

DEPARTMENT OF <u>AEROSPACE ENGINEERING</u> <u>COURSE HANDOUT</u>

PART-A

Name of Course Instructor	: S.Indrasena Reddy
Course Name & Code	: MOC & 17AE24
L-T-P Structure	: 2-2-0
Program/Sem/Sec	: B.Tech., ASE., VII-Sem.

Credits : 3 A.Y : 2021-22

PRE-REQUISITE: Strength of materials

COURSE EDUCATIONAL OBJECTIVES (CEOs): To Learn the basic knowledge about composite materials at micro and macro level, lamina and laminates, basic design concepts of sandwich panels, functionally graded materials and the manufacturing process of composite materials.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Understand the stress-strain relations applicable for composite materials (Understanding-L2)				
CO 2	Study the macro and micro mechanical behaviour of composite Lamina (Apply-L3)				
CO 3	Analyze the structural behaviour of multi directional composites (Analyze-L4)				
CO 4	Understand the basic design concept of sandwich panels used in aerospace industries				
	(Understanding-L2)				
CO 5	Apply techniques of fabrication processes to manufacture composites (Apply-L3)				

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2								2	3	2
CO2	3	3	3	2								2	3	2
CO3	3	3	3	2								2	3	2
CO4	3	3	3	2								2	3	2
CO5	2	2	2	2								2	2	2

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- **T1** Calcote, LR., "The Analysis of laminated Composite Structures", Von Noastrand Reinhold Company, New York 1998.
- T2 Jones, R.M., "Mechanics of Composite Materials", 2nd Edition McGraw-Hill, KogakushaLtd., Tokyo, 1998.
- T3 Carlsson, L.A., Kardomateas, G.A., "Structural and Failure Mechanics of Sandwich", Solid Mechanics and its Applications, Vol 121, Springer Heidlberg, New York, 2011.

REFERENCE BOOKS:

- **R1** Agarwal, B.D., Broutman, L.J., "Analysis and Performance of Fibre Composites", John Wiley and sons. Inc., New York, 1995
- **R2** Lubin, G., "Handbook on Advanced Plastics and Fibre Glass", Von Nostrand Reinhold Co., New York, 1989. Publishers, 3rd edition 2010.

PART-B COURSE DELIVERY PLAN (LESSON PLAN): UNIT-I: STRESS STRAIN RELATION

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to composite materials	1	27-09-21		TLM1	
2.	Classification of Reinforcements	1	28-09-21		TLM1	
3.	Classification based on matrices	1	29-09-21		TLM1	
4.	Advantages and applications	1	01-10-21		TLM2	
5.	Types of Fibers and their applications	1	04-10-21		TLM1	
6.	Types of matrix and their applications	1	05-10-21		TLM1	
7.	Generalized Hooke's Law	1	06-10-21		TLM1	
8.	Compliance and stiffness matrix	1	08-10-21		TLM1	
9.	Stress strain relations for non- isotropic materials	1	11-10-21		TLM1	
10.	Stress strain relations for orthotropic materials	1	12-10-21		TLM1	
No. of	classes required to complete UNIT-I: 10		•	No. of classes	s taken:	

UNIT-II: METHODS OF ANALYSIS

C N		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes Required	Date of Completion	Date of Completion	Learning Methods	Sign Weekly
1.	Introduction to macro mechanics	1	18-10-21		TLM1	
2.	Stress-strain relations	1	19-10-21		TLM1	
3.	Determination of material properties	1	22-10-21		TLM1	
4.	Experimental characterization	1	25-10-21		TLM1	
5.	Problems on lamina properties	1	26-10-21		TLM1	
6.	Introduction to micro mechanics	1	27-10-21		TLM1	
7.	Mechanics of materials approach	1	29-10-21		TLM1	
8.	Determine elastic constants	1	01-11-21		TLM1	
9.	Elasticity approach to materials	1	02-11-21		TLM1	
10.	Properties of lamina	1	03-11-21		TLM1	
11.	Stiffness method	1	05-11-21		TLM1	
No. of	classes required to complete UNIT-II:11			No. of classes	s taken:	

UNIT-III: MULTI DIRCTIONAL COMPOSITES

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to laminate	1	15-1121		TLM1	
2.	Equilibrium equations for laminate	1	16-11-21		TLM1	
3.	CLT	1	17-11-21		TLM2	
4.	A,B, D matrices	1	19-11-21		TLM1	
5.	angle ply laminates	1	22-11-21		TLM2	
6.	A,B, D matrices angle ply laminates	1	23-11-21		TLM1	
7.	Cross ply laminates	1	24-11-21		TLM2	
8.	A,B, D matrices Cross ply laminates	1	26-11-21		TLM1	
9.	Failure criteria and strength of laminates	1	29-11-21		TLM2	
10.	Failure theories (T-Sai. T-sai-Wu etc)	1	30-11-21		TLM1	
No. of	classes required to complete UNIT-III:10			No. of classes	taken:	

UNIT-IV : SANDWICH CONSTRUCTIONS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to sandwich construction	1	01-12-21		TLM1	
2.	Design concepts of sandwich panels	1	03-12-21		TLM1	
3.	Facing and core Materials	1	06-12-21		TLM1	
4.	Flexural rigidity of sandwich	1	07-12-21		TLM1	
5.	deflection of sandwich beams	1	08-12-21		TLM1	
6.	Problems on sandwich panels	1	10-12-21		TLM1	
7.	Applications of Sandwich panels	1	13-12-21		TLM2	
8.	Failure modes of sandwich panels	1	14-12-21		TLM2	
9.	Failure modes of sandwich panels	1	15-12-21		TLM2	
No. of	classes required to complete UNIT-IV:09		•	No. of classes	s taken:	

UNIT-V : FABRICATION PROCESSES & FUNCTIONALLY GRADED MATERIALS:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to fabrication process	1	17-12-21		TLM1	
2.	Various Open mould processes	1	20-12-21		TLM2	
3.	Various closed mould processes	1	21-12-21		TLM2	
4.	Vacuum bagging, infusion	1	22-12-21		TLM2	
5.	Pultrusion, RTM	1	24-12-21		TLM2	
6.	Auto Clave, Filament Winding	1	27-12-21		TLM2	
7.	Introduction to FGM's	1	28-12-21		TLM1	
8.	lengthwise and thickness wise	1	29-12-21		TLM1	
9.	power law.	1	31-12-21		TLM1	
No. of	classes required to complete UNIT-V:09			No. of classes	taken:	

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = $CIE + SEE$	100

PART-D

PROGRAMME OUTCOMES (POs):

DO 4	
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of the
	information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for
	sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms
	of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight						
	Dynamics in the Aerospace vehicle design						
PSO 2	To prepare the students to work effectively in Aerospace and Allied Engineering organizations						

Course Instructor
(S.Indrasena Reddy)

DEPARTMENT OF AEROSPACE ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Dr. L. Prabhu		
Course Name & Code	: Theory of Vibrations / 17AE33		
L-T-P Structure	: 3-0-0		Credits : 3
Program/Sem/Sec	: B.Tech., Aerospace, VII-Sem	A.Y	: 2021-22

PRE-REQUISITE: Engineering Mechanics, Strength of Materials

COURSE EDUCATIONAL OBJECTIVES (CEOs):

- 1. To construct a free body diagram and write the differential equations of motion of vibratory system to find natural frequency.
- 2. To learn the effects of damped free vibrations of single degree of freedom systems.
- 3. To understand the forced vibrations of unbalanced system and knowing about isolators, vibration measuring instruments.
- 4. To learn about the two degree of freedom systems of forced vibrations with harmonic excitation.
- 5. To learn about multi degree of freedom systems by applying exact analysis, influence coefficients and numerical methods.

COURSE OUTCOMES (COs): At the end of the course, students are able to

000101	content content (cos). In the one of the course, statements are use to
CO 1	To formulate mathematical models for mechanical systems using mass, spring and dampers
CO 2	To analyze the systems with damped free vibrations single degree of freedom
CO 3	To develop a single degree of freedom forced vibrating mechanical system under various types of excitation conditions
	of excitation conditions
CO 4	To analyze and modify two degree of freedom mechanical systems
CO 5	To analyze and design mechanical systems of multi degrees of freedom

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

~ ~															
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	3	2	2	2			1					1	2	2
	CO2	3	2	2	2			1					1	2	2
	CO3	3	2	2	2			1					1	2	2
	CO4	3	2	2	2			1					1	2	2
	CO5	3	2	2	2			1					1	2	2

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

REFERENCE BOOKS:

- **R1** Thomson. W. T., Theory of Vibrations with Applications, CBS Publishers & Distributors, 2002.
- **R2** Grover. G. K., Mechanical Vibrations: M.K.S. Systems, Nemchand & Bros., 1972.
- **R3** Singh. V. P., Mechanical Vibrations, Dhanpati Rai & Sons, 2016.
- **R4** Rao. V. D., Srinivas. J., Textbook of Vibrations, PHI Learning Pvt. Ltd., 2004.
- **R5** Rao. S. S., Mechanical Vibrations, Prentice Hall, 2011.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Basic Elasticity

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to vibration	1	29-09-2021		TLM1	
2.	Basic terminology	1	30-09-2021		TLM1	
3.	Formation of differential equation	1	01-10-2021		TLM1	
4.	Solution of differential equation	1	06-10-2021		TLM1	
5.	Torsional vibration	1	07-10-2021		TLM1	
6.	Springs in series & parallel	1	08-10-2021		TLM1	
7.	Natural frequency of a vibration system by energy method	2	09-10-2021 20-10-2021		TLM1 TLM3	
8.	Discussion, Quiz and Assignment - 1	1	21-10-2021		TLM1	
No. o	f classes required to complete UN		No. of class	sses taken:	09	

UNIT-II: Statically Determinant Structures

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
9.	Introduction to damped free vibration	1	22-10-2021		TLM1			
10.	Classification of dampers	1	23-10-2021		TLM1			
11.	Free vibration with viscous dampers	1	27-10-2021		TLM1			
12.	Overdamped system	1	28-10-2021		TLM1			
13.	Critically damped system	1	29-10-2021		TLM1			
14.	Overdamped system	1	30-10-2021		TLM1			
15.	Logarithmic decrement	1	03-11-2021		TLM1			
16.	Viscous dampers	1	05-11-2021		TLM1			
17.	Assignment/Quiz-2	1	06-11-2021		TLM1/TLM3			
No. of	No. of classes required to complete UNIT-II:09 No. of classes taken:							

UNIT-III: Statically Indeterminate Structures

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
18.	Introduction to forced vibration	1	17-11-2021		TLM1		
19.	Types of forced excitation	1	18-11-2021		TLM1		
20.	Forced vibrations with constant harmonic excitation	1	19-11-2021		TLM1		
21.	Steady state vibrations	1	20-11-2021		TLM1		
22.	Forced vibration with rotating and reciprocating unbalance	1	24-11-2021		TLM1		
23.	Forced vibrations due to excitation of the	1	25-11-2021		TLM1		
24.	Vibration isolation and transmissibility	1	26-11-2021		TLM1		
25.	vibration measuring instruments	1	27-11-2021		TLM1		
26.	Assignment/Quiz 3	1	01-12-2021		TLM3		
No. o	No. of classes required to complete UNIT-III:09 No. of classes taken:						

UNIT-IV: Energy Methods

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
27.	Introduction to two degree of freedom	1	02-12-2021		TLM1		
28.	Two masses fixed on a tightly stretched string	1	03-12-2021		TLM1		
29.	Double pendulum	1	04-12-2021		TLM1		
30.	Torsional system	1			TLM1		
31.	Undamped forced vibrations with harmonic excitation	2	08-12-2021 09-12-2021		TLM1		
32.	Undamped dynamic vibration absorber	2	10-12-2021 15-12-2021		TLM1 TLM3		
33.	Assignment/Quiz 4	1	16-12-2021		TLM1		
No. of	No. of classes required to complete UNIT-IV:09 No. of classes taken:						

UNIT-V: Columns

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
34.	Introduction to Multi degree of freedom	1	17-12-2021		TLM1		
35.	Influence coefficients	1	18-12-2021		TLM1		
36.	Flexibility coefficients and Maxwell reciprocal theorem	1	22-12-2021		TLM1		
37.	Torsional vibrations of Multi rotor systems	1	23-12-2021		TLM1		
38.	Vibrations of geared systems	1	24-12-2021		TLM1		
39.	Determination of natural frequency of vibration by Rayleigh's method.	2	29-12-2021 30-12-2021		TLM1 TLM3		
40.	Assignment/Quiz 5	1	31-12-2021		TLM1		
No. of	No. of classes required to complete UNIT-V:08 No. of classes taken:						

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = $CIE + SEE$	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of the
	information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
D O (with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
PO 7	the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering
FU /	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for
	sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms
100	of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To Apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight Dynamics in the Aerospace vehicle design.
PSO 2	To Prepare the students to work effectively in the defense and space research programs.

Dr. L. Prabhu			Dr. P. Lovaraju
Course Instructor	Course Coordinator	Module Coordinator	HOD

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME) Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF AEROSPACE ENGINEERING

COURSE HANDOUT

PROGRAM : B.Tech., VII-Sem., ASE

- ACADEMIC YEAR : 2021-22
- COURSE NAME & CODE : Computational Fluid Dynamics and 17AE25
- L-T-P STRUCTURE : 3-0-0
- COURSE CREDITS : 3
- COURSE INSTRUCTOR : Dr. P. Lovaraju
- **COURSE COORDINATOR : Dr. P. Lovaraju**

PRE-REQUISITE:

Course Educational Objectives: To learn the basic governing equations of fluid dynamics, mathematical behaviour of partial differential equations, phenomena of various discretization techniques, techniques to solve the simple incompressible flow problems, and basic techniques to solve simple heat transfer problems .

CO 1	Formulate the basic fluid dynamics problem mathematically (Apply-L3)							
CO 2	Analyze the mathematical behaviour of partial differential equations (Analyze-L4)							
CO 3	Apply the grid generation principles for different problems (Apply-L3)							
CO 4	Solve elementary incompressible fluid problems using the CFD techniques (Apply-L3)							
CO5	Solve the elementary heat transfer problems using the CFD techniques (Apply-L3)							

COURSE OUTCOMES (COs): At the end of the course, students are able to

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

Course	COs	Prog	ogramme Outcomes									PSOs			
Code		1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	2	2	2	1	-	-	-	-	-	-	2	3	3
	CO2	3	3	2	2	1	-	-	-	-	-	-	2	3	3
17AE25	CO3	3	2	3	2	3	-	-	-	-	-	-	2	3	3
	CO4	3	2	2	2	3	-	-	-	-	-	-	2	3	3
	CO5	3	2	2	2	3	-	-	-	-	-	-	2	3	3
1 = Slight (I	1 = Slight (Low) 2 = Moderate (Medium) 3-Substantial (High)														

BOS APPROVED TEXT BOOKS:

- **T1** Anderson.J.D, Computational Fluid Dynamics-Basics with Applications, Mc Graw Hill, 1995.
- T2 Thanigaiarasu. S, Computational Fluid Dynamics and Heat Transfer.

BOS APPROVED REFERENCE BOOKS:

- **R1** Anderson, D. A, Tannehill. J. C, Pletcher. R. H, Computational Fluid Mechanics and Heat Transfer, CRC Press, 2012.
- R2 Patankar. S. V, Numerical Heat Transfer and Fluid Flow, CRC Press, 1980.
- R3 Sengupta. T. K, Fundamentals of Computational Fluid Dynamics, University Press, 2004.

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction, Governing Equations of Fluid Dynamics

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Introduction to Course and discussion of course outcomes (Cos)	1	27-09-2021		TLM2	CO1	T1	
2.	Computational Fluid Dynamics as a Research and Design Tool, Applications of Computational Fluid Dynamics.	1	28-09-2021		TLM2	CO1	T1	
3.	Introduction, Control Volume, Substantial Derivative, Divergence of Velocity,	1	29-09-2021		TLM2	CO1	T1	
4.	Continuity Equation	1	4-10-2021		TLM2	CO1	T1	-
5.	Momentum Equation	2	5-10-2021, 6-10-2021		TLM2	CO1	T1	
6.	Energy Equation	2	9-10-2021 11-10-2021		TLM2	CO1	T1	
7.	Conservation and Non-conservation forms of governing flow equations	1	18-10-2021		TLM2	CO1	T1	-
8.	Tutorial	1	19-10-2021		TLM3			-
9.	Assignment-1/Quiz-1	1	23-10-2021					
No. of	classes required to complete UNIT-I:	11	No. of classes	s taken:				

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Introduction	1	25-10-2021		TLM2	CO2	T1	
2.	Classification of Quasi- Linear Partial Differential Equations	2	26-10-2021, 27-10-2021		TLM2	CO2	T1	
3.	Eigen Value Method	1	30-10-2021		TLM2	CO2	T1	
4.	Hyperbolic Equations	1	1-11-2021		TLM2	CO2	T1	
5.	Parabolic Equations	1	2-11-2021		TLM2	CO2	T1	
6.	Elliptic Equations	1	3-11-2021		TLM2	CO2	T1	
7.	Tutorial	1	5-11-2021		TLM3		T1	
8.	Assignment-2/Quiz-2	1	6-11-2021					
No. of UNIT-	classes required to complete II:	9	No. of classes t	aken:				

UNIT-II: Mathematical Behavior of Partial Differential Equations

I MID EXAMINATIONS (8-11-2021 TO 13-11-2021)

UNIT-III: Basics Aspects of Discretization

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Introduction of Finite Differences	1	15-11-2021		TLM2	CO3	T1	
2.	Difference Equations Forward Difference and Rearward Difference	1	16-11-2021		TLM2	CO3	T1	
3.	Central Difference	1	17-11-2021		TLM2	CO3	T1	
4.	Explicit and Implicit Approaches	2	20-11-2021, 22-11-2021		TLM2	CO3	T1	
5.	Errors	1	23-11-2021		TLM2	CO3	T1	
6.	Stability Analysis	1	24-11-2021		TLM2	CO3	T1	
7.	Grid Generation. General transformation of equations, Matrics and Jacobians	2	27-11-2021 29-11-2021		TLM2	CO3	T1	
8.	Tutorial	1	30-11-2021		TLM3			
9.	Assignment-3/Quiz 3	1	1-12-2021					
No. of UNIT-	classes required to complete	11	No. of classes t	aken:	· · · · ·			-

UNIT-IV : Incompressible Fluid Flow

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Introduction	1	4-12-2021		TLM2	CO4	T1	
2.	Maccromack's Technique	2	6-12-2021, 7-12-2021		TLM2	CO4	T1	
3.	Predictor step and Corrector Step	1	, 8-12-2021,		TLM2	CO4	T1	
4.	Incompressible Couette Flow, Implicit Crank-Nicholson Technique	2	11-12-2021, 13-12-2021		TLM2	CO4	T1	
5.	Pressure Correction Method	1	14-12-2021		TLM2	CO4	T1	
6.	Computation of Boundary Layer Flows	1	15-12-2021		TLM2	CO4	T1	
7.	Tutorial				TLM3			
8.	Assignment-4/Quiz 4							
No. of UNIT-	classes required to complete IV:	8	No. of classes ta	iken:				

UNIT-V : Heat Transfer

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	FiniteDifferenceApplicationsinHeatconduction and Convention,	2	18-12-2021 20-12-2021		TLM2	CO5	T2, R1	
2.	Heat conduction - steady heat conduction in a rectangular geometry	1	21-12-2021		TLM2	CO5	T2, R1	
3.	Transient heat conduction in a plane wall	1	22-12-2021		TLM2	CO5	T2, R1	
4.	Two-Dimensional transient heat conduction,	1	27-12-2021		TLM2	CO5	T2, R1	
5.	Finite difference application in convective heat transfer.	1	28-12-2021		TLM2	CO5	T2, R1	
6.	Tutorial	1	29-12-2021		TLM3			
7.	Assignment-5/Quiz 5	1	1-01-2022]
8.	Revision				TLM2			
No. of UNIT-	classes required to complete V:12	8	No. of classes	taken:				

	Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)					
TLM2 PPT		TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)					
TLM3	TLM3 Tutorial TLM6 Group Discussion/Project							

ACADEMIC CALENDAR:

Description	From	То	Weeks
I Phase of Instructions-1	27-09-2021	6-11-2021	6W
I Mid Examinations	8-11-2021	13-11-2021	1W
II Phase of Instructions	15-11-2021	1-01-2022	7W
II Mid Examinations	03-01-2022	08-01-2022	1W
Preparation and Practical	10-01-2022	15-01-2022	1W
Semester End Examinations	17-01-2022	29-01-2022	2W

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Assignment/Quiz – 1	1	A1=5
Assignment/Quiz – 2	2	A2=5
I-Mid Examination	1,2	B1=20
I-Mid Examination(Objective)	1,2	C1=10
Assignment/Quiz – 3	3	A3=5
Assignment/Quiz – 4	4	A4=5
Assignment/Quiz – 5	5	A5=5
II-Mid Examination	3,4,5	B2=20
II-Mid Examination(Objective)	3,4,5	C2=10
Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=5
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=20
Evaluation of Quiz Marks: C=75% of Max(C1,C2)+25% of Min(C1,C2)	1,2,3,4,5	C=10
Attendance Marks: D(>95%=5, 90-95%=4,85-90%=3,80-85%=2,75-80%=1)		D=5
Cumulative Internal Examination : A+B+C+D	1,2,3,4,5	40
Semester End Examinations	1,2,3,4,5	E=60
Total Marks: A+B+C+D+E	1,2,3,4,5	100

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

PO1: Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.

PO2: Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.

PO3: Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct Investigation of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.

PO5: Modern Tool Usage: Create, select and apply appropriate techniques, resources, and modern engineering and IT tools including predictions and modeling to complex engineering activities with an understanding of the limitations.

PO6: The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight Dynamics in the Aerospace vehicle design **PSO2:** To prepare the students to work effectively in Aerospace and Allied Engineering organizations

Course Instructor	Module Coordinator	HOD

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

COURSE HANDOUT

PROGRAM : B.Tech., VII-Sem., ASE

ACADEMIC YEAR : 2021-22

COURSE NAME & CODE : INTRODUCTION TO SPACE TECHNOLOGY - 17AE28

L-T-P STRUCTURE : 3-0-0

COURSE CREDITS 3

COURSE INSTRUCTOR : M.BHUVANESHWARI

MODULE COORDINATOR: Dr.P.LOVARAJU

PRE-REQUISITE: NONE

COURSE OBJECTIVE: In this course student will be able to learn the space mission strategies and fundamental orbital mechanics. She/he can be able to calculate flight trajectories of rockets and missiles. He will be able to understand the fundamentals of atmospheric re-entry issues and satellite attitude control techniques.

COURSE OUTCOMES (CO)

CO1	Understand the concepts of launching satellites in space (Understand-L2)

CO2 Apply the principles of orbital mechanics on motion of bodies in orbits (Apply-L3)

- CO3 Comprehend the trajectories of rockets and missiles (Understand-L2)
- CO4 Describe the dynamics of spacecraft attitude (Understand-L2)

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1	1	-	-	-	-	-	-	-	2	3	3
CO2	3	3	3	2	-	-	-	-	-	-	-	2	3	3
CO3	3	3	3	2	-	-	-	-	-	-	-	2	3	3
CO4	3	3	3	2	-	-	-	-	-	-	-	2	2	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- T1 W.E.Wiesel, Spaceflight Dynamics, McGraw-Hill,1997
- T2 Cornelisse, Schoyer HFR, Wakker KF, Rocket Propulsion and Space Flight Dynamics, pitman publications, 1984

BOS APPROVED REFERENCE BOOKS:

- **R1** J.Sellers., "Understanding Space: An Introduction to Astronautics", McGraw- Hill, 2000.
- **R2** Francis J Hale., "Introduction to Space Flight", Prentice-Hall, 1994.

COURSE DELIVERY PLAN (LESSON PLAN)

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to origin of space and Space Missions- Types	1	28/09/2021		TLM2	
2.	Space Environment-Introduction	1	29/09/2021		TLM2	
3.	Launch vehicle selection	1	30/09/2021		TLM2	
4.	Introduction to Rocket Propulsion	1	05/10/2021		TLM2	
5.	Fundamentals of solid Rocket Propellants	1	06/10/2021		TLM2	
б.	Solid Rocket Propellants- Burn rate & properties	1	07/10/2021		TLM2	
7.	Fundamentals of Liquid Rocket Propellants		09/10/2021		TLM2	
8.	Liquid Rocket Propellants-Pump & Pressure Feed Systems	1	20/10/2021		TLM2	
9.	Rocket Equation	1	21/10/2021		TLM2	
No.	of classes required to complete UNIT-I	09	No. of class	es taken:		

UNIT-I: INTRODUCTION

UNIT-II: ORBITAL MECHANICS & ORBITAL MANEUVERS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
10.	Two body motion-Inertial Frame	1	23/10/2021		TLM1	
11.	Two body motion-Angular Momentum & Orbit Eq.	1	26/10/2021		TLM1	
12.	Conic Sections- Circular Orbits and Elliptical Orbits	1	27/10/2021		TLM1	
13.	Conic Sections- Parabolic Orbits and - Hyperbolic Orbits	1	28/10/2021		TLM1	
14.	Classic Orbital Elements & Ground Tracks	1	30/10/2021		TLM1	
15.	Orbital Maneuvers-Hohmann transfer	1	02/11/2021		TLM1	
16.	Bi-elliptical	1	03/11/2021		TLM1	
17.	Plane changes and Combined maneuvers & Propulsion for maneuvers	1	06/11/2021		TLM1	
No.	of classes required to complete UNIT-II	08	No. of classe	s taken:		

Unit III- ASCENT FLIGHT MECHANICS OF ROCKETS & MISSILES

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
18.	Two-Dimensional trajectories of rockets and missiles	1	16/11/2021		TLM1	
19.	Multi-Stage Rockets	1	17/11/2021		TLM1	
20.	Vehicle Sizing	1	18/11/2021		TLM1	
21.	Two-Stage Rockets	1	20/11/2021		TLM1	
22.	Trade-off Ratios	1	23/11/2021		TLM1	

23.	Single Stage to Orbit	1	24/11/2021		TLM1	
24.	Sounding Rockets	1	25/11/2021		TLM1	
25.	Gravity turn trajectories	1	27/11/2021		TLM1	
No. o	No. of classes required to complete UNIT-III		No. of classes taken:			

	Unit IV- A	ATMOSPI	HERIC REE	NTRY		
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
26.	Introduction to Reentry	1	30/11/2021		TLM1	
27.	Steep Ballistic Reentry	1	01/12/2021		TLM1	
28.	Ballistic Orbital Reentry	1	02/12/2021		TLM1	
29.	Skip Reentry	1	04/12/2021		TLM1	
30.	Double Dip Reentry	1	07/12/2021		TLM1	
31.	Aero Braking	1	08/12/2021		TLM1	
32.	Lifting Body Reentry	1	09/12/2021		TLM1	
33.	REVISION	1	11/12/2021		TLM1	
No.	of classes required to complete UNIT-IV	08	No. of clas	sses taken:		

A TRACEDIC DEENTDY ---•

Unit V- SATELLITE ATTITUDE DYNAMICS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
34.	Introduction	1	14/12/2021		TLM1	
35.	Torque Free Axi-symmetric Body	1	15/12/2021		TLM1	
36.	Attitude Control for spinning Spacecraft	2	16/12/2021& 18/12/2021		TLM1	
37.	Attitude Control for non-spinning Spacecraft	2	21/12/2021& 22/12/2021		TLM1	
38.	The Yo-Yo Mechanism	1	23/12/2021		TLM1	
39.	Gravity Gradient Satellite	1	28/12/2021		TLM1	
40.	Dual Spin Spacecraft- Attitude Determination	2	29/12/2021& 30/12/2021		TLM1	
No	of classes required to complete UNIT-V	10	No. of clas	ses taken:		

Teach	Teaching Learning Methods											
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD							
TLM2	РРТ	TLM5	Programming	TLM8	Lab Demo							
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study							

Evaluation Task	COs	Marks
Assignment/Quiz – 1	1	A1=5
Assignment/Quiz – 2	2	A2=5
I-Mid Examination	1,2	B1=20
Assignment/Quiz – 3	3	A3=5
Assignment/Quiz-4	4	A4=5
Assignment/Quiz – 5	5	A5=5
II-Mid Examination	3,4,5	B2=20
Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=5
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=20
Cumulative Internal Examination : A+B	1,2,3,4,5	A+B=25
Semester End Examinations	1,2,3,4,5	C=75
Total Marks: A+B+C	1,2,3,4,5	100

EVALUATION PROCESS:

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

- **PO1: Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- **PO2: Problem Analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3:** Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4: Conduct Investigation of Complex Problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.
- **PO5: Modern Tool Usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including predictions and modeling to complex engineering activities with an understanding of the limitations.
- **PO6: The Engineer and Society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional engineering practice.
- **PO7: Environment and Sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8: Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9: Individual and Teamwork:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10: Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to

comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

- **PO11: Project Management and Finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12: Life-long Learning:** Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

- **PSO1:** To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight Dynamics in the Aerospace vehicle design
- **PSO2:** To prepare the students to work effectively in Aerospace and Allied Engineering organizations.

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

COURSE HANDOUT Part-A

COURSE INSTRUCTORS : Mr. S.Indrasena Reddy /Mr. Nazumuddin Shaik

COURSE NAME & CODE : Aircraft Component Modeling and Analysis-17AE66

L-T-P STRUCTURE : 0-0-2 COURSE CREDITS : 1

PROGRAM: B.Tech. VII-Sem.**ACADEMIC YEAR** : 2021-22

COURSE COORDINATOR: Mr.S. Indrasena Reddy

PRE-REQUISITE: Engineering Graphics, Computer Aided Machine Drawing

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The main objective of this course is to learn surface modeling package (CATIA) to draw 2D sketches, 3D parts, various aircraft components and assembly drawing and finite element package (ANSYS) to analyze the behavior of simple structural elements under static loading system.

COURSE OUTCOMES (COs)

At the end of the semester, the student will be able

- **CO1:** Draw aircraft components in 2D and 3D geometric modeling (Apply-L3)
- **CO2:** Solve and analyze the structural components of aircraft for deformations and stresses using a numerical tool. (Analyze-L4)

COURSE ARTICULATION MATRIX (Correlation between COs& POs, PSOs):

COs	PO 1	PO 2	РО 3	РО 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	2	3	2	3	-	-	-	-	-	-	2	3	3
CO2	3	3	3	3	3	-	-	-	-	-	-	3	3	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

<u>Part-B</u>

S.No	Tentative Date of Completion	Actual Date of Completion	17AE66 - AIRCRAFT COMPONENT MODELING AND ANALYSIS(ACMA) LAB		Learning Outcome COs	HOD Sign Weekly
			List of Experiments			
1	03-11-2020		ACMA Introduction-CATIA Introduction		CO1	
2	10-11-2020		Exp-1	Aircraft Component Design-I	CO1	
3	17-11-2020		Exp-2	Aircraft Component Design-II	CO1	
4	24-11-2020		Exp-3	Aircraft Component Design-III	CO1	
5	01-12-2020		Exp-4	Aircraft Component Design-IV	CO1	
6	08-12-2020		Exp-5	Assembly of Components	CO1	
7	15-12-2020		Exp-6	Static analysis on beam	CO2	
8	29-12-2020		Exp-7	Eigenvalue Buckling analysis	CO2	
9	05-01-2021		Exp-8	Model analysis on Wing	CO2	
10	19-01-2021		Exp-9	Thermal analysis	CO2	
11	02-02-2021 & 09-02-2021		Exp-10	Static analysis of composite laminate	CO2	

COURSE DELIVERY PLAN (LESSON PLAN):

Contents beyond the Syllabus:

12			Exp-11	Aircraft components assembly and analysis	CO1 & CO2
----	--	--	--------	---	-----------

<u> Part - C</u>

EVALUATION PROCESS (R17 Regulations) :

Pa	rameter	Marks	
Day – to – Day	Observation	A1 = 10 Marks	
Work	Record	A2 = 10 Marks	
Internal Test		B =10 Marks	
Attendance		C = 05 Marks	
Viva – Voce During	g Regular Lab Sessions	D = 05 Marks	
Cumulative Internal	Examination	A1+ A2 + B+C+D = 40 Marks	
Semester End Exam	inations	E = 60 Marks	
Total Marks: A1+	A2 + B + C + D + E	100 Marks	

Part - D

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

Program Educational Objectives (PEO)

- **PEO1:** To provide students with sound mathematical, engineering and multidisciplinary knowledge to solve Aerospace and Allied Engineering problems.
- **PEO2:** To prepare students to excel in higher education programs and to succeed in industry/academia profession.
- **PEO3:** To inculcate ethical attitude, leadership qualities, problem solving abilities and lifelong learning for a successful professional career.

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

- **PO1: Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- **PO2: Problem Analysis:** Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- **PO3: Design/Development of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4: Conduct Investigation of Complex Problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.
- **PO5: Modern Tool Usage:** Create, select and apply appropriate techniques, resources, and modern engineering and IT tools including predictions and modeling to complex engineering activities with an understanding of the limitations.
- **PO6: The Engineer and Society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7: Environment and Sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8: Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9: Individual and Team Work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
 - **PO10: Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend

and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

- **PO11: Project Management and Finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12: Life-long Learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight Dynamics in the Aerospace vehicle design

PSO2: To prepare the students to work effectively in Aerospace and Allied Engineering organizations

Mr. S.Indrasena Reddy

Dr.Prabhu L

Dr.P.Lovaraju

Course Instructor

Module Coordinator

HOD