

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Affiliated to JNTUK, Kakinada & Approved by AICTE New Delhi, Accredited by NAAC, An ISO 9001:2015 Certified Institution L.B.Reddy Nagar, Mylavaram – 521 230, Krishna District, Andhra Pradesh, INDIA

Department of Aerospace Engineering

Website: http://lbrce.ac.in Email: hodaero@lbrce.ac.in Phone:08659-222933 Ext:513/515

COURSE HANDOUT

PROGRAM	: B.Tech. VI-Sem., ASE
ACADEMIC YEAR	: 2021-22
COURSE NAME & CODE	: PROPULSION-II (17AE16)
L-T-P STRUCTURE	: 3-0-0
COURSE CREDITS	:3
COURSE INSTRUCTOR	: DIVVELA RAKESH
COURSE COORDINATOR	: DIVVELA RAKESH
	.

PRE-REQUISITE: Propulsion-I

COURSE EDUCATIONAL OBJECTIVES (CEOs):

To learn the engineering concepts of ramjet and scramjet, The basic concepts of rocket propulsion, Working principle of liquid and solid propellant rocket systems, and advanced propulsion techniques.

COURSE OUTCOMES (COs)

After completion of the course, the student will be able to

CO1	Demonstrate the working principles of ramjet and scram jet engine. (Understand $-L2$)
CO2	Comprehend the preliminary concepts of rocket propulsion (Understand – L2)
CO3	Describe the working of various liquid propellant rocket systems (Understand – L2)
CO4	Access the use of solid propellant rocket systems (Apply-L4)
CO5	Apply the advanced rocket propulsion techniques for a mission (Apply - L3)

COURSE ARTICULATION MATRIX (Correlation between Cos & POs, PSOs):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	-	-	-	-	-	-	-	3	2	3
CO2	3	3	2	1	-	-	-	-	-	-	-	2	2	3
CO3	3	3	3	2	-	-	-	-	-	-	-	3	3	3
CO4	3	3	2	2	-	-	-	-	-	-	-	3	3	3
CO5	3	3	3	1	-	-	-	-	-	-	-	3	3	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

TEXT BOOKS

1. Sutton G.P, "Rocket Propulsion Elements" John Wiley Sons Inc, New York 5th Edn, 1993.

REFERENCES

- 1. Mattingly J.D, Elements of Propulsion: Gas Turbines and Rockets, AIAA Educational series.
- 2. Gorden C.V, Aero Thermodynamics of Gas Turbine and Rocket Propulsion, AIAA Educational series, New York,1989.
- 3. Yahya S.M, Fundamentals of Compressible fluid flows: SI units with Aircraft and Rocket Propulsion, New Age International,2003

Part-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: RAMJET PROPULSION

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Ram jet Propulsion Introduction	1	21-02-2022		TLM1	CO1	T1	
2.	Operating Principle	1	22-02-2022		TLM1 & TLM2	CO1	T1	
3.	Critical, Sub critical and Super critical operations	1	25-02-2022			CO1	T1	
4.	Combustion in Ramjet	1	26-02-2022	26-02-2022 TL T		CO1	T1	
5.	Ram jet Performance	1	28-02-2022		TLM1	CO1	T1	
6.	Need of Supersonic combustion	1	01-03-2022		TLM1	CO1	T1	
7.	Components and working principle of scram jet engine	1	04-03-2022		TLM1	CO1	T1	
8.	Isolators and Types of combustion chambers for Scram jet engine	1	05-03-2022		TLM1	CO1	T1	
9.	Mixing Process in Scram jet engine	1	07-03-2022		TLM1	CO1	T1	
10.	Revision	1	08-03-2022					
	classes required to ete UNIT-I	10	11-03-2022		No. of classes taken:			

UNIT-II : ROCKET PROPULSION

S.No.	Topics to be covered	No. of Classes Require d	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
11.	Operating Principle	1	12-03-2022		TLM1 & TLM2	CO2	T1	
12.	Effective Exhaust velocity	1	14-03-2022		TLM2	CO2	T2	
13.	Thrust Equation	1	15-03-2022		TLM1 & TLM2	CO2	T2	
14.	Specific Impulse	1	18-03-2022		TLM	CO2	T2	
15.	Rocket Propulsion Requirements	1	19-03-2022		TLM2	CO2	T2	

16.	Equation of Motion for an Accelerating Flight	1	21-03-2022	TLM2	CO2	T2	
17.	MultiStage Rocket	1	22-03-2022	TLM2	CO2	T1	
18.	Revision	1	25-03-2022				
	f classes required to lete UNIT-II	8	26-03-2022	No. of classes taken:			

UNIT-III: LIQUID PROPELLANT ROCKET

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completio n	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
19.	Introduction	1	28-03-2022		TLM1 & TLM2	CO3	T1	
20.	Liquid Propellant Fuels and Oxidizers	2	29-03-2022 01-04-2022		TLM1	CO3	T1	
21.	Liquid Propellant Selection Properties	2	02-04-2022 04-04-2022		TLM1 & TLM2	CO3	T1	
22.	Propellant tanks	1	05-04-2022		TLM1 & TLM2	CO3	T1	
23.	Tank Pressurization	2	08-04-2022 09-04-2022		TLM2	CO3	T1	
24.	Turbo Pump Feed Systems	1	11-04-2022		TLM2	CO3	T1	
25.	Gas Pressure Feed Systems	1	12-04-2022		TLM2	CO3	T1	
26.	Injector Configurations	1	15-04-2022		TLM2	CO3	T1	
27.	Combustion Process	1	16-04-2022		TLM2	CO3	T1	
28.	Combustion Instabilities	1	18-04-2022		TLM2	CO3	T1	
29.	Revision	1	19-04-2022					
	classes required to ete UNIT-III	14			No. of cl	asses taker	1:	

UNIT-IV: SOLID PROPELLANT ROCKET

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
30.	Solid Propellant rockets	1	22-04-2022		TLM1 & TLM2	CO4	T1	
31.	Double base and Composite Propellants	2	23-04-2022 25-04-2022		TLM2	CO4	T1	

32.	Selection Criteria for Solid Propellants	2	26-04-2022 29-04-2022	TLM2	CO4	T1	
33.	Combustion Process	1	30-04-2022	TLM2	CO4	T1	
34.	Propellant Burn Rate	1	02-05-2022	TLM2	CO4	T1	
35.	Propellant Grain and Its Configuration	2	03-05-2022 06-05-2022	TLM1 & TLM2	CO4	T1	
36.	Propellant Grain Stress and Strain	2	07-05-2022 09-05-2022	TLM1 & TLM2	CO4	T1	
37.	Hybrid Rockets	1	10-05-2022	TLM2	CO4	T1	
38.	Revision	1	13-05-2022				
	classes required to ete UNIT-IV	13		No. of cl	No. of classes taken:		

UNIT-V : ADAVANCED PROPULSION TECHNIQUES

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
39.	Electrical Propulsion Systems	1	14-05-2022		TLM1 & TLM2	CO5	T1	
40.	Electro Thermal Systems	1	16-05-2022		TLM2	CO5	T1	
41.	Pulse jet, Arc Jet	1	17-05-2022		TLM2	CO5	T1	
42.	Electro Static Systems	1	20-05-2022		TLM2	CO5	T1	
43.	Ion Propulsion Techniques	1	21-05-2022		TLM2	CO5	T1	
44.	Electro Magnetic Systems	1	23-05-2022		TLM1 & TLM2	CO5	T1	
45.	Pulsed Plasma Thruster	1	24-05-2022		TLM1 & TLM2	CO5	T1	
46.	Magneto Plasma Dynamic Thruster	1	27-05-2022		TLM1 & TLM2	CO5	T1	
47.	Solar Sail	1	28-05-2022		TLM2	CO5	T1	
48.	Nozzleless Propulsion	1	30-05-2022		TLM2	CO5	T1	
49.	Energy Spike	1	31-05-2022		TLM1	CO5	T1	
50.	Nuclear Rockets	1	03-06-2022		TLM3	CO5	T1	
51.	Revision	1	04-06-2022					
	classes required to ete UNIT-V	13			No. of classes taken:			

Teach	Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)						
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)						
TLM3	Tutorial	TLM6	Group Discussion/Project						

Part - C

EVALUATION PROCESS:

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

- **PEO1:** To provide students with a solid foundation in mathematical, scientific and engineering fundamentals required to solve engineering problems.
- **PEO2:** To train students with good scientific and engineering breadth to comprehend, analyze, design, and create novel products and solutions for the real-life problems
- **PEO3:** To prepare students to excel in competitive examinations, postgraduate programs, advanced education or to succeed in industry/technical profession
- **PEO4:** To inculcate in students professional and ethical attitude, effective communication skills, teamwork skills, multidisciplinary approach, and an ability to relate engineering issues to broader social context
- **PEO5:** To provide student with an academic environment with awareness of excellence, leadership, and the life-long learning needed for a successful professional career

PROGRAMME OUTCOMES (POs)

- PO1: To apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- PO2: To identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- PO3: To design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4: To use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.
- PO5: To create, select and apply appropriate techniques, resources, and modern engineering and IT tools including predictions and modeling to complex engineering activities with an understanding of limitations.
- PO6: To apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- PO7: To understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- PO8: To apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice
- PO9: To function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10: To communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11: To demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12: To recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight Dynamics in the Aerospace vehicle design.

PSO2: To prepare the students to work effectively in Aerospace and Allied Engineering organizations.

DIVVELA RAKESH	DIVVELA RAKESH	Dr. P. LOVARAJU
Course Instructor	Course Coordinator	HOD

DEPARTMENT OF AEROSPACE ENGINEERING COURSE HANDOUT

PART-A

Name of Course Instructor	: Nazumuddin Shaik	
Course Name & Code	: 17AE17- AIRCRAFT STRUCTURES – II	
L-T-P Structure	: 3-2-0	Credits : 3
Program/Sem/Sec	: B.Tech., VI-Sem.	A.Y: 2021-22

PRE-REQUISITE: Strength of Materials and Aircraft Structures - I

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The objective of the course is to enable the students to apply standard methods to calculate the stress and displacement of thin walled symmetrical and unsymmetrical components located in fuselage, wing and landing gear are subjected to static loads.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Assess the behaviour of beam structures subjected to different loading conditions (Apply-L3)
CO 2	Estimate the shear flow distribution and location of shear centre for open sections (Apply-L3)
CO 3	Determine the shear flow distribution and location of shear centre in closed section beams (Apply-
	L3)
CO 4	Formulate the relations for thin plates subjected to bending and buckling loads (Apply-L3)
CO 5	Analyze the behaviour of bending and shear flow over aircraft wing and fuselage cross-sections
	(Analyze-L4)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	2	-	-	-	-	-	-	-	2	2	3
CO2	3	3	2	2	-	-	-	-	-	-	-	2	2	3
CO3	3	3	2	2	-	-	-	-	-	-	-	3	3	3
CO4	3	3	3	2	-	-	-	-	-	-	-	3	3	3
CO5	3	3	3	2	-	-	-	-	-	-	-	3	3	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- T1 Peery. D. J, Azar. J. J, Aircraft Structures, Second Edition, McGraw–Hill, New York, 2007.
- **T2** Megson, T. H. G, Aircraft Structures for Engineering Students, Sixth Edition, Elsevier 2017.

REFERENCE BOOKS:

- **R1** Bruhn. E. F. Analysis and Design of Flight Vehicles Structures, S. r. Jacobs, 1973.
- R2 Rivello. R. M, Theory and Analysis of Flight Structures, McGraw-Hill, 1993.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: BENDING STRESS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Course and COs	1	22-02-2022			
2.	Introduction to Unit-I	1	02-01-1900		TLM1&2	
3.	Introduction - Principal Axis	1	25-02-2022		TLM1&2	
4.	Neutral Axis Methods	1	26-02-2022		TLM1&2	
5.	Bending Stresses- Beams of Symmetric Sections Symmetric Loads	1	02-03-2022		TLM1&2	
6.	Beams of Symmetric Sections with Skew Loads	1	04-03-2022		TLM1&2	
7.	TUTORIAL-1	1	05-03-2022		TLM3	
8.	Unsymmetrical Sections with Symmetric Loads.	1	08-03-2022		TLM1&2	
9.	Unsymmetrical Sections with Symmetric Loads.	1	09-03-2022		TLM1&2	
10.	Unsymmetrical Sections with Skew Loads.	1	11-03-2022		TLM1&2	
11.	Unsymmetrical Sections with Skew Loads	1	15-03-2022		TLM1&2	
12.	Problems	1	16-03-2022		TLM1	
No. o	f classes required to complete U	NIT-I: 12	•	No. of class	sses taken:	

UNIT-II: SHEAR FLOW IN OPEN SECTIONS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
1.	Introduction to Unit-II	1	19-03-2022		TLM1&2			
2.	Thin Walled Beams Shear Flow	1	22-03-2022		TLM1&2			
3.	Concept of Shear Flow	1	23-03-2022		TLM1&2			
4.	Shear Centre	1	25-03-2022		TLM1&2			
5.	Shear Flow in Open-Section	1	26-03-2022		TLM1&2			
6.	TUTORIAL-2	1	29-03-2022		TLM3			
7.	Shear Flow in Open-Section Symmetrical	1	30-03-2022		TLM1&2			
8.	Shear Flow in Open-Section Symmetrical	1	01-04-2022		TLM1&2			
9.	Shear Flow in Open-Section Unsymmetrical	1	05-04-2022		TLM1&2			
10.	Shear Flow in Open-Section Unsymmetrical	1	06-04-2022		TLM1&2			
11.	Problems	1	08-04-2022		TLM1&2			
No. of	No. of classes required to complete UNIT-II:11 No. of classes taken:							

UNIT-III: SHEAR FLOW IN CLOSED SECTIONS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-III	1	19-04-2022		TLM1&2	
2.	Bredt–Batho Theory	1	20-04-2022		TLM1&2	
3.	Shear Flow in Closed-Section	1	22-04-2022		TLM1&2	

4.	Single Cell –Shear Flow	1	23-04-2022	TLM1&2	
5.	Multi-Cell –Shear Flow	1	26-04-2022	TLM1&2	
6.	Shear Centre	1	27-04-2022	TLM1&2	
7.	TUTORIAL-3	1	29-04-2022	TLM3	
8.	Shear Centre & Torsion	1	30-04-2022	TLM1&2	
9.	Thin Wall Bending with skin Effective	1	03-05-2022	TLM1&2	
10.	Thin Wall Bending with skin Ineffective	1	04-05-2022	TLM1&2	
11.	Problems	1	06-05-2022	TLM1&2	
No. of	f classes required to complete UN	No. of classes taken:			

UNIT-IV : BENDING & BUCKLING OF THIN PLATES

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-IV	1	07-05-2022		TLM1&2	
2.	Plates Subjected to Pure Bending and Twisting	1	10-05-2022		TLM1&2	
3.	Plates Subjected to Distributed and Transverse Load	1	11-05-2022		TLM1&2	
4.	In-Plane Loading	1	13-05-2022		TLM1&2	
5.	Thin Rectangular Plate with Small Initial Curvature.	1	17-05-2022		TLM1&2	
6.	TUTORIAL-4	1	18-05-2022		TLM3	
7.	Introduction to Inelastic buckling of plates	1	20-05-2022		TLM1&2	
8.	Determination of critical load for a flat plate	1	21-05-2022		TLM1&2	
9.	Local instability, Instability of stiffened panels	1	24-05-2022		TLM1&2	
10.	Failure stress in plates and stiffened panels	1	25-05-2022		TLM1&2	
No. of	f classes required to complete UN	NIT-IV:10		No. of class	sses taken:	

UNIT-V : STRESS ANALYSIS IN WING AND FUSELAGE

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-V	1	27-05-2022		TLM1&2	
2.	Study of Wing Spars and Box Beams	1	28-05-2022		TLM1&2	
3.	Shear Resistant Web Beams	1	31-05-2022		TLM1&2	
4.	Tension Field Web Beams (Wagner's)	1	01-06-2022		TLM1&2	
5.	TUTORIAL-5	1	03-06-2022		TLM3	
6.	Procedures to Find Shear stress Distribution for Cantilever Beam.	1	04-06-2022		TLM1&2	
7.	Procedures to Bending Moment Distribution for Cantilever Beam.	1	04-06-2022		TLM1&2	
No. of	f classes required to complete UN	NIT-V:07		No. of class	sses taken:	

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of the
	information to provide valid conclusions.

PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for
	sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms
	of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	ffer discussion of the second discussion of the second second second second second second second second second
	effective reports and design documentation, make effective presentations, and give and receive
D O 11	clear instructions.
PO 11	clear instructions. Project management and finance: Demonstrate knowledge and understanding of the
PO 11	clear instructions. Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and
	clear instructions. Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 11 PO 12	clear instructions. Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight
	Dynamics in the Aerospace vehicle design
PSO 2	To prepare the students to work effectively in Aerospace and Allied Engineering
	organizations

Course InstructorModule CoordinatorMr. Nazumuddin ShaikDr. L. De Lit

HOD Dr.P. Lovaraju

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME) Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF AEROSPACE ENGINEERING

COURSE HANDOUT

PROGRAM: B.Tech., VI-Sem., ASEACADEMIC YEAR: 2021-22COURSE NAME & CODE: Flight Dynamics and 17AE18L-T-P STRUCTURE: 3-0-0COURSE CREDITS: 3COURSE INSTRUCTOR: Dr. P. LovarajuCOURSE COORDINATOR: Dr. P. Lovaraju

PRE-REQUISITE: Engineering Mechanics, Aerodynamics, Propulsion

Course Educational Objectives: To learn the concepts of performance estimation on steady level flight at various altitudes and velocities, performance of maneuvering flight at unaccelerated and accelerated conditions, the concepts of static stability requirements during flight, the basic concepts of dynamic stability and control of an aircraft.

CO 1	Determine thrust and power requirement conditions for steady level flight (Apply-L3)
CO 2	Estimate performance parameters of flight during manoeuvring (Apply-L3)
CO 3	Apply the conditions of static stability and control in the aircraft design (Apply-L3)
CO 4	Understand various concepts and conditions of static stability and control (Understand -L2)
CO5	Apply the concepts and conditions of dynamic control methods during flight (Apply-L3)

Course	COs	Prog	gramm	e Outo	comes									PSO	s
Code		1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	3	3	2	-	-	-	-	-	-	-	3	3	2
	CO2	3	3	3	3	-	-	-	-	-	-	-	3	3	3
17AE18	CO3	3	2	3	3	-	-	-	-	-	-	-	3	3	3
	CO4	3	3	3	2	-	-	-	-	-	-	-	3	3	3
	CO5	3	3	2	2	-	-	-	-	-	-	-	3	3	2
1 = Slight (I	Low)	2 = N	Iodera	te (Me	dium)	•	3-Su	bstant	tial (Hi	igh)	•	•	•	•	•

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- T1 Aircraft Performance and Design, J.D Anderson, Tata McGrawhill Edition
- T2 Nelson, R.C. "Flight Stability and Automatic Control", McGraw-Hill Book Co., 2004

BOS APPROVED REFERENCE BOOKS:

- **R1** Perkins, C.D., and Hage, R.E., "Airplane Performance stability and Control", John Wiley & Son:, Inc, NY, 1988.
- R2 Etkin, B., "Dynamics of Flight Stability and Control", Edn. 2, John Wiley, NY, 1982.
- **R3** Babister, A.W., "Aircraft Dynamic Stability and Response", Pergamon Press, Oxford, 1980.
- **R4** Michael V. Cook, "Flight Dynamics Principles", Second Edition, Elsevier Aerospace Engineering Series, 2007.
- **R5** Mc Cornick B. W, "Aerodynamics, Aeronautics and Flight Mechanics", John Wiley, NY, 1995.

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: STEADY FLIGHT PERFORMANCE

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Introduction to Course and discussion of course outcomes (Cos)	1	21-02-2022		TLM1	CO1	T1	
2.	Introduction to Aircraft Performance, Equations of motion of Steady level flight	1	22-02-2022		TLM1	CO1	T1	
3.	Drag Polar	1	23-02-2022		TLM1	CO1	T1	
4.	Thrust Required for Level Flight	2	24-02-2022 25-02-2022		TLM1	CO1	T1	_
5.	Tutorial	1	28-02-2022		TLM3			
6.	Thrust Available and Maximum Velocity	2	2-03-2022 3-03-2022		TLM1	CO1	T1	_
7.	Power required for level flight, Power available and maximum velocity	2	4-03-2022 7-03-2022		TLM1	CO1	T1	
8.	Altitude effects	1	8-03-2022		TLM1	CO1	T1	-
9.	Effect of Drag Divergence	1	9-03-2022		TLM1	CO1	T1	_
10.	Tutorial	1	10-03-2022		TLM3			
11.	Assignment-1/Quiz-1							
No. of	classes required to complete UNIT-I:	13	No. of classes	s taken:			-	

UNIT-II: MANOEUVERING FLIGHT PERFORMANCE

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Rate of climb and climb performance parameter	2	11-03-2022 14-03-2022		TLM1	CO2	T1	
2.	Hodograph Diagram ,Absolute and service ceiling, Time to climb	2	15-03-2022 16-03-2022		TLM1	CO2	T1	
3.	Gliding Flight	1	17-03-2022		TLM1	CO2	T1	
4.	Tutorial	1	21-03-2022		TLM3			
5.	Range for propeller driven and jet propelled	2	22-03-2022 23-03-2022		TLM1	CO2	T1	
6.	Endurance, Endurance for propeller driven and jet propelled	2	24-03-2022 25-03-2022		TLM1	CO2	T1	
7.	Tutorial	1	28-03-2022		TLM3			
8.	Pull-Up and Pull-Down Manoeuvres	1	29-03-2022		TLM1	CO2	T1	
9.	Turning Flight, Constraints on load factor	1	30-03-2022		TLM1	CO2	T1	

10.	V-n diagram	2	31-03-2022 1-04-2022		TLM1	CO2	T1	
11.	Take-off performance	1	4-04-2022		TLM1	CO2	T1	
12.	Landing performance	1	6-04-2022		TLM1	CO2	T1	
13.	Revision	2	7-04-2022 8-04-2022		TLM2			
14.	Assignment-2/Quiz-2							
No. of UNIT-	classes required to complete II:	19	No. of classes t	aken:				

I MID EXAMINATIONS (11-04-2022 TO 19-04-2022)

UNIT-III: STATIC LONGITUDINAL STABILITY AND CONTROL

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Introduction, Moments on the airplane, Absolute angle of attack	1	20-4-2022		TLM2	CO3	T2	
2.	Criteria for longitudinal Stability	1	21-4-2022		TLM2	CO3	Τ2	_
3.	Wing contribution for longitudinal static stability	2	22-04-2022 25-04-2022		TLM2	CO3	Τ2	
4.	Tail contribution for longitudinal static stability	2	26-04-2022 27-04-2022		TLM2	CO3	Τ2	

5.	Tutorial	1	28-04-2022		TLM3				
6.	Total pitching moment, Neutral point, Static margin	1	22-4-2022		TLM1	CO3	Τ2		
7.	Stick fixed stability, Stick free stability, Longitudinal control	1	25-4-2022		TLM1	CO3	Τ2		
8.	Elevator angle to trim, Elevator hinge moment	2	26-04-2022 27-04-2022		TLM1	CO3	Τ2		
9.	Power effects	1	28-04-2022		TLM1	CO3	Τ2		
10.	Tutorial	1	29-04-2022		TLM3				
11.	Assignment-3/Quiz 3							1	
No. of UNIT-	classes required to complete III:	13	No. of classes t	aken:			I	1	

UNIT-IV : STATIC LATERAL-DIRECTIONAL STABILITY AND CONTROL

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Lateral stability-Dihedral effect, criterion for lateral stability	1	2-05-2022		TLM1	CO4	T2	
2.	Dihedral effect, Adverse yaw effects	1	4-05-2022		TLM1	CO4	T2	
3.	Contribution of wing, fuselage, tail, Lateral control - Coupling	1	5-05-2022		TLM1	CO4	T2	

	between rolling and yawing moments					
4.	Lateral control-strip theory estimation of aileron effectiveness, aileron reversal.	1	6-05-2022	TLM1	CO4	T2
5.	Directional stability-yaw and sideslip, Criterion of directional stability, Contribution wing, fuselage, tail	1	9-05-2022	TLM1	CO4	Τ2
6.	Tutorial	1	10-05-2022	TLM3		
7.	Directional control- rudder control effectiveness	1	11-05-2022	TLM1	CO4	Τ2
8.	Rudder requirements-adverse yaw, asymmetric power condition, spin recovery	1	12-05-2022	TLM1	CO4	T2
9.	Rudder lock and Dorsal fin	1	13-05-2022	TLM1	CO4	T2
10.	Tutorial	1	16-05-2022	TLM3		
11.	Assignment-4/Quiz 4					
No. of UNIT-	classes required to complete IV:	10	No. of classes taken:			

UNIT-V : DYNAMIC STABILITY AND CONTROL

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Introduction to dynamic longitudinal stability, Modes of stability	1	17-05-2022		TLM1	CO5	T2, R1	
2.	Aircraft Equations of motion	2	18-05-2022 19-05-2022		TLM1	CO5	T2, R1	
3.	Small disturbance theory	2	20-05-2022 23-05-2022		TLM1	CO5	T2, R1	_
4.	Solving the stability quartic, Routh's Discriminant	1	24-05-2022		TLM1	CO5	T2, R1	
5.	Tutorial	1	25-05-2022		TLM3			_
6.	Phugoid motion, Short period of oscillation	1	26-05-2022		TLM1	CO5	T2, R1	
7.	Brief description of lateral and directional dynamic stability	2	27-05-2022 30-05-2022		TLM1	CO5	T2, R1	
8.	Spiral divergence, Dutch roll, auto rotation and spin	1	31-05-2022		TLM1	CO5	T2, R1	
9.	Tutorial	1	1-06-2022		TLM3			-
10.	Assignment-5/Quiz 5							_
11.	Revision	2	2-06-2022 3-06-2022		TLM2			
No. of UNIT-	classes required to complete V:12	14	No. of classes	s taken:				

	Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)					
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)					
TLM3	Tutorial	TLM6	Group Discussion/Project					

ACADEMIC CALENDAR:

Description	From	То	Weeks
I Phase of Instructions-1	21-02-2022	9-04-2022	7W
I Mid Examinations	11-04-2022	16-04-2022	1W
II Phase of Instructions	18-04-2022	04-06-2022	7W
II Mid Examinations	06-06-2022	11-06-2022	1W
Preparation and Practical	13-06-2022	18-06-2022	1W
Semester End Examinations	20-06-2022	02-07-2022	2W

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Assignment/Quiz – 1	1	A1=5
Assignment/Quiz – 2	2	A2=5
I-Mid Examination	1,2	B1=20
I-Mid Examination(Objective)	1,2	C1=10
Assignment/Quiz – 3	3	A3=5
Assignment/Quiz – 4	4	A4=5
Assignment/Quiz – 5	5	A5=5
II-Mid Examination	3,4,5	B2=20
II-Mid Examination(Objective)	3,4,5	C2=10
Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=5
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=20
Evaluation of Quiz Marks: C=75% of Max(C1,C2)+25% of Min(C1,C2)	1,2,3,4,5	C=10

Attendance Marks: D(>95%=5, 90-95%=4,85-90%=3,80-85%=2,75-80%=1)		D=5
Cumulative Internal Examination : A+B+C+D	1,2,3,4,5	40
Semester End Examinations	1,2,3,4,5	E=60
Total Marks: A+B+C+D+E	1,2,3,4,5	100

Program Educational Objectives (PEO)

PEOs	Statement
PEO1	To provide students with sound mathematical, engineering and multidisciplinary knowledge to solve Aerospace and Allied Engineering problems
PEO2	To prepare students to excel in higher education programs and to succeed in industry/academia profession.
PEO3	To inculcate ethical attitude, leadership qualities, problem solving abilities and life-long learning for a successful professional career

PROGRAM OUTCOMES (POs)

- PO1: To apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- PO2: To identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- PO3: To design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- PO4: To use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.
- PO5: To create, select and apply appropriate techniques, resources, and modern engineering and IT tools including predictions and modeling to complex engineering activities with an understanding of limitations.
- PO6: To apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice
- PO7: To understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
- PO8: To apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice

- PO9: To function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- PO10: To communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- PO11: To demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- PO12: To recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight Dynamics in the Aerospace vehicle design PSO2: To prepare the students to work effectively in Aerospace and Allied Engineering organizations

Course Instructor	Module Coordinator	HOD

DEPARTMENT OF <u>AEROSPACE ENGINEERING</u> <u>COURSE HANDOUT</u>

PART-A

Name of Course Instructor	: L. Prabhu
Course Name & Code	: FEME & 17AE19
L-T-P Structure	: 3-0-0
Program/Sem/Sec	: B.Tech., ASE., VI-Sem.

Credits : 3 A.Y : 2021-22

Pre-requisites: Numerical Methods, Strength of Materials

Course Educational Objectives: To understand the concepts such as discretization, natural coordinates, interpolation functions, stiffness matrix etc, the concepts of axisymmetric solids subjected to axisymmetric loading and the importance of isoparametric elements, the steady state heat transfer through plane walls and fin, the Eigen value and Eigen vectors for dynamic problems.

COURSE OUTCOMES (COs): At the end of the course, students are able to

	tight of 1 of the (of s), the the of the course, stadents are use to						
CO 1	Identify mathematical model for solution of common engineering problems						
CO 2	Determine the design quantities (deformation, strain, stress) for engineering structures						
	under different loading conditions						
CO 3	Formulate the design and heat transfer problems with application of FEM.						
CO 4	Create new solutions for the existing problems using FEM approaches						
CO 5	Evaluate the natural frequencies of bar and beam structures						

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

Г						Ì				1					
	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
	CO1	3	2											3	3
	CO2	3	3		1									3	3
	CO3	3	2	2	2									3	3
	CO4	3	3	2	3									3	3
	CO5	3	3	3	3									3	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- **T1** Chandraputla, Ashok, Belegundu., Introduction to Finite Elements in Engineering, 3rd edition, 5th impress, Prentice Hall, 2008..
- T2 Rao.S.S, The Finite Element Methods in Engineering, 4th edition, 6th reprint, B.H. Pergamon, 2010.

REFERENCE BOOKS:

- **R1** Reddy.J.N, An introduction to Finite Element Method, 3rd edition, 13th reprint, McGraw Hill, 2011.
- **R2** Kenneth H. Huebner, Donald L. Dewhirst, Douglas E Smith, Ted G. Byrom., The Finite Element Method for Engineers, 4th edition, John Wiley & sons (ASIA) Pvt Ltd, 2001
- R3 David Hutton., Fundamentals of Finite Element Analysis, Tata McGraw Hill, 2005
- R4 George R Buchanan, R.RudraMoorthy., Finite Element Analysis, Tata McGraw Hill, 2006

PART-B COURSE DELIVERY PLAN (LESSON PLAN): UNIT-I: INTRODUCTION TO FINITE ELEMENT METHODS & ONE DIMENSIONAL PROBLEMS

RUDL		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
	•	Required	Completion	Completion	Methods	Weekly
1.	Introduction to FEM	1	21-02-2022		TLM2	
2.	Equilibrium equations	1	23-02-2022		TLM2	
3.	Stresses and equilibrium	1	24-02-2022		TLM2	
4.	Strain displacement relations, Stress strain relations	1	25-02-2022		TLM2	
5.	Plane stress and plane strain problems	1	28-02-2022		TLM2	
6.	Potential energy and equilibrium method	1	02-03-2022		TLM2	
7.	FE Formulation from governing differential equations	1	03-03-2022		TLM2	
8.	Weighted residual methods	1	04-03-2022		TLM2	
9.	One dimensional problem, FE Modeling, 1-D bar problems	1	07-03-2022		TLM2	
10.	Shape functions & coordinates of shape functions	1	09-03-2022		TLM2	
11.	Assembly of GSM & Load vector	1	10-03-2022		TLM2	
12.	Finite element equations and treatment of boundary conditions	1	11-03-2022		TLM2	
No. of	classes required to complete UNIT-I: 12			No. of classes	s taken:	

UNIT-II: ANALYSIS OF BEAMS:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Analysis of Beams: Beam elements	1	14-03-2022		TLM2	
2.	Types loading, DOF, BC's	1	16-03-2022		TLM2	
3.	Hermite shape functions	1	17-03-2022		TLM2	
4.	Element Stiffness matrix	1	21-03-2022		TLM2	
5.	Load vector, Boundary conditions	1	23-03-2022		TLM2	
6.	Two dimensional elements (CST)	1	24-03-2022		TLM2	
7.	CST problems	1	25-03-2022		TLM2	
8.	Shape functions, Stiffness matrix,	1	28-03-2022		TLM2	
9.	Strain-Displacement matrix	1	30-03-2022		TLM2	
10.	Force terms	1	31-03-2022		TLM2	
No. of	classes required to complete UNIT-II:10			No. of classes	s taken:	

UNIT-III: FINITE ELEMENT MODELING OF AXISYMMETRIC SOLIDS:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Axisymmetric solids	1	18-04-2022		TLM2	
2.	Finite element modeling	1	20-04-2022		TLM2	
3.	Axisymmetric loading with triangular elements	1	21-04-2022		TLM2	
4.	Axisymmetric Problems	1	22-04-2022		TLM2	
5.	2-D four nodded isoparametric elements	1	25-04-2022		TLM2	
6.	Jacobian, shape functions	1	27-04-2022		TLM2	
7.	4- node quadrilateral element	1	28-04-2022		TLM2	

8.	Numerical integration	1	29-04-2022		TLM2	
9.	Gauss Quadrature	1	02-05-2022		TLM2	
No. of a	classes required to complete UNIT-III:09			No. of classes	taken:	

UNIT-IV: HEAT TRANSFER

C N-		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes Required	Date of Completion	Date of Completion	Learning Methods	Sign Weekly
1.	Heat conduction in plane walls	1	04-05-2022		TLM2	
2.	convection heat transfers in fins	1	05-05-2022		TLM2	
3.	Two dimensional analysis of thin plate with triangular elements	1	06-05-2022		TLM2	
4.	analysis of thin plate with triangular elements	1	09-05-2022		TLM2	
5.	Heat convection through fins	1	11-05-2022		TLM2	
6.	Fin Problems	1	12-05-2022		TLM2	
7.	Element conductivity matrix	1	13-05-2022		TLM2	
8.	Convection matrix	1	16-05-2022		TLM2	
9.	Heat rate vector	1	18-05-2022		TLM2	
No. of c	classes required to complete UNIT-IV:09	•	•	No. of classes	taken:	

UNIT-V: DYNAMIC ANALYSIS:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Dynamic Analysis intro	1	19-05-2022		TLM2	
2.	Lumped mass matrices	1	20-05-2022		TLM2	
3.	consistent mass matrices	1	23-05-2022		TLM2	
4.	Problems	1	25-05-2022		TLM2	
5.	Evaluation of Eigen values	1	26-05-2022		TLM2	
6.	Evaluation of Eigen vectors	1	27-05-2022		TLM2	
7.	Evaluation of stepped bars	1	30-05-2022		TLM2	
8.	Stepped bars Problems	1	01-06-2022		TLM2	
9.	Stepped bars Problems	1	02-06-2022		TLM2	
No. of	classes required to complete UNIT-V:	09		No. of classes	s taken:	

Teaching Learning Methods									
TLM1	Chalk and Talk	TLM4 Demonstration (Lab/Field Vis							
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)						
TLM3	Tutorial	TLM6	Group Discussion/Project						

PART-C

EVALUATION PROCESS (R17 Regulations):	
Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5

II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight
	Dynamics in the Aerospace vehicle design
PSO 2	To prepare the students to work effectively in the defense and space research programs

Course Coordinator

DEPARTMENT OF AEROSPACE

COURSE HANDOUT

PART-A

Name of Course Instructor Course Name & Code	: Bhuvaneshwari M : SPACE MECHANICS –17AE23		
L-T-P Structure	: 3-0-0		Credits : 3
Program/Sem/Sec	: B.Tech., ASE., VI-Sem.,	A.Y	: 2021-22

PRE-REQUISITE

COURSE EDUCATIONAL OBJECTIVES (CEOs): To learn the basic aspects of space and solar system. To learn satellite injections and orbit perturbations and also interplanetary trajectory issues. To learn ballistic missile trajectories and material used on spacecraft.

: Basic astronomy knowledge

COURSE OUTCOMES (COs): At the end of the course, students are able to

	l o o i o o i illo (o o b). The the one of the course, students are usic to
CO1	Understand basic aspects of space (Understand-L2)
CO2	Evaluate trajectory details of ballistic missiles (Apply -L3)
CO3	Apply N-body aspects in space exploration issues (Apply -L3)
CO4	Know the general aspects of satellite injections and orbit perturbations (Understand-L2)
CO5	Understand the interplanetary trajectories of spacecraft (Understand-L2)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1	-	-	-	-	-	-	-	2	2	3
CO2	3	3	3	3	-	-	-	-	-	-	-	2	3	3
CO3	3	3	3	3	-	-	-	-	-	-	-	3	3	3
CO4	3	3	1	1	-	-	-	-	-	-	-	2	3	3
CO5	3	3	3	3	-	-	-	-	-	-	-	2	3	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- T1 W.E.Wiesel, Spaceflight Dynamics, McGraw-Hill, 1997
- **T2** Cornelisse, Schoyer HFR, Wakker KF, Rocket Propulsion and Space Flight Dynamics, pitman publications, 1984

BOS APPROVED REFERENCE BOOKS:

- R1 Van de Kamp, P., "Elements of Astro-mechanics", Pitman, 1979.
- **R2** Parker E.R., "Materials for Missiles and Spacecraft", McGraw-Hill Book Co. Inc., 1982.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction	1	21/02/2022		TLM1	
2.	Reference frames and Coordinate systems	2	22/02/2022& 23/02/2022		TLM1	
3.	The celestial sphere, The ecliptic	1	26/02/2022		TLM1	
4.	Motion of vernal equinox	1	28/02/2022		TLM2	
5.	Time and calendar- sidereal time	1	02/03/2022		TLM2	
6.	Solar time and standard time	1	05/03/2022		TLM1	
7.	The Earth's atmosphere	2	07/03/2022& 08/03/2022		TLM1	
8.	Space environment	2	09/03/2022& 12/03/2022		TLM2	
No. of classes required to complete UNIT-I		11	No. of class	ses taken:		

UNIT-I: BASIC CONCEPTS

UNIT-II: BALLISTIC MISSILE TRAJECTORIES

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	The boost phase	1	14/03/2022		TLM1	
2.	The ballistic phase	2	15/03/2022& 16/03/2022		TLM1	
3.	Trajectory geometry	2	19/03/2022& 21/03/2022		TLM1	
4.	Optimal flights	2	22/03/2022& 26/03/2022		TLM1	
5.	Time of flight	2	28/03/2022& 29/03/2022		TLM1	
6.	The re-entry phase- position of impact point	1	30/03/2022		TLM1	
7.	Spherical earth, oblate earth	2	04/04/2022		TLM1	
8.	Influence coefficients	2	06/04/2022& 09/04/2022		TLM1	
No. of classes required to complete UNIT - II		14	No. of class	ses taken:		

S.N 0.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	General N-body problem	1	18/04/2022		TLM1	
2.	The circular restricted three body problem	1	19/04/2022		TLM1	
3.	Jacobi's integral	1	20/04/2022		TLM1	
4.	Libration points	1	23/04/2022		TLM1	
5.	Applications to space flight	1	25/04/2022		TLM1	
6.	Relative motion in the N-body problem – Satellite orbit perturbations	1	26/04/2022		TLM1	
7.	The two-body problem	1	27/04/2022		TLM1	
8.	circular, elliptic, parabolic, and hyperbolic orbits	1	30/04/2022		TLM1	
9.	Orbital elements	1	02/05/2022 TLM1			
No	No. of classes required to complete UNIT - III		No.	of classes take	n:	

UNIT - III: THE MANY BODY PROBLEMS

UNIT - IV: SATELITE LAUCHING AND ORBIT PERTUBATIONS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction – Types of orbits	1	04/05/2022		TLM1	
2.	Launch vehicle ascent trajectories	1	07/05/2022		TLM1	
3.	General aspects of Satellite injection	1	09/05/2022		TLM1	
4.	Launch vehicle performances	1	10/05/2022		TLM1	
5.	Orbit deviations	1	11/05/2022		TLM1	
6.	Special and general perturbations	1	14/05/2022		TLM1	
7.	Cowell's method	1	16/05/2022		TLM1	
8.	Encke's method	1	17/05/2022		TLM1	
9.	Method of variation of orbital elements and General perturbations approach	1	18/05/2022		TLM1	
No	No. of classes required to complete UNIT - IV		No. of clas	ses taken:		

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Two dimensional interplanetary trajectories	1	21/05/2022		TLM1	
2.	2. Hohmann trajectories		23/05/2022& 24/05/2022		TLM1	
3.	Fast interplanetary trajectories	1	25/05/2022		TLM1	
4.	Launch opportunities	1	28/05/2022		TLM1	
5.	Three dimensional interplanetary trajectories	1	30/05/2022		TLM1	
6.	The launch of interplanetary spacecraft	1	31/05/2022		TLM1	
7.	Trajectory about target planet	2	01/06/2022& 04/06/2022		TLM1	
No. of classes required to complete UNIT-V		9	No. of clas	sses taken:		

UNIT - V: INTERPLANETARY TRAJECTORIES

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

PART-C								
EVALUATION PROCESS (R17 Regulations):								
Evaluation Task								
Assignment-I (Unit-I)	A1=5							
Assignment-II (Unit-II)	A2=5							
I-Mid Examination (Units-I & II)	M1=20							
I-Quiz Examination (Units-I & II)	Q1=10							
Assignment-III (Unit-III)	A3=5							
Assignment-IV (Unit-IV)	A4=5							
Assignment-V (Unit-V)	A5=5							
II-Mid Examination (Units-III, IV & V)	M2=20							
II-Quiz Examination (Units-III, IV & V)	Q2=10							
Attendance	B=5							
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5							
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20							
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10							
Cumulative Internal Examination (CIE) : A+B+M+Q	40							
Semester End Examination (SEE)	60							
Total Marks = CIE + SEE	100							

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

- **PO1: Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- **PO2: Problem Analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3: Design/Development of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4: Conduct Investigation of Complex Problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.
- **PO5: Modern Tool Usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including predictions and modeling to complex engineering activities with an understanding of the limitations.
- **PO6: The Engineer and Society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional engineering practice.
- **PO7: Environment and Sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8: Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9: Individual and Teamwork:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10: Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11: Project Management and Finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12: Life-long Learning:** Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

- **PSO1:** To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight Dynamics in the Aerospace vehicle design
- **PSO2:** To prepare the students to work effectively in Aerospace and Allied Engineering organizations

Course Instructor	
(Ms.M.Bhuvaneshwari)	

Module Coordinator (Dr.P.Lovaraju) HOD (Dr.P.Lovaraju)

LAKKIREDDY BALI REDDY COLLEGE OF ENGINEERING

Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi, Accredited by NAAC, Certified by ISO 9001:2015 L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

DEPARTMENT OF AEROSPACE ENGINEERING

COURSE HANDOUT Part-A

PROGRAM : B.Tech. VI-Sem.

ACADEMIC YEAR : 2021-22

COURSE NAME & CODE : Propulsion Lab - 17AE64

L-T-P STRUCTURE : 0-0-2

COURSE CREDITS 1

COURSE INSTRUCTORS : Mr.D.Rakesh / Ms.M.Bhuvaneshwari

COURSE COORDINATOR : Mr.D.Rakesh

PRE-REQUISITE: General knowledge about engines

COURSE EDUCATIONAL OBJECTIVES: To learn the various basic experiments related to components of jet engines and piston engines.

COURSE OUTCOMES (COs)

After completion of the course, the student will be able

CO1 Analyze the performance of various jet engines components (Analyze-L4)

CO2 Analyze the performance of piston engine components (Analyze-L4)

COURSE ARTICULATION MATRIX (Correlation between COs& POs, PSOs):

PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
3	3	2	3	-	-	-	-	-	-	-	3	3	3
3	3	2	3	-	-	-	-	-	-	-	3	3	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

REFERENCE BOOKS:

- **R1** V Ganesan, Gas Turbines, Third Edition, McGraw–Hill, New Delhi, 2010
- R2 Jack D Mattingly, Elements of Gas Turbine Propulsion, Sixth Edition, McGraw-Hill, New Delhi, 2013

Part-B

COURSE DELIVERY PLAN (LESSON PLAN): Batch A

S.No	Tentative Date of Completion	Actual Date of Completion	Торі	Topics to be covered / List of Experiments	
1	22/02/2022 & 01/03/2022			Lab Demo	
2	08/03/2022		Exp-1	Performance characteristics of five stage axial flow compressor	CO1
3	15/03/2022		Exp-2	Free jet characteristics	CO2
4	22/03/2022		Exp-3	Cascade testing of compressor blade row	CO1
5	29/03/2022		Exp-4	Wall jet characteristics	CO1
6	05/04/2022		Exp-5	Cascade testing of turbine blade row	C01
7	12/04/2022			Repetition Lab	
8	19/04/2022		Exp-6	Free convective heat transfer rate over an airfoil	CO2
9	26/04/2022		Exp-7	Study of properties of solid propellant	CO1
10	03/05/2022		Exp-8	Forced convective heat transfer rate over an airfoil	CO2
11	10/05/2022		Exp-9	Study of an aircraft piston engine (includes study of assembly of sub systems, various components, their functions, and operating principles)	CO2
12	17/05/2022		Exp-10	Performance evaluation of thrust produced by propeller	CO2
13	24/05/2022			Repetition Lab	
14	31/05/2022			Internal Exam	

COURSE DELIVERY PLAN (LESSON PLAN): Batch B

S.No	Tentative Date of Completion	Actual Date of Completion	Торі	Topics to be covered / List of Experiments	
1	24/02/2022			Lab Demo	
2	03/03/2022		Exp-1	Performance characteristics of five stage axial flow compressor	CO1
3	10/03/2022		Exp-2	Free jet characteristics	CO2
4	17/03/2022		Exp-3	Cascade testing of compressor blade row	CO1
5	24/03/2022		Exp-4	Wall jet characteristics	CO1
6	31/03/2022		Exp-5	Cascade testing of turbine blade row	CO1
7	07/04/2022			Repetition Lab	
8	21/04/2022		Exp-6	Free convective heat transfer rate over an airfoil	CO2
9	28/04/2022		Exp-7	Study of properties of solid propellant	CO1
10	05/05/2022		Exp-8	Forced convective heat transfer rate over an airfoil	CO2
11	12/05/2022		Exp-9	Study of an aircraft piston engine (includes study of assembly of sub systems, various components, their functions, and operating principles)	CO2
12	19/05/2022		Exp-10	Performance evaluation of thrust produced by propeller	CO2
13	26/05/2022			Repetition Lab	
14	31/05/2022			Internal Exam	

EVALUATION PROCESS:

Pa	rameter	Marks
Day – to – Day	Observation	A1 = 10 Marks
Work	Record	A2 = 10 Marks
Internal Test		B =10 Marks
Attendance		C = 05 Marks
Viva – Voce During	g Regular Lab Sessions	D = 05 Marks
Cumulative Internal	Examination	A1+ A2 + B+C+D = 40 Marks
Semester End Exam	inations	E = 60 Marks
Total Marks: A1+ A	A2 + B + C + D + E	100 Marks

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

Program Educational Objectives (PEO)

- **PEO1:** To provide students with a solid foundation in mathematical, scientific and engineering fundamentals required to solve engineering problems.
- **PEO2:**To train students with good scientific and engineering breadth so as to comprehend, analyze, design, and create novel products and solutions for the real life problems.
- **PEO3:**To prepare students to excel in competitive examinations, postgraduate programs, advanced education or to succeed in industry/technical profession.
- **PEO4:**To inculcate in students professional and ethical attitude, effective communication skills, teamwork skills, multidisciplinary approach, and an ability to relate engineering issues to broader social context.
- **PEO5:**To provide student with an academic environment with awareness of excellence, leadership, and the life-long learning needed for a successful professional career.

PROGRAM OUTCOMES (POs):

Engineering Graduated will be able to:

- **PO1** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- **PO2 Problem Analysis:** Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- **PO3 Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4** Conduct investigation of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.

- **PO5** Modern tool usage: Create, select and apply appropriate techniques, resources, and modern engineering and IT tools including predictions and modeling to complex engineering activities with an understanding of the limitations.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11 Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12** Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

- **PSO1** To Apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight Dynamics in the Aerospace vehicle design.
- **PSO2** To prepare the students to work effectively in Aerospace and Allied Engineering organizations.

Mr. D. Rakesh	
Course Instructor	

Dr.P.Lovaraju Module Coordinator Dr.P.Lovaraju HOD

LAKKIREDDY BALI REDDY COLLEGE OF ENGINEERING

Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi, Accredited by NAAC, Certified by ISO 9001:2015 L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

DEPARTMENT OF AEROSPACE ENGINEERING

COURSE HANDOUT Part-A

PROGRAM	: B.Tech. VI-Sem.
ACADEMIC YEAR	: 2021-22
COURSE NAME & CODE	: Aircraft Structures Lab-17AE65
L-T-P STRUCTURE	:0-0-3
COURSE CREDITS	:3
COURSE INSTRUCTORS	: Mr. Nazumuddin Shaik, Mr.S. Indrasena Reddy and
	Mr. Ashutosh Shukla

PRE-REQUISITE: Strength of Materials Lab

COURSE EDUCATIONAL OBJECTIVES (CEOs):

To understand various principles and theorems involved in the theory of aircraft structures, vibrations and experimental analysis by doing simple and advanced experiments and analyzing the results.

COURSE OUTCOMES (COs)

After completion of the course, the student will be able to

- **CO1** Analyze beam structures subjected to different loading conditions (Analyze-L4)
- **CO2** Analyze deflection based on different theories of aircraft structure (Analyze-L4)

CO3 Analyze the performance of cams, governors and gyroscope (Analyze-L4)

COURSE ARTICULATION MATRIX (Correlation between COs& POs, PSOs):

COs	РО 1	PO 2	РО 3	РО 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO1	3	3	2	3	-	-	-	-	-	-	-	3	3	3
CO2	2	3	2	3	-	-	-	-	-	-	-	3	3	3
CO3	2	3	2	3	-	-	-	-	-	-	-	3	3	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

REFERENCE BOOKS:

R1 Megson, T. H. G, Aircraft Structures for Engineering Students, Sixth Edition, Elsevier 2017

R2 Peery. D. J, Azar. J. J, Aircraft Structures, Second Edition, McGraw–Hill, New York, 2007.

<u>Part-B</u>

S.No	Tentative Date of Completion	Actual Date of Completion	Торі	Topics to be covered / List of Experiments	
1	22-02-2022			Lab Demo	CO1
2	08-03-2022		Exp-1	Compression Test of Columns.	CO1
3	15-03-2022		Exp-2	Verification of Maxwell's Reciprocal Theorem.	CO2
4	22-03-2022		Exp-3	Watt and Porter Governor	CO3
5	29-03-2022		Exp-4	Determine gyroscopic couple using Gyroscope	CO3
6	19-04-2022		Exp-5	Verification of Castigliano's theorem	CO2
7				Repetition Lab	
8	26-04-2022		Exp-6	Unsymmetrical Bending of a Cantilever Beam (C, Z, L and T- Sections).	CO1
9	10-05-2022		Exp-7	Determination of Shear Center of Open Section (C, Z and T- Sections).	CO1
10	17-05-2022		Exp-8	Determination of Beam Deflection (C, Z, L and T-Sections).	CO1
11	24-05-2022		Exp-9	Wagner Beam-Tension Field Beam.	CO2
12	31-05-2022		Exp-10	Non Destructive Test-Dye Penetration Test and Magnetic Particle Detection.	CO2
13				Composite Laminate preparation and testing.	CO1&CO2
14				Repetition Lab Internal Exam	

COURSE DELIVERY PLAN (LESSON PLAN): Batch A

Contents beyond the Syllabus:

15		Landing Gear	CO1 & CO2
16		Wing	CO1& CO2

COURSE DELIVERY PLAN (LESSON PLAN): Batch B

S.No	Tentative Date of Completion	Actual Date of Completion	Торі	Topics to be covered / List of Experiments	
1	24-02-2022			Lab Demo	CO1
2	03-03-2022		Exp-1	Compression Test of Columns.	CO1
3	10-03-2022		Exp-2	Verification of Maxwell's Reciprocal Theorem.	CO2
4	17-03-2022		Exp-3	Watt and Porter Governor	CO3
5	24-03-2022		Exp-4	Determine gyroscopic couple using Gyroscope	CO3
6	31-03-2022		Exp-5	Verification of Castigliano's theorem	CO2
7	07-04-2022			Repetition Lab	
8	21-04-2022		Exp-6	Unsymmetrical Bending of a Cantilever Beam (C, Z, L and T- Sections).	CO1
9	28-04-2022		Exp-7	Determination of Shear Center of Open Section (C, Z and T- Sections).	CO1
10	05-05-2022		Exp-8	Determination of Beam Deflection (C, Z, L and T-Sections).	CO1
11	12-05-2022		Exp-9	Wagner Beam-Tension Field Beam.	CO2
12	19-05-2022		Exp-10	Non Destructive Test-Dye Penetration Test and Magnetic Particle Detection.	CO2
13	26-05-2022			Composite Laminate preparation and testing.	CO1&CO2
14				Repetition Lab	
	02-06-2022			Internal Exam	

Contents beyond the Syllabus:

15	Landing Gear	CO1 & CO2
16	Wing	CO1& CO2

EVALUATION PROCESS:

Parameter		Marks
Day – to – Day	Observation	A1 = 10 Marks
Work	Record	A2 = 10 Marks
Internal Test		B =10 Marks
Attendance		C = 05 Marks
Viva – Voce During Regular Lab Sessions		D = 05 Marks
Cumulative Internal Examination		A1+ A2 + B+C+D = 40 Marks
Semester End Examinations		E = 60 Marks
Total Marks: A1+ A2 + B + C + D + E		100 Marks

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

Program Educational Objectives (PEO)


- **PEO1**: To provide students with sound mathematical, engineering and multidisciplinary knowledge to solve Aerospace and Allied Engineering problems
- **PEO2** : To prepare students to excel in higher education programs and to succeed in industry/academia profession.

PEO3: To inculcate ethical attitude, leadership qualities, problem solving abilities and life-long learning for a successful professional career

PROG	RAM OUTCOMES (POs):
Engine	ering Graduated will be able to:
PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
PO2	Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles or mathematics, natural sciences and engineering sciences.
PO3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4	Conduct investigation of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.
PO5	Modern tool usage: Create, select and apply appropriate techniques, resources, and modern engineering and IT tools including predictions and modeling to complex engineering activities with an understanding of the limitations.
PO6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7	Environment and sustainability: Understand the impact of the professional engineering
_	solutions in societal and environmental contexts, and demonstrate the knowledge of, and
	need for sustainable development.
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities
	and norms of the engineering practice.
DOG	
PO9	Individual and team work: Function effectively as an individual, and as a member or
	leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the
1010	engineering community and with society at large, such as, being able to comprehend and
	write effective reports and design documentation, make effective presentations, and give
	and receive clear instructions.
PO11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member
1	
	and leader in a team, to manage projects and in multidisciplinary environments.
PO12	
PO12	Life-long Learning: Recognize the need for, and have the preparation and ability to
PO12	Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological
PO12	Life-long Learning: Recognize the need for, and have the preparation and ability to
	Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological
	Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. RAM SPECIFIC OUTCOMES (PSOs)
PROG	Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. RAM SPECIFIC OUTCOMES (PSOs) To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and
PROG	Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. RAM SPECIFIC OUTCOMES (PSOs) To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight Dynamics in the Aerospace vehicle design
PROG PSO 1	Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change. RAM SPECIFIC OUTCOMES (PSOs) To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight Dynamics in the Aerospace vehicle design

Mr. Nazumuddin Shaik	Dr.L.Prabhu	Dr.P.Lovaraju
Course Instructor	Module Coordinator	HOD

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

L.B.Reddy Nagar, Mylavaram – 521 230.Andhra Pradesh, INDIA Affiliated to JNTUK, Kakinada & Approved by AICTE New Delhi Accredited by NAAC with 'A' grade, An ISO 9001:2015 Certified Institution

DEPARTMENT OF AEROSPACE ENGINEERING

Website: http://lbrce.ac.in Email: hodaero@lbrce.ac.in Phone:08659-222933 Ext:513/515

COURSE HANDOUT

PART-A

Course Name & Code	: Mini Project- 17PD04		
L-T-P Structure	: 0-0-4	Credits : 2	
Program/Sem/Sec	: B.Tech., VI-Sem.	A.Y : 2021	-22

COURSE EDUCATIONAL OBJECTIVES:

The objective of this mini project is to let the students apply the aerospace knowledge into a real- world situation/problem.

COURSE OUTCOMES:

After completion of the course students are able to:

CO1:	Apply the basic domain specific engineering concepts (Apply -L3)
000	Demonstrate the basic domain specific engineering concepts through
CO2:	working models (Apply -L3)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
C01	3	3	2	-	3	-	-	3	3	2	3	3	3	3
CO2	3	3	2	-	3	-	-	3	3	3	3	3	3	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'
1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

PART-B

Week wise Schedule till Review-I

S. No	Roll No.	Date	S. No	Roll No.	Date
1.	19761A2101		29.	19761A2131	
2.	19761A2102		30.	19761A2132	
3.	19761A2103		31.	19761A2133	
4.	19761A2104	26-02-2022	32.	19761A2134	26-03-2022
5.	19761A2105		33.	19761A2135	
6.	19761A2106		34.	19761A2136	
7.	19761A2108		35.	19761A2137	
8.	19761A2109		36.	19761A2138	
9.	19761A2110		37.	19761A2139	
10.	19761A2111		38.	19761A2140	02-04-2022
11.	19761A2113	05-03-2022	39.	19761A2141	02-04-2022
12.	19761A2114		40.	19761A2143	
13.	19761A2115		41.	19761A2144	
14.	19761A2116		42.	19761A2146	
15.	19761A2117		43.	19761A2147	
16.	19761A2118		44.	19761A2148	
17.	19761A2119		45.	19761A2149	
18.	19761A2120	12-03-2022	46.	20765A2101	
19.	19761A2121		47.	20765A2102	09-04-2022
20.	19761A2122		48.	20765A2103	09-04-2022
21.	19761A2123		49.	20765A2104	
22.	19761A2124		50.	20765A2105	
23.	19761A2125		51.	20765A2106	
24.	19761A2126	19-03-2022	52.	20765A2107	1
25.	19761A2127		53.	20765A2108	
26.	19761A2128				
27.	19761A2129				
28.	19761A2130				

Week wise Schedule till Review-II

S. No	Roll No.	Date	S. No	Roll No.	Date
1.	19761A2101		29.	19761A2131	
2.	19761A2102		30.	19761A2132	
3.	19761A2103		31.	19761A2133	
4.	19761A2104	23-04-2022	32.	19761A2134	21-05-2022
5.	19761A2105		33.	19761A2135	
6.	19761A2106		34.	19761A2136	
7.	19761A2108		35.	19761A2137	
8.	19761A2109		36.	19761A2138	
9.	19761A2110		37.	19761A2139	
10.	19761A2111		38.	19761A2140	28-05-2022
11.	19761A2113	30-04-2022	39.	19761A2141	28-05-2022
12.	19761A2114		40.	19761A2143	
13.	19761A2115		41.	19761A2144	
14.	19761A2116		42.	19761A2146	
15.	19761A2117		43.	19761A2147	
16.	19761A2118		44.	19761A2148	
17.	19761A2119		45.	19761A2149	
18.	19761A2120	07-05-2022	46.	20765A2101	
19.	19761A2121		47.	20765A2102	04-06-2022
20.	19761A2122		48.	20765A2103	04-06-2022
21.	19761A2123		49.	20765A2104	
22.	19761A2124		50.	20765A2105	
23.	19761A2125		51.	20765A2106	
24.	19761A2126		52.	20765A2107	
25.	19761A2127	14-05-2022	53.	20765A2108	
26.	19761A2128				
27.	19761A2129				
28.	19761A2130				

PART-C

EVALUATION PROCESS (R19 Regulations):

Evaluation Task	Marks
Review-II	100
Review-II	100
Total Marks = Average of Review-I & Review-II	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures, and Flight Dynamics in Aerospace vehicle design.							
PSO 2	prepare the students to work effectively in Aerospace and Allied Engineering organizations.							

Course Instructor's/Project Guides	Module Coordinator	HOD

Mr. G V Surya Narayana/ Project Guides

Dr. P. Lovaraju

Dr. P. Lovaraju