection	1	22-02-2022		TLM1&2	
3.	Piston engines Maintenance	1	23-02-2022		TLM1&2	
4.	Trouble Shooting	1	24-02-2022		TLM1&2	
5.	Inspection of All Engine Components	1	25-02-2022		TLM1&2	
6.	Inspection of All Engine Components	1	28-02-2022		TLM1&2	
7.	Daily and Routine Checks	1	02-03-2022		TLM1&2	
8.	Overhaul Procedures	1	03-03-2022		TLM1&2	
9.	Compression Testing of Cylinders	1	04-03-2022		TLM1&2	
10.	Special Inspection Schedules	1	07-03-2022		TLM1&2	
11.	Engine Fuel, Control and Exhaust Systems	1	08-03-2022		TLM1&2	
12.	Control and Exhaust Systems	1	09-03-2022		TLM1&2	
13.	Engine Mount and Super Charger	1	10-03-2022		TLM1&2	
14.	Checks and Inspection Procedures.	1	11-03-2022		TLM1&2	
No. of	f classes required to complete U	NIT-II:14		No. of class	sses taken:	

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-III	1	17-03-2022		TLM1&2	
2.	Symptoms of Failure	1	21-03-2022		TLM1&2	
3.	Fault Diagnostics	1	22-03-2022		TLM1&2	
4.	Case Studies of Different Engine Systems	1	23-03-2022		TLM1&2	
5.	Tools and Equipment Requirements for Various Checks and Alignment During Overhauling	1	24-03-2022		TLM1&2	
6.	Tools for Inspection	1	25-03-2022		TLM1&2	
7.	Tools for Safety and for Visual Inspection –	1	28-03-2022		TLM1&2	
8.	Methods and Instruments for Non-Destructive Testing Techniques	1	29-03-2022		TLM1&2	
9.	Non-Destructive Testing Techniques	1	30-03-2022		TLM1&2	
10.	Equipment for Replacement of Part and Their Repair. Engine Testing	1	31-03-2022		TLM1&2	
11.	Engine Testing Procedures and Schedule Preparation	1	04-04-2022		TLM1&2	
12.	Online Maintenance	1	05-04-2022		TLM1&2	
No. of classes required to complete UNIT-III:12No. of classes taken:						

UNIT-III: OVERHAULING OF PISTON ENGINES

UNIT-IV : CLASSIFICATION OF JET ENGINE COMPONENTS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-IV	1	06-04-2022		TLM1&2	
2.	Types of Jet Engines – Principles of Operation – Functions of Components – Materials Used	1	07-04-2022		TLM1&2	
3.	Details of Starting and Operating Procedures	1	08-04-2022		TLM1&2	
4.	Gas Turbine Engine Inspection & Checks – Use of Instruments for Online Maintenance –	1	11-04-2022		TLM1&2	
5.	Special Inspection Procedures: Foreign Object Damage – Blade Damage – Etc.	1	12-04-2022		TLM1&2	
6.	Maintenance Procedures of Gas Turbine Engines	1	13-04-2022		TLM1&2	
7.	Trouble Shooting and Rectification Procedures	1	18-04-2022		TLM1&2	
8.	Component Maintenance Procedures	1	19-04-2022		TLM1&2	
9.	Systems Maintenance Procedures. Gas Turbine Testing Procedures –Test Schedule Preparation	1	20-04-2022		TLM1&2	

10.	Storage of Engines – Preservation and De- Preservation Procedures	1	21-04-2022		TLM1&2	
No. of	No. of classes required to complete UNIT-IV:10 No. of classes taken:					

UNIT-V : OVERHAUL PROCEDURES

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-V	1	22-04-2022		TLM1&2	
2.	Engine Overhaul Procedures	1	25-04-2022		TLM1&2	
3.	Inspections and Cleaning of Components	1	26-04-2022		TLM1&2	
4.	Repairs Schedules for Overhaul	1	27-04-2022		TLM1&2	
5.	Balancing of Gas Turbine Components	1	28-04-2022		TLM1&2	
6.	Gas Turbine Trouble Shooting	1	29-04-2022		TLM1&2	
7.	Procedures for Rectification	1	02-05-2022		TLM1&2	
8.	Condition Monitoring of the Engine On Ground	1	04-05-2022		TLM1&2	
9.	Condition Monitoring of the Engine On at Altitude	1	05-05-2022		TLM1&2	
10.	Engine Health Monitoring and Corrective Methods.	1	06-05-2022		TLM1&2	
No. of	f classes required to complete UN	VIT-V:10		No. of class	sses taken:	

Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)					
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)					
TLM3	Tutorial	TLM6	Group Discussion/Project					

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5

Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)				
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)				
Cumulative Internal Examination (CIE) : A+B+M+Q	40			
Semester End Examination (SEE)				
Total Marks = CIE + SEE	100			

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
DO 3	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that must the specified needs with engineering
	consideration for the public health and safety and the cultural societal and environmental
	considerations
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of the
	information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for
DO 8	Sustainable development. Ethics: Apply othical principles and commit to professional othics and responsibilities and norms
100	of the engineering practice
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in
201	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
D 0 15	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight
	Dynamics in the Aerospace vehicle design
PSO 2	To prepare the students to work effectively in Aerospace and Allied Engineering
	organizations

Course Instructor

Module Coordinator

HOD

Dr. P. Lovaraju

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

DEPARTMENT OFAEROSPACE ENGINEERING

(Autonomous &Affiliated to JNTUK, Kakinada& Approved by AICTE, New Delhi, NAAC Accredited with 'A' grade, Accredited by NBA, Certified by ISO 9001:2015) L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

COURSE HANDOUT

Part-A

PROGRAM	: B.Tech., VIII-Sem., Aerospace Engineering
ACADEMIC YEAR	: 2021-22
COURSE NAME & CODE	: Helicopter Engineering-17AE35
L-T-P STRUCTURE	: 3-1-0
COURSE CREDITS	:3
COURSE INSTRUCTOR	: Ashutosh shukla
COURSE COORDINATOR	: Ashutosh shukla
PRE-REQUISITES	: Aerodynamics-I and Aerodynamics-II

COURSE EDUCATIONAL OBJECTIVES (CEOs):The main objectives of this course are to learn about wind tunnels, different flow visualization methods, instrumentation for measuring fluid velocity, temperature and pressure. Also to learn about data acquisition and uncertainty analysis.

COURSE OUTCOMES(COs): At the end of the course, the student will be able to:

- **CO1** : To analyze the performance various components of helicopter
- **CO2** : To apply momentum theory in the design of propeller
- **CO3** : To analyze the performance of helicopter in various operating conditions
- **CO4** : To analyze the stability modes of helicopter

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3						3		1			3	3	3
CO2	3	3	2				3		1			3	3	3
CO3	3	3	3				3					3	3	3
CO4	3	3	3				3		1			3	3	3

COURSE ARTICULATION MATRIX(Correlation between COs&POs,PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'1- Slight(Low), 2 – Moderate(Medium), 3 - Substantial (High).

BOS APPROVED REFERENCE BOOKS:

- 1. E. Rathakrishnan., Helicopter Aerodynamics, PHI, 2018.
- 2. Gessow, A., Myers, Aerodynamics of Helicopter, G.C MacMillan & Co., N.Y. 1987.
- 3. B. W. McCormick, Aerodynamics of V/STOL Flight, Academic Press, 1987.
- 4. W. Johnson, Helicopter Theory, Princeton university Press, 1980.
- 5. B. W. McCormick, Aerodynamics, Aeronautics & Flight Mechanics, John Wiley, 1995.

Part-B COURSE DELIVERY PLAN (LESSON PLAN): Section-A

UNIT-I: BASICS OF HELICOPTER CONFIGURATION

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Introduction	1	1-02-2022		TLM1	CO1	T1	
2.	Configurations of Helicopter	1	2-02-2022		TLM1	CO1	T1	
3.	Specifics of Helicopters	1	4-02-2022		TLM1	CO1	T1	
4.	Articulated Rotor Systems	1	7-02-2022		TLM2	CO1	T1	
5.	Effect of Cyclic Pitch Change	1	8-02-2022		TLM1	CO1	T1	
6.	Swash Plate	1	9-02-2022		TLM1	CO1	T1	
7.	Fully Articulated Rotor	1	11-02-2022		TLM1	CO1	R1 to R5	
8.	TUTORIAL-I	1	17-02-2022		TLM3	CO1	T1	
9.	Semi-Rigid rotor	1	18-02-2022		TLM1	CO1	T1	
10.	Rigid Rotor, Coriolis effect	1	22-02-2022		TLM1	CO1	R1 to R5	
11.	Objective-1 ,assignment1	1	23-02-2022		TLM3	CO1	T1	
No. of	classes required to compl	ete UNIT-I: :	11		No. of clas	ses taken:		

UNIT-II: MOMENTUM THEORY

S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	Learning Outcome	Text Book	HOD Sign
		Required	Completion	Completion	Methods	COs	followed	Weekly
1	Thrust Generation	1	25-02-2022		TI M1	<u> </u>	T1,R1 to	
1.		-				02	R5	
2.	Hovering	1	28-02-2022		TLM1	CO2	T1	
	Figure of Merit		2-03-2022					
3.	8	2	3-03-2022		TLM2	CO2	11	
4.	Blade element	1	04-03-2022		TLM1	CO2	R1 to R5	

5.	TUTORIAL-II	1	7-03-2022	TLM3	CO2	T1	
6.	Local Solidity, Top Loss	1	8-03-2022	TLM1	CO2	R1 to R5	
7.	Performance of ideally twisted Constant Chord B	1	9-03-2022	TLM1	CO2	T1	
8.	Rapid performance in Hover	1	10-03-2022	TLM1	CO2	R1 to R5	
9.	Equivalent Chord	1	11-3-2022	TLM1	CO2	T1	
10.	Assignment2,objective	1	11-03-2022	TLM3	CO2	R1 to R5	
No. of	classes required to comp	No. of classes taken:					

UNIT-III: PERFORMANCE IN HOVERING AND CLIMBING

C No	Topics to be	No. of	Tentative	Actual	Teaching	Learning	Text	HOD
5.NO.	covered	Required	Completion	Completion	Methods	COs	followed	Sign Weekly
1.	Introduction	1	21-03-2022	•	TLM1	CO3	T1,R1 to R5	
2	Optimum		24 02 2022		TING	602	74	
2.	Hovering	1	21-03-2022		I LIVI1	03		
3.	Induced Torque	1	22-03-2022		TLM3	CO3	R1 to R5	
	Profile Drag							
4.	Torque	1	23-03-2022		TLM2	CO3	T1	
5.	TUTORIAL-III	1	28-03-2022		TLM3	CO3	T1	
	Performance		30-03-2022		TLM1			
6.	Equation	2	31-03-2022			CO3	T1	
	Optimum Rotor		1-04-2022		TLM1			
7.	Design	1	1-04-2022,			CO3	T1	
8.	Ground effect	1	4-04-2022		TLM1	CO3	T1	
9.	Objective-3 Assignment3	1	5-04-2022		TLM3	CO3	T1	
No. of	classes required to co	mplete UNI	T-III: 12		No. of classes taken: 11			

UNIT-IV: PERFORMANCE IN HORIZONTAL FLIGHT

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Introduction	1	06-04-2022		TLM1	CO3	T1, R1 to R5	
2.	Flapping and lag Hinge	1	7-04-2022		TLM2	CO3	T1	
3.	Steady Hover, Equilibrium in Horizontal Blade	1	9-04-2022		TLM3	CO3	R1 to R5	
4.	Blade Hinge Motion	1	12-04-2022		TLM1	CO3	T1	
5.	TUTORIAL-IV	1	13-04-2022		TLM3	CO3	T1	
6.	Blade Element Angle of Attack - Flapping Coefficient	1	15-04-2022		TLM1	CO3	R1 to R5	
7.	Performance equation, Drag- Lift Ratio	1	19-04-2022		TLM1	CO3	T1	
8.	Profile Drag-Lift Ratio Charts	1	20-04-2022		TLM1	CO3	R1 to R5	
9.	Profile Power, Parasite Power	1	21-04-2022		TLM1	CO3	T1, T2	
10.	Blade Stall	1	26-04-2022		TLM1	CO3	T1	
11.	Objective-IV Assignment-IV	1	27-04-2022		TLM3	CO3	R1 to R5	
No. of	classes required to co	mplete UNI	T-IV: 11		No. of clas	ses taken:		

UNIT-V: STABILITY AND CONTROL

S.No.	Topics to be	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	Learning Outcome	Text Book	HOD Sign
	covered	Required	Completion	Completion	Methods	COs	followed	Weekly
1.	introduction	1	28-04-2022		TLM1	CO4	T1, R1 to R5	
2.	Trim - Static Stability	1	29-04-2022		TLM1	CO4	T1	
3.	Dynamic Stability	1	30-04-2022		TLM3	CO4	R1 to R5	

	Rotor Static					CO4		
4.	Stability	1	02-5-2022		TLM1		T1	
	Stability in					CO4		
5.	hover	1	03-05-2022		TLM1	004	T1	
6.	TUTORIAL-IV	1	04-05-2022		TLM3	CO4	R1 to R5	
	Dynamic					CO4		
7.	Stability	1	05-5-2022		TLM1		T1	
	Reduction							
	Stability in					CO4		
8.	Forward Flight	1	06-5-2022		TLM1		R1 to R5	
9.	Objective-V	1	06-5-2022		TLM2	CO4	T1	
	Assignment-V	_						
10.	II Mid Examinations	3 days						
No. of	classes required to c	omplete	UNIT-V: 12	·	No. of clas	sses taken:		
Total r	number of classes		63					

CONTENTS BEYOND THE SYLLABUS:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign
1.	Advanced Topics in Unit I	1	16-07-2018		TLM1	CO1		
2.	Advanced Topics in Unit II	1	10-08-2018		TLM1	CO2		
3.	Advanced Topics in Unit III	1	07-09-2018		TLM1	CO3	T1, R1	
4.	Advanced Topics in Unit IV	1	28-09-2018		TLM1	CO4		
5.	Advanced Topics in Unit V	1	26-10-2018		TLM1	CO5		

Teachin	Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)						
TLM2	РРТ	TLM5	ICT (NPTEL/SwayamPrabha/MOOCS)						
TLM3	Tutorial	TLM6	Group Discussion/Project						

ACADEMIC CALENDAR:

Description	From	То	Weeks							
Commencement of Class Work: 11-06-2018										
I Phase of Instructions	11-06-2018	11-08-2018	9							
I Mid Examinations	13-08-2018	18-08-2018	1							
II Phase of Instructions	20-08-2018	27-10-2018	10							
II Mid Examinations	29-10-2018	03-11-2018	1							
Preparation and Practicals	05-11-2018	17-11-2018	2							
Semester End Examinations	19-11-2018	01-12-2018	2							

Part - C

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Assignment/Quiz – 1	1	A1=05
Assignment/Quiz – 2	2	A2=05
I-Mid Examination	1,2	B1=20
I-Online Mid Examination	1,2	C1=10
Assignment/Quiz – 3	3	A3=05
Assignment/Quiz – 4	4	A4=05
Assignment/Quiz – 5	5	A5=05
II-Mid Examination	3,4,5	B2=20
II-Online Mid Examination	3,4,5	C2=10
Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=05
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=20
Evaluation of Online Mid Marks: C=75% of Max(C1,C2)+25% of Min(C1,	1,2,3,4,5	C=10
Attendance: D (≥95% =5M ; 90%≤A<95% =4M ; 85%≤A<90%= 3M ; 80%≤A<85%= 2M ; 75%≤A<80%= 1M ; <75%=0M)	-	D=05
Cumulative Internal Examination: A+B+C+D	1,2,3,4,5	A+B+C+D=40

Semester End Examinations: E	1,2,3,4,5	E=60
Total Marks: A+B+C+D+E	1,2,3,4,5	100

PROGRAMME OUTCOMES (POs):

Engineering Graduates will be able to:

PO1: To apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.

PO2: To identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.

PO3: To design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: To use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.

PO5: To create, select and apply appropriate techniques, resources, and modern engineering and IT tools including predictions and modeling to complex engineering activities with an understanding of limitations.

PO6: To apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice

PO7: To understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development

PO8: To apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice

PO9: To function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: To communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: To demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: To recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO1: To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight Dynamics in the Aerospace vehicledesign

PSO2: To prepare the students to work effectively in the defense and space researchprograms

Position Course Instructor		Course Coordinator	Module Coordinator	HOD
Name				
Signature				

LAKKIREDDY BALI REDDY COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING

(Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi, NAAC Accredited with 'B++' grade, Accredited by NBA, Certified by ISO 9001:2015) L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

COURSE HANDOUT PART-A

Name of Course Instructor	: Mrs.K.S.L.LAVANYA	
Course Name & Code	: Renewable Energy Sources & 17EE83	
L-T-P Structure	: 3-0-0	Credits: 3
Program/Sem/Sec	: B.Tech., Aerospace Engineering VII-Sem.	A.Y: 2021-22

Pre-requisites

Course Educational Objective: This course enables the student to

: --NIL

- Knowe the challenges and problems associated with the use of various energy sources, including fossil fuels, with regard to future supply and the environment.
- ➢ Familiarize renewable energy technologies.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Compare the conventional and sustainable energy resources
CO 2	Illustrate the planning and operation of renewable energy systems.
CO 3	Analyze various factors for the erection of the wind power plant.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

Cos	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12
CO1	3		2	1	1		1		1	1		
CO2	2		3	1	1		1		1	1		
CO3			3		1							

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

T1: Non- conventional Energy Sources / G.D. Rai ,Khanna Publishers,6th edition,2014

T2: Renewable Energy Resources-Twidell & Wier, CRC Press (Taylor & Francis), 2015

REFERENCE BOOKS:

1. Renewable Energy Resources / Tiwari and Ghosal /. Narosa. 2004.

2. Renewable Energy Technologies/Ramesh & Kumar/Narosa 1997

3.Non-Conventional Energy Systems/K Mittal /Wheeler,2003

4. Renewable Energy sources and emerging technologies by D.P.Kothari,K.C.Singhal,P.H.I

Part - B COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: PRINCIPLES OF SOLAR RADIATION

S.No	Topics to be covered	No . of Cla sse s Re qui red	Tentative Date of Completi on	Actual Date of Completi on	Teachi ng Learni ng Metho ds	Learning outcome cos	Text book followe d	HOD Sign Weekl y
1.	Role and potential of new and renewable source,	1	14/2/22		TLM1	CO1	T1,T2	
2.	the solar energy option	1	15/2/22		TLM1	CO1	T1	
3.	Environmental impact of solar power	1	16/2/22		TLM1	CO1	T1	
4.	Physics of the sun, the solar constant	1	17/2/22		TLM1	CO1	T1	
5.	extraterrestrial and terrestrial solar radiation	1	18/2/22		TLM1 &TLM2	CO2	T1	
6.	Solar radiation on titled surface	1	21/2/22		TLM1 &TLM2	CO2	T2	
7.	Instruments for measuring solar radiation	1	22/2/22		TLM1& TLM2	CO2	T2	
8.	Instruments for measuring solar radiation	1	23/2/22		TLM1	CO2	T2	
9.	Sun shine, solar radiation data	1	24/2/22		TLM1	CO2	T2	
10.	Revision		25/2/22		TLM1			
No. of	classes required to cor			No. of cla taken:	isses			

UNIT-II : SOLAR ENERGY COLLECTION, STORAGE AND APPLICATIONS

S.No.	Topics to be covered	No. of	Tentative	Actual	Teaching	Learning	Text	HOD
		Classes	Date of	Date of	Learning	Outcome	book	Sign
		Required	Completion	Completion	Methods	cos	followed	Weekly
11.	Flat plate and					CO2	T1/R1	
	concentrating	1			TLM1			
	collectors,		28-02-2022					

10	classification of	1			TLM1	CO2	T1/T2	
12.	concentrating	1	01-03-2022					
13.	orientation and thermal analysis	1	02-03-2022		TLM2	CO2	R1	
14.	advanced collectors.	1	03-03-2022		TLM1/TLM2	CO2	T1/R1	
15.	Solar Energy Storage and Applications	1	04-03-2022		TLM1/TLM2	CO2	T1/R1	
16.	Different methods	1	07-03-2022		TLM1/TLM2	CO2	T1/R1	
17.	sensible, latent heat and stratified storage	1	08-03-2022		TLM1/TLM2	CO2	T1/R1	
18.	solar ponds. Solar applications	1	09-03-2022		TLM1/TLM2	CO2	T1	
19.	solar heating, cooling techniques	1	10-03-2022		TLM1/TLM2	CO2	T1	
20.	solar distillation and drying,	1	11-03-2022		TLM1	CO2	T2	
21.	Photovoltaic energy conversion	1	17-03-2022		TLM2	CO2	T2	
No. of classes required to complete UNIT-II : 11							No. of clast taken: 10	sses

UNIT-III : WIND ENERGY

S.N o.	Topics to be covered	No. of Classes Require d	Tentative Date of Completi on	Actual Date of Completi on	Teaching Learning Methods	Learnin g Outcom e Cos	Text book followe d	HOD Sign Weekl y
18	Sources and potentials	1	21-03- 2022		TLM1/TL M2	CO3	T1	
19	horizontal windmills	1	22-03- 2022		TLM1/TL M2	CO3	T2	
20	horizontal windmills	1	23-03- 2022		TLM1/TL M2	CO3	T2	
21	vertical axis windmills	1	24-03- 2022		TLM1/TL M2	CO3	T2	
22	vertical axis windmills	1	25-03- 2022		TLM1/TL M2	CO3	T2	
23	performanc e characteristi cs	1	28-03- 2022		TLM1/TL M2	CO3	T2	

24	performanc e characteristi cs	1	29-03- 2022		TLM1/TL M2	CO3	T2	
25	Betz criteria	1	30-03- 2022		TLM1/TL M2	CO3	T2	
	Revision	1	31-03- 2022		TLM1	CO3	T2	
No. of classes required to complete UNIT-III : 09						No. of clataken:	asses	

UNIT-IV:

S.N o.	Topics to be covered	No. of Classes Require d	Tentative Date of Completi on	Actual Date of Completi on	Teaching Learning Methods	Learni ng Outco me cos	Text book followe d	HOD Sign Weekl y
26	Principles of Bio- Conversion,	1	01-04- 2022		TLM1/TL M2	CO2	T1	
27	Anaerobic /aerobic digestion	1	04-04- 2022		TLM1/TL M2	CO2	T1	
28	types of Bio-gas digesters	2	05-04- 2022		TLM1/TL M2	CO2	T1/T2	
29	gas yield	1	06-04- 2022		TLM1/TL M2	CO2	T1/T2	
30	combustion characteristi cs of bio- gas	1	07-04- 2022		TLM1/TL M2	CO2	T1/T2	
31	utilization for cooking	2	08-04- 2022		TLM1/TL M2	CO2	T1/T2	
32	1.C. Engine operation	1	11-04- 2022		TLM1/TL M2	CO2	T1/T2	
33	economic aspects	1	12-04- 2022		TLM1/TL M2	CO2	T1/T2	
	revision	1	13/04/202 2			CO2	T2	
No. of classes required to complete UNIT-IV : 09						No. of cl taken:	asses	

UNIT-V: REFRIGERATION AND AIR CONDITIONING

S.No.	Topics to be covered	No. of	Tentative	Actual	Teaching	Learning	Text	HOD
		Classes	Date of	Date of	Learning	Outcome	book	Sign
		Required	Completion	Completion	Methods	COS	followed	Weekly

34	OTEC: Principles	1	18/4/2022	TLM1/TLM2	CO2	T1/R1	
35	utilization		19/4/2022	TLM1/TLM2	CO2	T2	
36	setting of OTEC plants,	1	20/4/2022	TLM1/TLM2	CO2	R1	
37	thermodynamic cycles	1	21/4/2022 & 22/04/2022	TLM1/TLM2	CO2	R1	
38	Tidal and Wave Energy	1	25/04/2022 & 26/04/2022	TLM1/TLM2	CO2	R1	
39	Potential and conversion techniques	1	27/04/2022 & 28/04/2022	TLM1/TLM2	CO2	T1	
40	mini-hydel power plants		29/4/2022	TLM1/TLM2	CO2	T1	
	Economics		2/05/2022	TLM1	CO2	T1	
No. of classes required to complete UNIT-V : 11					No. of cla taken:	sses	

Contents beyond the Syllabus

	Topics to be	No. of	Tentative	Actual	Teaching	Learning	Text	HOD
S.No.	Topics to be	Classes	Date of	Date of	Learning	Outcome	Book	Sign
	covered	Required	Completion	Completion	Methods	COs	followed	Weekly
1	Economic aspects in utilization of electrical energy	1	04/05/2022		TLM1/ TLM2	CO2	T2,R1,R2	

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

ACADEMIC CALENDAR:

Description	From	То	Weeks
I Phase of Instructions	31-01-2022	12-03-2022	6W
I Mid Examinations	14-03-2022	16-03-2022	½ W
II Phase of Instructions	17-03-2022	04-05-2022	8W
II Mid Examinations	05-05-2022	07-05-2022	1W
Preparation and Practical	09-05-2022	11-05-2022	½ W
Semester End Examinations	12-05-2022	18-05-2022	1 W

PART-C

EVALUATION PROCESS (R17 Regulations):					
Evaluation Task	Marks				
Assignment-I (Unit-I)	A1=5				
Assignment-II (Unit-II)	A2=5				
I-Mid Examination (Units-I & II)	M1=20				
I-Quiz Examination (Units-I & II)	Q1=10				
Assignment-III (Unit-III)	A3=5				
Assignment-IV (Unit-IV)	A4=5				
Assignment-V (Unit-V)	A5=5				
II-Mid Examination (Units-III, IV & V)	M2=20				
II-Quiz Examination (Units-III, IV & V)	Q2=10				
Attendance	B=5				
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5				
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20				
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10				
Cumulative Internal Examination (CIE) : A+B+M+Q	40				
Semester End Examination (SEE)	60				
Total Marks = $CIE + SEE$	100				

- -----

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO1: To provide students with a solid foundation in mathematical, scientific and engineering fundamentals required to solve engineering problems.

PEO2: To train students with good scientific and engineering breadth so as to analyze, design, and create novel products and solutions for the real life problems

PEO3: To prepare students to excel in competitive examinations, postgraduate programs, advanced education or to succeed in industry/technical profession

PEO4: To inculcate in students professional and ethical attitude, effective communication skills, teamwork skills, multidisciplinary approach, and an ability to relate engineering issues to broader social context

PEO5: To provide student with an academic environment with awareness of excellence, leadership, and the life-long learning needed for a successful professional career

Engineering Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO1: To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight Dynamics in the Aerospace vehicle design.

PSO2: To prepare the students to work effectively in the defense and space research programs.

K.S.L.LAVANYA	K.S.L.LAVANYA	Dr.M.S.Giridhar	Dr.J.Siva vara prasad
Course Instructor	Course Coordinator	Module Coordinator	HOD