

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

L.B.Reddy Nagar, Mylavaram – 521 230.Andhra Pradesh, INDIA Affiliated to JNTUK, Kakinada & Approved by AICTE New Delhi NAAC Accredited with 'A' Grade, An ISO 9001:2015 Certified Institution **DEPARTMENT OF AEROSPACE ENGINEERING** Website: http://lbrce.ac.in Email: hodaero@lbrce.ac.in Phone:08659-222933 Ext:623

COURSE HANDOUT

PART-A

Name of Course Instructor Course Name & Code	: Nazumuddin Shaik : Aero Engine Repair & Maintenance- 17AE42	
L-T-P Structure	: 3-0-0	Credits : 3
Program/Sem/Sec	: B.Tech., VIII-Sem.	A.Y: 2022-23

PRE-REQUISITE: Thermodynamics, Propulsion

COURSE EDUCATIONAL OBJECTIVES (CEOs): To learn the function of various components of piston engine and inspection, maintenance, troubleshooting of piston engine and overhauling procedures of piston engines, the function of jet engine components and overhauling procedures of Gas turbine components.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Classify the piston engine components (Underastand-L2)
CO 2	Inspect and troubleshoot the piston engines components (Underastand-L2)
CO 3	Illustrate the piston engine testing procedures (Underastand-L2)
CO 4	Describe the inspection procedure of jet engine components (Underastand-L2)
CO 5	Prepare overhaul procedures for jet engine components (Understand-L2)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2	1	-	-	-	-	-	-	-	3	3	3
CO2	3	2	2	1	-	-	-	-	-	-	-	2	3	3
CO3	3	3	2	1	-	-	-	-	-	-	-	2	3	3
CO4	3	3	3	1	-	-	-	-	-	-	-	3	3	3
CO5	3	2	2	1	-	-	-	-	-	-	-	3	3	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

REFERENCE BOOKS:

- R1 Kroes & Wild, Aircraft Power plants, 7th Edition McGraw Hill, New York, 1994.
- **R2** Gas Turbine Engines, TURBOMECA, The English Book Store, New Delhi, 1993.
- R3 Pratt & Whitney, The Aircraft Gas Turbine Engine and its Operation, (latest edition), The English Book Store, New Delhi, 1974.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: CLASSIFICATION OF PISTON ENGINE COMPONENTS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Course and COs and Unit-I	1	19-12-2022		TLM1&2	
2.	Types of Piston Engines	1	20-12-2022		TLM1&2	
3.	Piston Engines Principles of Operation	1	21-12-2022		TLM1&2	
4.	Piston Engines Function of Components	1	22-12-2022		TLM1&2	
5.	Piston Engines Materials Used	1	26-12-2022		TLM1&2	
6.	Details of Starting the Engines	1	27-12-2022		TLM1&2	
7.	Details of Carburetion and Injection Systems for	1	28-12-2022		TLM1&2	
8.	Details of Injection Systems	1	29-12-2022		TLM1&2	
9.	Details of Small and Large Engines	1	02-01-2023		TLM1&2	
10.	Ignition System Components	1	03-01-2023		TLM1&2	
11.	Spark Plug Details	1	04-01-2023		TLM1&2	
12.	Engine Operating Conditions at Various Altitudes	1	05-01-2023		TLM1&2	
13.	Maintenance and Inspection Check to be Carried Out.	1	09-01-2023		TLM1&2	
No. o	f classes required to complete UN	NIT-I: 13		No. of class	sses taken:	

UNIT-II: INSPECTIONS OF PISTON ENGINES

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-II	1	10-01-2023		TLM1&2	
2.	Piston engines inspection	1	11-01-2023		TLM1&2	
3.	Piston engines Maintenance	1	12-01-2023		TLM1&2	
4.	Trouble Shooting	1	18-01-2023		TLM1&2	
5.	Inspection of All Engine Components	1	19-01-2023		TLM1&2	
6.	Inspection of All Engine Components	1	23-01-2023		TLM1&2	
7.	Daily and Routine Checks	1	24-01-2023		TLM1&2	
8.	Overhaul Procedures	1	25-01-2023		TLM1&2	
9.	Compression Testing of Cylinders	1	30-01-2023		TLM1&2	
10.	Special Inspection Schedules	1	31-01-2023		TLM1&2	
11.	Engine Fuel, Control and Exhaust Systems	1	01-02-2023		TLM1&2	
12.	Control and Exhaust Systems	1	02-02-2023		TLM1&2	
13.	Engine Mount and Super Charger	1	06-02-2023		TLM1&2	
14.	Checks and Inspection Procedures.	1	07-02-2023		TLM1&2	
No. of	f classes required to complete U	NIT-II:14		No. of class	sses taken:	

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-III	1	08-02-2023	-	TLM1&2	v
2.	Symptoms of Failure	1	09-02-2023		TLM1&2	
3.	Fault Diagnostics	1	13-02-2023		TLM1&2	
4.	Case Studies of Different Engine Systems	1	14-02-2023		TLM1&2	
5.	Tools and Equipment Requirements for Various Checks and Alignment During Overhauling	1	20-02-2023		TLM1&2	
6.	Tools for Inspection and Tools for Safety and for Visual Inspection –	1	21-02-2023		TLM1&2	
7.	Methods and Instruments for Non-Destructive Testing Techniques	1	22-02-2023		TLM1&2	
8.	Non-Destructive Testing Techniques	1	23-02-2023		TLM1&2	
9.	Equipment for Replacement of Part and Their Repair. Engine Testing	1	27-02-2023		TLM1&2	
10.	Engine Testing Procedures and Schedule Preparation, Online Maintenance	1	28-02-2023		TLM1&2	
No. o	f classes required to complete UI	NIT-III:12		No. of class	ses taken:	

UNIT-III: OVERHAULING OF PISTON ENGINES

UNIT-IV : CLASSIFICATION OF JET ENGINE COMPONENTS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-IV	1	01-03-2023		TLM1&2	
2.	Types of Jet Engines – Principles of Operation – Functions of Components – Materials Used	1	02-03-2023		TLM1&2	
3.	Details of Starting and Operating Procedures	1	06-03-2023		TLM1&2	
4.	Gas Turbine Engine Inspection & Checks – Use of Instruments for Online Maintenance –	1	07-03-2023		TLM1&2	
5.	Special Inspection Procedures: Foreign Object Damage – Blade Damage – Etc.	1	08-03-2023		TLM1&2	
6.	Maintenance Procedures of Gas Turbine Engines	1	09-03-2023		TLM1&2	
7.	Trouble Shooting and Rectification Procedures	1	13-03-2023		TLM1&2	
8.	Component Maintenance Procedures	1	14-03-2023		TLM1&2	
9.	Systems Maintenance Procedures. Gas Turbine Testing Procedures –Test Schedule Preparation	1	15-03-2023		TLM1&2	
10.	Storage of Engines –Preservation and De-Preservation Procedures	1	16-03-2023		TLM1&2	
No. of	f classes required to complete UN	<u> IIT-IV:10</u>		No. of class	sses taken:	

UNIT-V : OVERHAUL PROCEDURES

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-V	1	20-03-2023		TLM1&2	
2.	Engine Overhaul Procedures	1	21-03-2023		TLM1&2	
3.	Inspections and Cleaning of Components	1	22-03-2023		TLM1&2	
4.	Repairs Schedules for Overhaul	1	23-03-2023		TLM1&2	
5.	Balancing of Gas Turbine Components	1	27-03-2023		TLM1&2	
6.	Gas Turbine Trouble Shooting	1	28-03-2023		TLM1&2	
7.	Procedures for Rectification	1	29-03-2023		TLM1&2	
8.	Condition Monitoring of the Engine On Ground	1	30-03-2023		TLM1&2	
9.	Condition Monitoring of the Engine On at Altitude	1	03-04-2023		TLM1&2	
10.	Engine Health Monitoring and Corrective Methods.	1	04-04-2023		TLM1&2	
11.	Revision	1	05-04-2023		TLM1&2	
No. of	f classes required to complete UN	NIT-V:10		No. of class	sses taken:	

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
101	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of the
	information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
DO 7	the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms
100	of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in
107	diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the
1010	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight Dynamics
	in the Aerospace vehicle design
PSO 2	To prepare the students to work effectively in Aerospace and Allied Engineering organizations

Course Instructor	Module Coordinator	HOD
Mr. Nazumuddin Shaik	Dr. P. Lovaraju	Dr. P. Lovaraju

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

DEPARTMENT OFAEROSPACE ENGINEERING

(Autonomous &Affiliated to JNTUK, Kakinada& Approved by AICTE, New Delhi, NAAC Accredited with 'A' grade, Accredited by NBA, Certified by ISO 9001:2015) L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

COURSE HANDOUT

Part-A

PROGRAM	: B.Tech., VIII-Sem., Aerospace Engineering
ACADEMIC YEAR	: 2022-23
COURSE NAME & CODE	: Helicopter Engineering-17AE35
L-T-P STRUCTURE	: 3-1-0
COURSE CREDITS	3
COURSE INSTRUCTOR	: Ashutosh shukla
COURSE COORDINATOR	: Ashutosh shukla
PRE-REQUISITES	: Aerodynamics-I and Aerodynamics-II

COURSE EDUCATIONAL OBJECTIVES (CEOs):The main objectives of this course are to learn about wind tunnels, different flow visualization methods, instrumentation for measuring fluid velocity, temperature and pressure. Also to learn about data acquisition and uncertainty analysis.

COURSE OUTCOMES(COs): At the end of the course, the student will be able to:

- **CO1** : To analyze the performance various components of helicopter
- **CO2** : To apply momentum theory in the design of propeller
- **CO3** : To analyze the performance of helicopter in various operating conditions
- **CO4** : To analyze the stability modes of helicopter

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3						3		1			3	3	3
CO2	3	3	2				3		1			3	3	3
CO3	3	3	3				3					3	3	3
CO4	3	3	3				3		1			3	3	3

COURSE ARTICULATION MATRIX(Correlation between COs&POs,PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'1- Slight(Low), 2 – Moderate(Medium), 3 - Substantial (High).

BOS APPROVED REFERENCE BOOKS:

- 1. E. Rathakrishnan., Helicopter Aerodynamics, PHI, 2018.
- 2. Gessow, A., Myers, Aerodynamics of Helicopter, G.C MacMillan & Co., N.Y. 1987.
- 3. B. W. McCormick, Aerodynamics of V/STOL Flight, Academic Press, 1987.
- 4. W. Johnson, Helicopter Theory, Princeton university Press, 1980.
- 5. B. W. McCormick, Aerodynamics, Aeronautics & Flight Mechanics, John Wiley, 1995.

Part-B COURSE DELIVERY PLAN (LESSON PLAN): Section-A

UNIT-I: BASICS OF HELICOPTER CONFIGURATION

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Introduction	1	19-12-2022		TLM1	CO1	T1	
2.	Configurations of Helicopter	1	20-12-2022		TLM1	CO1	T1	
3.	Specifics of Helicopters	1	21-12-2022		TLM1	CO1	T1	
4.	Articulated Rotor Systems	1	22-12-2022		TLM2	CO1	T1	
5.	Effect of Cyclic Pitch Change	1	26-12-2022		TLM1	CO1	T1	
6.	Swash Plate	2	28-12-2022 29-12-2022		TLM1	CO1	T1	
7.	Fully Articulated Rotor	1	02-01-2023		TLM1	CO1	R1 to R5	
8.	TUTORIAL-I	1	03-01-2023		TLM3	CO1	T1	
9.	Semi-Rigid rotor	1	04-01-2023		TLM1	CO1	T1	
10.	Rigid Rotor, Coriolis effect	2	05-01-2023 09-01-2023		TLM1	CO1	R1 to R5	
11.	Objective-1 ,assignment1	1	10-01-2023		TLM3	CO1	T1	
No. of classes required to complete UNIT-I: 11 No. of classes taken:								

UNIT-II: MOMENTUM THEORY

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Thrust Generation	1	18-01-2023		TLM1	CO2	T1,R1 to R5	
2.	Hovering	1	19-01-2023		TLM1	CO2	T1	
3.	Figure of Merit	2	23-01-2023 24-01-2023		TLM2	CO2	T1	
4.	Blade element	1	25-01-2023		TLM1	CO2	R1 to R5	

5.	TUTORIAL-II	1	30-01-2023		TLM3	CO2	T1	
6.	Local Solidity, Top Loss	1	31-01-2023		TLM1	CO2	R1 to R5	
7.	Performance of ideally twisted Constant Chord B	1	01-02-2023		TLM1	CO2	T1	
8.	Rapid performance in Hover	1	02-02-2023		TLM1	CO2	R1 to R5	
9.	Equivalent Chord	1	06-02-2023		TLM1	CO2	T1	
10.	Assignment2,objective 2	1	07-02-2023		TLM3	CO2	R1 to R5	
No. of	classes required to comp	No. of clas	ses taken:					

UNIT-III: PERFORMANCE IN HOVERING AND CLIMBING

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Introduction	1	08-02-2023		TLM1	CO3	T1,R1 to R5	
2.	Optimum Hovering	1	09-02-2023		TLM1	CO3	T1	
3.	Induced Torque	1	13-02-2023		TLM3	CO3	R1 to R5	
4.	Profile Drag Torque	1	14-02-2023		TLM2	CO3	T1	
5.	TUTORIAL-III	1	20-02-2023		TLM3	CO3	T1	
6.	Performance Equation	2	21-02-2023 22-02-2023		TLM1	CO3	T1	
7.	Optimum Rotor Design	1	23-02-2023,		TLM1	CO3	T1	
8.	Ground effect	1	28-02-2023		TLM1	CO3	T1	
9.	Objective-3 Assignment3	1	01-03-2023		TLM3	CO3	T1	
No. of	classes required to co		No. of clas	ses taken: 1	1			

UNIT-IV: PERFORMANCE IN HORIZONTAL FLIGHT

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Introduction	1	02-03-2023		TLM1	CO3	T1, R1 to R5	
2.	Flapping and lag Hinge	1	06-03-2023		TLM2	CO3	T1	
3.	Steady Hover, Equilibrium in Horizontal Blade	1	07-03-2023		TLM3	CO3	R1 to R5	
4.	Blade Hinge Motion	1	09-03-2023		TLM1	CO3	T1	
5.	TUTORIAL-IV	1	13-03-2023		TLM3	CO3	T1	
6.	Blade Element Angle of Attack - Flapping Coefficient	1	14-03-2023		TLM1	CO3	R1 to R5	
7.	Performance equation, Drag- Lift Ratio	1	15-03-2023		TLM1	CO3	T1	
8.	Profile Drag-Lift Ratio Charts	1	16-03-2023		TLM1	CO3	R1 to R5	
9.	Profile Power, Parasite Power	1	20-03-2023		TLM1	CO3	T1, T2	
10.	Blade Stall	1	21-03-2023		TLM1	CO3	T1	
11.	Objective-IV Assignment-IV	1	23-03-2023		TLM3	CO3	R1 to R5	
No. of	classes required to co	mplete UNI	T-IV: 11		No. of clas	ses taken:		

UNIT-V: STABILITY AND CONTROL

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	introduction	1	27-03-2023		TLM1	CO4	T1, R1 to R5	
2.	Trim - Static Stability	1	28-03-2023		TLM1	CO4	T1	
3.	Dynamic Stability	1	29-03-2023		TLM3	CO4	R1 to R5	

4.	Rotor Static Stability	1	03-04-2023	TLM1	CO4	T1	
5.	Stability in hover	1	04-04-2023	TLM1	CO4	T1	
6.	TUTORIAL-IV	1	05-04-2023	TLM3	CO4	R1 to R5	
7.	Dynamic Stability Reduction	1	06-04-2023	TLM1	CO4	T1	
8.	Stability in Forward Flight	1	07-04-2023	TLM1	CO4	R1 to R5	
9.	Objective-V Assignment-V	1	08-04-2023	TLM2	CO4	T1	
10.	II Mid Examinations	3 days					
No. of	classes required to c	omplete	UNIT-V: 12	No. of clas	ses taken:		
Total r	number of classes		63				

CONTENTS BEYOND THE SYLLABUS:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign
1.	Advanced Topics in Unit I	1	16-07-2018		TLM1	CO1		
2.	Advanced Topics in Unit II	1	10-08-2018		TLM1	CO2		
3.	Advanced Topics in Unit III	1	07-09-2018		TLM1	CO3	T1, R1 to R5	
4.	Advanced Topics in Unit IV	1	28-09-2018		TLM1	CO4		
5.	Advanced Topics in Unit V	1	26-10-2018		TLM1	CO5		

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	РРТ	TLM5	ICT (NPTEL/SwayamPrabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

ACADEMIC CALENDAR:

Description	From	То	Weeks					
Commencement of Class Work: 11-06-2018								
I Phase of Instructions	11-06-2018	11-08-2018	9					
I Mid Examinations	13-08-2018	18-08-2018	1					
II Phase of Instructions	20-08-2018	27-10-2018	10					
II Mid Examinations	29-10-2018	03-11-2018	1					
Preparation and Practicals	05-11-2018	17-11-2018	2					
Semester End Examinations	19-11-2018	01-12-2018	2					

Part - C

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Assignment/Quiz – 1	1	A1=05
Assignment/Quiz – 2	2	A2=05
I-Mid Examination	1,2	B1=20
I-Online Mid Examination	1,2	C1=10
Assignment/Quiz – 3	3	A3=05
Assignment/Quiz – 4	4	A4=05
Assignment/Quiz – 5	5	A5=05
II-Mid Examination	3,4,5	B2=20
II-Online Mid Examination	3,4,5	C2=10
Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=05
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=20
Evaluation of Online Mid Marks: C=75% of Max(C1,C2)+25% of Min(C1,	1,2,3,4,5	C=10
Attendance: D (≥95% = 5M ; 90%≤A<95%= 4M ; 85%≤A<90%= 3M ; 80%≤A<85%= 2M ; 75%≤A<80%= 1M ; <75%=0M)	-	D=05
Cumulative Internal Examination: A+B+C+D	1,2,3,4,5	A+B+C+D=40

Semester End Examinations: E	1,2,3,4,5	E=60
Total Marks: A+B+C+D+E	1,2,3,4,5	100

PROGRAMME OUTCOMES (POs):

Engineering Graduates will be able to:

PO1: To apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.

PO2: To identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.

PO3: To design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: To use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.

PO5: To create, select and apply appropriate techniques, resources, and modern engineering and IT tools including predictions and modeling to complex engineering activities with an understanding of limitations.

PO6: To apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues and the consequent responsibilities relevant to the professional engineering practice

PO7: To understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development

PO8: To apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice

PO9: To function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: To communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: To demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: To recognize the need for, and have the preparation and ability to engage in independent and lifelong learning in the broadest context of technological change

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO1: To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight Dynamics in the Aerospace vehicledesign

PSO2: To prepare the students to work effectively in the Aerospace and Allied Engineering organizations

Position	Course Instructor	Module Coordinator	HOD
Name			
Signature			

DEPARTMENT OF MECHANICAL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Mr. A. NAGESWARA RAO		
Course Name & Code	: Robotic & Automation-17ME82		
L-T-P Structure	: 4-0-0		Credits : 3
Program/Sem/Sec	: B.Tech., ASE., VIII-Sem., Sections- A	A.Y	: 2022-23

Pre-requisite Course: None

Course Educational Objectives (CEOs): To impart knowledge on

- 1. The basic concepts of automation and material handling.
- 2. Robot configurations and components.
- 3. The various types of end effectors.
- 4. Programming techniques for industrial robots.
- 5. Sensors and actuators used in robotics.
- 6. Applications of robot.

Course Outcomes (COs):

At the end the student will be able to learn

- 1. Learn fundamentals in Automation.
- 2. Identify various robot configurations and components
- 3. Select and design of various end effectors.
- 4. Study various Methods of robot programming.
- 5. Select appropriate actuators and sensors for a robot based on specific application.

				Марр	ing of C	ourse O ROF	utcomes BOTICS	(COs) w AND A	vith Pro UTOMA	gramme ATION	e Outcom (17ME82	es (POs) &	z PSOs –		·	
		POs								PSOs	PSOs					
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1			1					1					3		
	CO2		2	2	2				2						3	
	CO3	3	2	3					2				2		3	
	CO4				3									3		
COs	CO5			2											3	

COURSE ARTICULATION MATRIX (Correlation between COs and POs and PSOs):

3. Highly correlated 2. Moderate correlated 1. Lightly correlated PO: Program Outcome (Defined by AICTE), PSO: Program Specific Outcomes Programme Specific Outcomes (PSOs):

- 1. To apply the principles of thermal sciences to design and develop various thermal systems.
- 2. To apply the principles of manufacturing technology in the design, analysis and manufacturability of products.
- 3. To apply the basic principles of mechanical engineering design for evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

TEXT BOOK

1. Mikell P.Groover,"Automation, Production systems and computer Integrated Manufacturing", Prentice Hall of India Private Limited, New Delhi, 2008.

2. MikellP.Groover, MITCHELL WEISS, ROGER N. Nagel& NICHOLAS G. Odrey; Industrial Robotics, McGraw-HILL International Editions, 1986.

REFERENCES

1. R.K.Mittal and IJ Nagrath, Robotics and Control ,Tata Mc Graw – Hill publishing company Limited, New Delhi,2003.

2. Robert J.Schilling, Fundamentals of robotics analysis & control, PHI learning private limited, New Delhi, 2009.

3. Saeed B.Niku, Introduction to robotics analysis systems Application, PHI learning private limited, New Delhi, 2004.

4. K.S.Fu, R.C Gonzalez and C.S.G.Lee, Robotics control, Sensing, vision, and intelligence; Mc Graw HILL International Editions, 1987.

5. Richard D.Klafter, Thomus A. Chmielewski, Michael Negin, "Robotic Engineering – An integrated approach", Prentice Hall India Private ltd, New Delhi, 2010.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

HOD No. of Tentative Actual Teaching S.No. Learning Sign Topics to be covered Classes Date of Date of Weekly Required Completion Completion Methods Introduction to Subject 1. 19.12.2022 TML1 1 2. TML1 **Course Outcomes** 1 20.12.2022 Introduction 1 21.12.2022 TML1 3. Types and strategies of 4. 1 22.12.2022 TML1 automation TML2 5. Pneumatic component circuits 1 26.12.2022 Hydraulic component circuits 1 TML2 27.12.2022 6. Introduction to material handling 7. 1 28.12.2022 TML1 systems Types of equipment, functions 1 29.12.2022 TML2 8. 9. functions 02.01.2023 TML2 Design of material handling 1 10. 03.01.2023 TML1 system 11. Conveyor systems 1 04.01.2023 TML1 Automated guided vehicle system TML1 12. 1 05.01.2023 No. of classes required to complete UNIT-I:12 No. of classes taken:

UNIT-I: AUTOMATION

UNIT-II: ROBOTICS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Robotics	1	09.01.2023		TML1	
2.	Basic concepts of robotics	1	10.01.2023		TML1	

3.	Robot anatomy-manipulator, link, DOF	1	11.01.2023	TML1
4.	Components of robot	1	12.01.2023	TML1
5.	Robot motions and No of DOF	1	18.01.2023	TML1
6.	Work volume	1	19.01.2023	TML2
7.	Classification of robot by control method	1	23.01.2023	TML1
8.	Configurations of Robots	1	24.01.2023	TML2
9.	Specification of robot	1	25.01.2023	TML2
10.	Precision of movement	1	30.01.2023	TML1
No. o	f classes required to complete UN	IT-II:10		No. of classes taken:

UNIT-III: ACTUATORS & END EFFECTORS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Actuators and End effectors	1	06.02.2023		TML1	
2.	Types of Actuators-Pneumatic and hydraulic actuators	1	07.02.2023		TML1	
3.	Stepper motors control units	2	08.02.2023		TML2	
4.	Types of end effectors- Mechanical end effectors	1	09.02.2023		TML1	
5.	Mechanical end effectors	1	13.02.2023		TML1	
6.	Vacuum end effectors and magnetic end effectors	1	14.02.2023		TML1	
7.	Adhesive end effectors and other Robot end effectors	1	15.02.2023		TML1	
8.	Interface	1	16.02.2023		TML1	
9.	Consideration in gripper selection and design	1	20.02.2023		TML2	
10.	Gripper design	1	21.02.2023		TML2	
No. o	f classes required to complete UN	IT-III:14		No. of clas	sses taken:	

UNIT-IV : ROBOT PROGRAMMING

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Robot programming-Methods of robot programming	1	22.02.2023		TML1	
2.	Lead through method	1	23.02.2023		TML1	
3.	Textual robot languages- Generation of programming languages	1	27.02.2023		TML1	
4.	Robot language structure-Motion commands	1	28.02.2023		TML1	
5.	End effector and sensor commands	1	01.03.2023		TML1	
6.	VAL II programming languages	1	02.03.2023		TML2	

7.	PROGRAMME-1	1	06.03.2023	TML1	
8.	PROGRAMME-2	1	07.03.2023	TML1	
9.	RAIL	1	09.03.2023	TML2	
10.	AML	1	13.03.2023	TML3	
No. of	f classes required to complete UNI	T-IV:12	1	No. of classes taken:	

UNIT-V: SENSORS & ROBOT APPLICATION

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to sensors- types of sensors	1	14.03.2023		TML2	
2.	Acoustic sensors	1	15.03.2023		TML2	
3.	Optic, pneumatic sensors	1	16.03.2023		TML2	
4.	Force/torque sensor	2	20.03.2023		TML1	
5.	optical encoders-Machine vision	1	21.03.2023		TML2	
6.	Robotics applications- Robots in manufacturing	1	23.03.2023		TML2	
7.	Robots in manufacturing	1	27.03.2023		TML2	
8.	Non-manufacturing applications	2	28.03.2023		TML2	
9.	Future applications	1	29.03.2023		TML2	
10.	Future applications	1	03.04.2023		TML3	
No. of clas	ses required to complete UN	IT-V:12		No. of clas	sses taken:	

Teaching	Learning Methods		
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks			
Assignment-I (Unit-I)				
Assignment-II (Unit-II)	A2=5			
I-Mid Examination (Units-I & II)	M1=20			
Assignment-III (Unit-III)	A3=5			
Assignment-IV (Unit-IV)	A4=5			

Assignment-V (Unit-V)	A5=5		
II-Mid Examination (Units-III, IV & V)			
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5		
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20		
Cumulative Internal Examination (CIE) : A+M	40		
Semester End Examination (SEE)	60		
Total Marks = CIE + SEE	100		

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO a	Specify, design and analyze systems that efficiently generate, transmit and distrelectrical power.
DCO	
PSO	Design and analyze electrical machines, modern drive and lighting systems
b	Design and analyze electrical indefinites, modern arive and lighting systems
PSO c	Specify, design, implement and test analog and embedded signal processing
	electronic systems.
PSO d	Design controllers for electrical and electronic systems to improve their perform
u	

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS) Accredited by NAAC, ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B.Reddy Nagar, Mylavaram - 521230, Krishna District, Andhra Pradesh, India Department of Aerospace Engineering Website: http://www.lbrce.ac.in Email: hodaero@lbrce.ac.in Phone: 08659-222933 Ext: 513/515

A.Y:22-23

	Comprehen	sive Viva-Voce -	Schedule
S.No.	Roll Numbers	Schedule Date	Actual Date
1	18761A2145	26-12-22	
2	19761A2101	26-12-22	
3	19761A2102	27-12-22	
4	19761A2103	27-12-22	
5	19761A2104	28-12-22	
6	19761A2105	28-12-22	
7	19761A2106	02-01-23	
8	19761A2108	02-01-23	
9	19761A2109	03-01-23	
10	19761A2110	03-01-23	
11	19761A2111	04-01-23	
12	19761A2113	04-01-23	
13	19761A2114	09-01-23	
14	19761A2115	09-01-23	
15	19761A2116	10-01-23	
16	19761A2117	10-01-23	
17	19761A2118	23-01-23	
18	19761A2119	23-01-23	
19	19761A2120	24-01-23	
20	19761A2121	24-01-23	
21	19761A2122	25-01-23	
22	19761A2123	25-01-23	
23	19761A2124	30-01-23	
24	19761A2125	30-01-23	
25	19761A2126	31-01-23	
26	19761A2127	31-01-23	
27	19761A2128	01-02-23	
28	19761A2129	01-02-23	
29	19761A2130	20-02-23	
30	19761A2131	20-02-23	
31	19761A2132	21-02-23	
	-	-	

S.No	Roll Numbers	Schedule Date	Actual Date
32	19761A2133	21-02-23	
33	19761A2134	22-02-23	
34	19761A2135	27-02-23	
35	19761A2136	27-02-23	
36	19761A2137	28-02-23	
37	19761A2138	28-02-23	
38	19761A2139	01-03-23	
39	19761A2140	01-03-23	
40	19761A2141	06-03-23	
41	19761A2143	06-03-23	
42	19761A2144	07-03-23	
43	19761A2146	07-03-23	
44	19761A2147	13-03-23	
45	19761A2148	13-03-23	
46	19761A2149	14-03-23	
47	20765A2101	14-03-23	
48	20765A2102	15-03-23	
49	20765A2103	15-03-23	
50	20765A2104	20-03-23	
51	20765A2105	20-03-23	
52	20765A2106	21-03-23	
53	20765A2107	21-03-23	
54	20765A2108	27-03-23	

DEPARTMENT OF AEROSPACE ENGINEERING

COURSE HANDOUT

Part-A

PROGRAM: B.Tech., VIII-Sem., ASEACADEMIC YEAR: 2022-23COURSE NAME & CODE: Project Work & 17PD11L-T-P STRUCTURE: 0-0-24COURSE CREDITS: 12COURSE EDUCATIONAL OBJECTIVES (CEOs):COURSE OUTCOMES (COs)

After completion of the course, the student will be able to

17PD1	1:1	Apply domain specific concepts to solve real time problems												
17PD1	1:2	Prepa	Prepare a technical report with required analysis											
17PD1	1:3	To work in teams with professional and ethical values.												
COUR	SE AR'	FICUL	ATIO	N MAT	RIX (C	Correla	tion be	tween	COs&F	POs,PSO	s):			
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	
CO1	1	1		2		3				3	3	2	3	
CO2	1	1		2		2				2	3	1	3	
CO3			-	3				2		3	3	3	3	

PSO₂

3 3

 CO3
 --- 3
 --- 2
 --- 3
 3

 Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

Part-B

COURSE DELIVERY PLAN (LESSON PLAN):

S.No	Review No	Tentative Date of Review	Particulars	Actual Date of Review
1	Literature	VII Sem	Literature Survey and Abstract	
	Survey	(19-11-2022)	Submission	
2	Review-1	03-03-2023	Design Methodology & Implementation	
3	Review-2	01-04-2023	Results & Discussion with Future Scope	
4	External Viva-voce	12-04-2023	External Viva-voce	

Note: All the Project Guides are informed to supervise their allotted batches for the smooth execution of Project.

Project Coordinator	Module Coordinator	HOD