

COURSE HANDOUT PART-A

Name of Course Instructor Course Name & Code L-T-P Structure Program/Sem/Sec : Mr. G V SURYA NARAYANA : **MOC_17AE24** : 2-2-0 : B.Tech., VII-Sem.

Credits : 3 A.Y : 2022-23

PRE-REQUISITE: Strength of materials

COURSE EDUCATIONAL OBJECTIVES (CEOs): To Learn the basic knowledge about composite materials at micro and macro level, lamina and laminates, basic design concepts of sandwich panels, functionally graded materials, and the manufacturing process of composite materials.

COURSE OUTCOMES (COs): At the end of the course, students are able to

Understand the stress-strain relations applicable for composite materials
(Understanding-L2)
Study the macro and micro mechanical behaviour of composite Lamina
(Apply-L3)
Analyze the structural behaviour of multi directional composites (Analyze-L4)
Understand the basic design concept of sandwich panels used in aerospace
industries (Understanding-L2)
Apply techniques of fabrication processes to manufacture composites (Apply-

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2	-	-	-	-	-	-	-	2	2	2
CO2	3	3	3	2	-	-	-	-	-	-	-	2	3	2
CO3	3	3	3	2	-	-	-	-	-	-	-	2	3	2
CO4	3	3	3	2	-	-	-	-	-	-	-	2	3	2
CO5	2	2	2	2	-	-	-	-	-	-	-	2	2	2

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXTBOOKS:

- **T1** Calcote, LR., "The Analysis of laminated Composite Structures", Von Noastrand Reinhold Company, New York 1998.
- **T2** Jones, R.M., "Mechanics of Composite Materials", 2nd Edition McGraw-Hill, KogakushaLtd., Tokyo, 1998.
- **T3** Carlsson, L.A., Kardomateas, G.A., "Structural and Failure Mechanics of Sandwich", Solid Mechanics and its Applications, Vol 121, Springer Heidlberg, New York, 2011.

REFERENCE BOOKS:

R1 Agarwal, B.D., Broutman, L.J., "Analysis and Performance of Fibre Composites", John Wiley and sons. Inc., New York, 1995.

R2 Lubin, G., "Handbook on Advanced Plastics and Fibre Glass", Von Nostrand Reinhold Co., New York, 1989. Publishers, 3rd edition 2010.

<u>PART-B</u>

COURSE DELIVERY PLAN (LESSON PLAN) UNIT-I: STRESS STRAIN RELATION

S. No.	Topics to be covered	No. of Classes Requir ed	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to composite materials	1	11-07-22		TLM1, TLM2	
2.	Classification of Reinforcements	2	13-07-22 14-07-22		TLM1, TLM2	
3.	Advantages and applications	1	15-07-22		TLM1, TLM2	
4.	Types of Fibers	2	16-07-22 18-07-22		TLM2	
5.	Fiber's applications	1	20-07-22		TLM1	
6.	Classification based on matrices	2	21-07-22 22-07-22		TLM1	
7.	Types of matrices	1	23-07-22		TLM1, TLM2	
8.	Matrices applications	1	25-07-22		TLM1	
9.	Generalized Hooke's Law	1	27-07-22		TLM1	
10.	Compliance stiffness matrix	2	28-07-22 29-07-22		TLM1	
11.	Reduced stiffness matrix	2	30-07-22 01-08-22		TLM1, TLM2	
12.	Stress strain relations for non- isotropic materials	2	03-08-22 04-08-22		TLM1, TLM2	
13.	Stress strain relations for orthotropic lamina materials, Assignment-I	1	05-08-22		TLM1, TLM2	
No. d	of classes required to complete UNIT	-I: 19		No. of classe	s taken:	

UNIT-II: METHODS OF ANALYSIS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
14.	Introduction to macro mechanics	1	06-08-22		TLM1, TLM2	
15.	Stress-strain relations	2	08-08-22 10-08-22		TLM1, TLM2	
16.	Mechanics of materials approach	2	11-08-22 12-08-22		TLM1, TLM2	

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

L.B.Reddy Nagar, Mylavaram – 521 230, N.T.R. District, Andhra Pradesh, India Affiliated to JNTUK, Kakinada & Approved by AICTE New Delhi

Accredited by NAAC with 'A' grade, An ISO 9001:2015 Certified Institution

DEPARTMENT OF AEROSPACE ENGINEERING

Website: https://www.lbrce.ac.in/ase/index.php Email: hodaero@lbrce.ac.in Phone:08659-222933 Ext:624/623

-				
17.	Problem solving	1	13-08-22	TLM1, TLM2
18.	Elasticity approach to materials	1	17-08-22	TLM1, TLM2
19.	Determination of material properties	2	18-08-22 20-08-22	TLM1, TLM2
20.	Problem solving	1	22-08-22	TLM1, TLM2
21.	Introduction to micro mechanics	1	24-08-22	TLM1, TLM2
22.	Problem solving	1	25-08-22	TLM1, TLM2
23.	Experimental characterization	2	26-08-22	TLM1, TLM2
24.	Problems on lamina properties	1	27-08-22	TLM1
25.	Problem solving	1	29-08-22	TLM1, TLM2
26.	Determine elastic constants	2	01-09-22 02-09-22	TLM1
27.	Problem solving, Assignment-II	1	03-09-22	TLM1
No. d	of classes required to complete UNIT	No. of classes taken:		

UNIT-III: MULTI DIRCTIONAL COMPOSITES

0.	MIT-III: MULII DIRCHONAL		-			
S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
28.	Introduction to laminate	1	26-09-22	•	TLM1, TLM2	
29.	Governing differential equation for a general laminate,	2	28-09-22 29-09-22		TLM1, TLM2	
30.	Classical Lamination Theory	1	30-09-22		TLM1, TLM2	
31.	Symmetric, Antisymmetric laminates,	1	01-10-22		TLM1, TLM2	
32.	CLT	1	03-10-22		TLM2	
33.	A, B, D matrices	1	06-10-22		TLM1	
34.	angle ply laminates	1	07-10-22		TLM2	
35.	A, B, D matrices angle ply laminates	1	08-10-22		TLM1, TLM2	
36.	Cross ply laminates	1	10-10-22		TLM2	

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

L.B.Reddy Nagar, Mylavaram – 521 230, N.T.R. District, Andhra Pradesh, India Affiliated to JNTUK, Kakinada & Approved by AICTE New Delhi Accredited by NAAC with 'A' grade, An ISO 9001:2015 Certified Institution

DEPARTMENT OF AEROSPACE ENGINEERING

Website: https://www.lbrce.ac.in/ase/index.php Email: hodaero@lbrce.ac.in Phone:08659-222933 Ext:624/623

37.	A, B, D matrices Cross ply laminates	1	12-10-22	TLM1, TLM2					
	lammates			I LMZ					
20	Failure criteria and strength	1	13-10-22	TLM1,					
38.	of laminates	1	13-10-22	TLM2					
	Failure theories (T-Sai. T-								
39.	sai-Wu etc.)	1	14-10-22	TLM1,					
	Assignment-III			TLM2					
No. o	of classes required to complete	.3	No. of classes taken:						

UNIT-IV: SANDWICH CONSTRUCTIONS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
40.	Introduction to sandwich construction	1	15-10-22		TLM1, TLM2	
41.	Design concepts of sandwich panels	1	17-10-22		TLM1, TLM2	
42.	Facing and core Materials	2	19-10-22 20-10-22		TLM1	
43.	Flexural rigidity of sandwich	1	21-10-22		TLM1	
44.	deflection of sandwich beams	1	22-10-22		TLM1	
45.	Problems on sandwich panels	1	26-10-22		TLM1	
46.	Applications of Sandwich panels	1	27-10-22		TLM1, TLM2	
47.	Failure modes of sandwich panels	1	28-10-22		TLM1, TLM2	
48.	Failure modes of sandwich panels, Assignment-IV	1	29-10-22		TLM1, TLM2	
No. o	of classes required to complete UN	IT-IV:10		No. of class	es taken:	

UNIT-V: FABRICATION PROCESSES & FUNCTIONALLY GRADED MATERIALS:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
49.	FABRICATION PROCESSES: Introduction to fabrication process	1	31-10-22		TLM1 TLM2	
50.	Fibers-Glass, Carbon, and Boron	1	02-11-22		TLM1, TLM2	
51.	Laminate Composite	1	03-11-22		TLM1, TLM2	

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

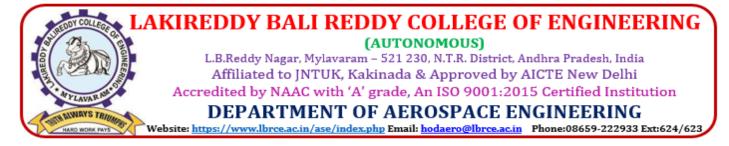
L.B.Reddy Nagar, Mylavaram – 521 230, N.T.R. District, Andhra Pradesh, India Affiliated to JNTUK, Kakinada & Approved by AICTE New Delhi Accredited by NAAC with 'A' grade, An ISO 9001:2015 Certified Institution

DEPARTMENT OF AEROSPACE ENGINEERING

Website: https://www.lbrce.ac.in/ase/index.php Email: hodaero@lbrce.ac.in Phone:08659-222933 Ext:624/623

52.	Various Open mould processes	1	04-11-22	TLM1, TLM2				
53.	Various closed mould processes	1	05-11-22	TLM1, TLM2				
54.	lay-up process	1	07-11-22	TLM1, TLM2				
55.	Vacuum bagging, infusion	1	09-11-22	TLM1, TLM2				
56.	Pultrusion,	1	11-11-22	TLM1, TLM2				
57.	RTM	1	12-11-22	TLM1, TLM2				
58.	Auto Clave	1	14-11-22	TLM1, TLM2				
59.	Filament Winding	1	16-11-22	TLM1, TLM2				
60.	FUNCTIONALLY GRADED MATERIALS: Introduction to FGM's	1	17-11-22	TLM1				
61.	lengthwise and thickness wise	1	18-11-22	TLM1				
62.	power law. Assignment-V	1	19-11-22	TLM1				
No. d	No. of classes required to complete UNIT-V:14 No. of classes taken:							

Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)					
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)					
TLM3	Tutorial	TLM6	Group Discussion/Project					


PART-C

EVALUATION PROCESS (R17 Regulations):

WAYS TRIU

WORK PA

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max (M1, M2) +25% of Min (M1, M2)	M=20

Quiz Marks =75% of Max (Q1, Q2) +25% of Min (Q1, Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

	DGRAMME OUTCOMES (POS):								
PO1	Engineering knowledge: Apply the knowledge of mathematics, science,								
	engineering fundamentals, and an engineering specialization to the solution of								
	complex engineering problems.								
PO2	Problem analysis: Identify, formulate, review research literature, and analyze								
	complex engineering problems reaching substantiated conclusions using first								
	principles of mathematics, natural sciences, and engineering sciences.								
PO3	Design/development of solutions : Design solutions for complex engineering								
	problems and design system components or processes that meet the specified needs								
	with appropriate consideration for the public health and safety, and the cultural,								
	societal, and environmental considerations.								
PO4	Conduct investigations of complex problems: Use research-based knowledge								
	and research methods including design of experiments, analysis and interpretation								
	of data, and synthesis of the information to provide valid conclusions.								
PO5	Modern tool usage : Create, select, and apply appropriate techniques, resources,								
100	and modern engineering and IT tools including prediction and modelling to complex								
	engineering activities with an understanding of the limitations								
P06	The engineer and society : Apply reasoning informed by the contextual knowledge								
100	to assess societal, health, safety, legal and cultural issues and the consequent								
	responsibilities relevant to the professional engineering practice								
PO7	Environment and sustainability : Understand the impact of the professional								
FUT	engineering solutions in societal and environmental contexts, and demonstrate the								
DO0	knowledge of, and need for sustainable development.								
PO8	Ethics : Apply ethical principles and commit to professional ethics and								
D OO	responsibilities and norms of the engineering practice.								
PO9	Individual and teamwork: Function effectively as an individual, and as a member								
2010	or leader in diverse teams, and in multidisciplinary settings.								
PO10	Communication : Communicate effectively on complex engineering activities with								
	the engineering community and with society at large, such as, being able to								
	comprehend and write effective reports and design documentation, make effective								
	presentations, and give and receive clear instructions.								
PO11	Project management and finance: Demonstrate knowledge and understanding of								
	the engineering and management principles and apply these to one's own work, as								
	a member and leader in a team, to manage projects and in multidisciplinary								
	environments.								
PO12									
PO12	Life-long learning : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of								

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO1	To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures, and
	Flight Dynamics in Aerospace vehicle design.
PSO2	To prepare the students to work effectively in Aerospace and Allied Engineering
	organizations.

Course Instructor	Course Coordinator	Module Coordinator	HOD	
(Mr. G V Surya Narayana)	(Mr. G V Surya Narayana)	(Dr. L. Prabhu)	(Dr. P. Lovaraju)	

DEPARTMENT OF AEROSPACE ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Dr. L. Prabhu		
Course Name & Code	: Theory of Vibrations / 17AE33		
L-T-P Structure	: 3-0-0		Credits : 3
Program/Sem/Sec	: B.Tech., Aerospace, VII-Sem	A.Y	: 2022-23

PRE-REQUISITE: Engineering Mechanics, Strength of Materials

COURSE EDUCATIONAL OBJECTIVES (CEOs):

- 1. To construct a free body diagram and write the differential equations of motion of vibratory system to find natural frequency.
- 2. To learn the effects of damped free vibrations of single degree of freedom systems.
- 3. To understand the forced vibrations of unbalanced system and knowing about isolators, vibration measuring instruments.
- 4. To learn about the two degree of freedom systems of forced vibrations with harmonic excitation.
- 5. To learn about multi degree of freedom systems by applying exact analysis, influence coefficients and numerical methods.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Formulate mathematical models for mechanical systems using mass, spring and dampers
	(Apply-L3)
CO 2	Analyze a systems with damped free vibrations single degree of freedom (Apply-L3)
CO 3	Develop a single degree of freedom forced vibrating mechanical system under various
	types of excitation conditions (Apply-L3)
CO 4	Analyze and modify two degree of freedom mechanical systems (Apply-L3)
CO 5	Analyze a systems of multi degrees of freedom (Apply-L3)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3	-	-	-	-	-	-	-	3	3	3
CO2	3	3	3	3	-	-	-	-	-	-	-	2	3	3
CO3	3	3	3	3	-	-	-	-	-	-	-	2	3	3
CO4	3	3	3	3	-	-	-	-	-	-	-	2	3	3
CO5	3	3	3	3	-	-	-	-	-	-	-	2	3	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

REFERENCE BOOKS:

- **R1** Thomson. W. T., Theory of Vibrations with Applications, CBS Publishers & Distributors, 2002.
- R2 Grover. G. K., Mechanical Vibrations: M.K.S. Systems, Nemchand & Bros., 1972.
- R3 Singh. V. P., Mechanical Vibrations, Dhanpati Rai & Sons, 2016.
- R4 Rao. V. D., Srinivas. J., Textbook of Vibrations, PHI Learning Pvt. Ltd., 2004.
- **R5** Rao. S. S., Mechanical Vibrations, Prentice Hall, 2011.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to vibration	1	11-07-2022		TLM1	
2.	Basic terminology	1	12-07-2022		TLM1	
3.	Formation of differential equation	1	13-07-2022		TLM1	
4.	Solution of differential equation	1	14-07-2022		TLM1	
5.	Torsional vibration	1	16-07-2022		TLM1	
6.	Tutorial I	1	18-07-2022		TLM3	
7.	Springs in series	1	19-07-2022		TLM1	
8.	Springs in parallel		20-07-2022			
9.	Natural frequency of a vibration system by energy method	2	21-07-2022 23-07-2022		TLM1	
10.	Tutorial II	1	25-07-2022		TLM3	
11.	Discussion	1	26-07-2022		TLM1	
12.	Quiz and Assignment - 1	1	27-07-2022			
No. of	f classes required to complete UN		No. of class	ses taken:		

UNIT-II:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
13.	Introduction to damped free vibration	1	28-07-2022		TLM1			
14.	Classification of dampers	1	30-07-2022		TLM1			
15.	Free vibration with viscous dampers	1	01-08-2022		TLM1			
16.	Problems	1	02-08-2022		TLM1			
17.	Tutorial III	1	03-08-2022		TLM3			
18.	Underdamped system	2	04-08-2022 06-08-2022		TLM1			
19.	Critically damped system	1	08-08-2022		TLM1			
20.	Overdamped system	2	10-08-2022 11-08-2022		TLM1			
21.	Problems	1	16-08-2022		TLM1			
22.	Tutorial IV	1	17-08-2022		TLM3			
23.	Logarithmic decrement	1	18-08-2022		TLM1			
24.	Problems	1	20-08-2022		TLM1			
25.	Viscous dampers	1	23-08-2022		TLM1			
26.	Dry friction damper	1	24-08-2022		TLM1			
27.	Structural damper	1	25-08-2022		TLM1			
28.	Problems	1	27-08-2022		TLM1			
29.	Assignment/Quiz-2	1	29-08-2022		TLM1			
30.		1	30-08-2022		TLM1			
31.	Revision (Unit 1 and Unit 2)	1	01-09-2022		TLM1			
32.		1	03-09-2022		TLM1			
No. of classes required to complete UNIT-II:19 No. of classes taken:								

UNIT-III:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
33.	Introduction to forced vibration	1	26-09-2022		TLM1	
34.	Types of forced excitation	1	27-09-2022		TLM1	
35.	Forced vibrations with constant harmonic excitation	1	28-09-2022		TLM1	
36.	Steady state vibrations	1	29-09-2022		TLM1	
37.	Problems	1	01-10-2022		TLM1	
38.	Forced vibration with rotating and reciprocating unbalance	1	06-10-2022		TLM1	
39.	Tutorial V	1	07-10-2022		TLM3	
40.	Forced vibrations due to excitation of the	1	10-10-2022		TLM1	
41.	Vibration isolation and transmissibility	1	11-10-2022		TLM1	
42.	Problems	1	12-10-2022		TLM1	
43.	vibration measuring instruments	1	13-10-2022		TLM1	
44.	Tutorial VI	1	15-10-2022		TLM3	
45.	Assignment/Quiz 3	1	17-10-2022			
No. of classes required to complete UNIT-III:13 No. of classes tak						

UNIT-IV:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
46.	Introduction to two degree of freedom	1	18-10-2022		TLM1		
47.	Two masses fixed on a tightly stretched string	1	19-10-2022		TLM1		
48.	Double pendulum	1	20-10-2022		TLM1		
49.	Problems	1	22-10-2022		TLM1		
50.	Tutorial VII	1	25-10-2022		TLM3		
51.	Torsional system	1	26-10-2022		TLM1		
52.	Undamped forced vibrations with harmonic excitation	2	27-10-2022 29-10-2022		TLM1		
53.	Undamped dynamic vibration absorber	1	31-10-2022		TLM1		
54.	Problems	1	01-11-2022		TLM1		
55.	Tutorial VIII	1	02-11-2022		TLM3		
56.	Assignment/Quiz 4	1	03-11-2022		TLM1		
No. of	No. of classes required to complete UNIT-IV:12 No. of classes taken:						

UNIT-V:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
57.	Introduction to Multi degree of freedom	1	05-11-2022		TLM1	
58.	Influence coefficients	1	07-11-2022		TLM1	
59.	Flexibility coefficients and Maxwell reciprocal theorem	1	08-11-2022		TLM1	
60.	Problems	1	09-11-2022		TLM1	
61.	Tutorial IX	1	10-11-2022		TLM3	
62.	Torsional vibrations of Multi rotor systems	1	14-11-2022		TLM1	

63.	Vibrations of geared systems	1	15-11-2022	TLM1				
	Determination of natural		16-11-2022					
64.	frequency of vibration by	1		TLM1				
	Rayleigh's method.							
65.	Tutorial X	1	17-11-2022	TLM3				
66.	Assignment/Quiz 5	1	19-11-2022	TLM1				
No. of	No. of classes required to complete UNIT-V:10 No. of classes taken:							

Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)					
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)					
TLM3	Tutorial	TLM6	Group Discussion/Project					

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering							
	fundamentals, and an engineering specialization to the solution of complex engineering							
	problems.							
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex							
	engineering problems reaching substantiated conclusions using first principles of mathematics,							
	natural sciences, and engineering sciences.							
PO 3	Design/development of solutions : Design solutions for complex engineering problems							
	design system components or processes that meet the specified needs with appropriate							
	consideration for the public health and safety, and the cultural, societal, and environmental							
	considerations.							
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research							
	methods including design of experiments, analysis and interpretation of data, and synthesis of the							
	information to provide valid conclusions.							
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern							
	engineering and IT tools including prediction and modelling to complex engineering activities							
	with an understanding of the limitations							
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to							
	the professional engineering practice							
PO 7	Environment and sustainability : Understand the impact of the professional engineering							
107	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for							
	sustainable development.							
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms							
	of the engineering practice.							
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in							
	diverse teams, and in multidisciplinary settings.							
PO 10	Communication: Communicate effectively on complex engineering activities with the							
	engineering community and with society at large, such as, being able to comprehend and write							
	effective reports and design documentation, make effective presentations, and give and receive							
	clear instructions.							
PO 11	Project management and finance: Demonstrate knowledge and understanding of the							
	engineering and management principles and apply these to one's own work, as a member and							
DO 10	leader in a team, to manage projects and in multidisciplinary environments.							
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in							
	independent and life-long learning in the broadest context of technological change.							

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To Apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight Dynamics in the Aerospace vehicle design.
PSO 2	To prepare the students to work effectively in Aerospace and Allied Engineering organizations.

Dr. L. Prabhu			Dr. P. Lovaraju
Course Instructor	Course Coordinator	Module Coordinator	HOD

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME) Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF AEROSPACE ENGINEERING

COURSE HANDOUT

PROGRAM : B.Tech., VII-Sem., ASE

- ACADEMIC YEAR : 2022-23
- COURSE NAME & CODE : Computational Fluid Dynamics and 17AE25
- L-T-P STRUCTURE : 3-0-0
- COURSE CREDITS : 3
- COURSE INSTRUCTOR : Dr. P. Lovaraju
- **COURSE COORDINATOR : Dr. P. Lovaraju**

PRE-REQUISITE:

Course Educational Objectives: To learn the basic governing equations of fluid dynamics, mathematical behaviour of partial differential equations, phenomena of various discretization techniques, techniques to solve the simple incompressible flow problems, and basic techniques to solve simple heat transfer problems .

CO 1Formulate the basic fluid dynamics problem mathematically (Apply-L3)CO 2Analyze the mathematical behaviour of partial differential equations (Analyze-L4)CO 3Apply the grid generation principles for different problems (Apply-L3)CO 4Solve elementary incompressible fluid problems using the CFD techniques (Apply-L3)CO 5Solve the elementary heat transfer problems using the CFD techniques (Apply-L3)

COURSE OUTCOMES (COs): At the end of the course, students are able to

Course	COs	Prog	Programme Outcomes								PSO	s			
Code		1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	2	2	2	1	-	-	-	-	-	-	2	3	3
	CO2	3	3	2	2	1	-	-	-	-	-	-	2	3	3
17AE25	CO3	3	2	3	2	3	-	-	-	-	-	-	2	3	3
	CO4	3	2	2	2	3	-	-	-	-	-	-	2	3	3
	CO5	3	2	2	2	3	-	-	-	-	-	-	2	3	3
1 = Slight (I	1 = Slight (Low) 2 = Moderate (Medium) 3-Substantial (High)														

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- **T1** Anderson.J.D, Computational Fluid Dynamics-Basics with Applications, Mc Graw Hill, 1995.
- T2 Thanigaiarasu. S, Computational Fluid Dynamics and Heat Transfer.

BOS APPROVED REFERENCE BOOKS:

- **R1** Anderson, D. A, Tannehill. J. C, Pletcher. R. H, Computational Fluid Mechanics and Heat Transfer, CRC Press, 2012.
- R2 Patankar. S. V, Numerical Heat Transfer and Fluid Flow, CRC Press, 1980.
- **R3** Sengupta. T. K, Fundamentals of Computational Fluid Dynamics, University Press, 2004.

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction, Governing Equations of Fluid Dynamics

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Introduction to Course and discussion of course outcomes (Cos)	1	11-07-2022		TLM2	CO1	T1	
2.	Computational Fluid Dynamics as a Research and Design Tool, Applications of Computational Fluid Dynamics.	2	12-07-2022 13-07-2022		TLM2	CO1	T1	
3.	Introduction, Control Volume, Substantial Derivative, Divergence of Velocity,	2	14-07-2022 16-07-2022		TLM2	CO1	T1	
4.	Continuity Equation	2	18-07-2022 19-07-2022		TLM2	CO1	T1	
5.	Momentum Equation	2	20-07-2022 21-07-2022		TLM2	C01	T1	
6.	Energy Equation	2	23-07-2022 25-07-2022		TLM2	C01	T1	
7.	Conservation and Non-conservation forms of governing flow equations	2	26-07-2022 28-07-2022		TLM2	CO1	T1	-
8.	Tutorial	1	30-07-2022		TLM3			-
9.	Assignment-1/Quiz-1	1	1-08-2022					
No. of	classes required to complete UNIT-I:	15	No. of classes	s taken:	· ·			

UNIT-II: Mathematical Behavior of Partial Differential Equations

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly	
1.	Introduction	1	2-08-2022		TLM2	CO2	T1		
2.	Classification of Quasi- Linear Partial Differential Equations	2	3-08-2022 4-08-2022		TLM2	CO2	T1		
3.	Eigen Value Method	2	6-08-2022 10-08-2022		TLM2	CO2	T1		
4.	Hyperbolic Equations	2	11-08-2022 12-08-2022		TLM2	CO2	T1		
5.	Parabolic Equations	2	16-08-2022 17-08-2022		TLM2	CO2	T1		
6.	Elliptic Equations	2	20-08-2022 22-08-2022		TLM2	CO2	T1		
7.	Tutorial	1	23-08-2022		TLM3		T1		
8.	Assignment-2/Quiz-2	1	24-08-2022						
	No. of classes required to complete UNIT-II:13No. of classes taken:								

I MID EXAMINATIONS (19-09-2022 TO 24-09-2022)

UNIT-III: Basics Aspects of Discretization

S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	Learning Outcome	Text Book followed	HOD Sign
		Required	Completion	Completion	Methods	COs		Weekly
1.	Introduction of Finite Differences	2	25-08-2022 27-08-2022		TLM2	CO3	T1	
2.	Difference Equations Forward Difference and Rearward Difference	2	29-08-2022 30-08-2022		TLM2	CO3	T1	
3.	Central Difference	1	1-09-2022		TLM2	CO3	T1	
4.	Explicit and Implicit Approaches	2	2-09-2022 3-09-2022		TLM2	CO3	T1	
5.	Errors	2	26-09-2022 27-09-2022		TLM2	CO3	T1	
6.	Stability Analysis	1	28-09-2022		TLM2	CO3	T1	
7.	Grid Generation. General transformation of equations,	2	29-09-2022 10-10-2022		TLM2	CO3	T1	
8.	Matrics and Jacobians	2	11-10-2022 12-10-2022		TLM2			
9.	Tutorial	1	13-10-2022		TLM3			
10.	Assignment-3/Quiz 3	1	15-10-2022					
No. of UNIT-	classes required to complete	16	No. of classes t	aken:			1	

UNIT-IV : Incompressible Fluid Flow

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Introduction	1	17-10-2022		TLM2	CO4	T1	
2.	Maccromack's Technique	2	18-10-2022 19-10-2022		TLM2	CO4	T1	
3.	Predictor step and Corrector Step	1	20-10-2022		TLM2	CO4	T1	
4.	Incompressible Couette Flow, Implicit Crank-Nicholson Technique	2	22-10-2022 25-10-2022		TLM2	CO4	T1	
5.	Pressure Correction Method	1	26-10-2022		TLM2	CO4	T1	
6.	Computation of Boundary Layer Flows	1	27-10-2022		TLM2	CO4	T1	
7.	Tutorial	1	29-10-2022		TLM3			
8.	Assignment-4/Quiz 4	1	31-10-2022					
	No. of classes required to complete UNIT-IV:10No. of classes taken:							

5-09-2022 to 17-09-2022 CRT

UNIT-V : Heat Transfer

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	FiniteDifferenceApplicationsinteatteatconductionandConvention,teat	2	1-11-2022 2-11-2022		TLM2	CO5	T2, R1	
2.	Heat conduction - steady heat conduction in a rectangular geometry	2	3-11-2022 5-11-2022		TLM2	CO5	T2, R1	
3.	Transient heat conduction in a plane wall	2	7-11-2022 8-11-2022		TLM2	CO5	T2, R1	
4.	Two-Dimensional transient heat conduction,	2	9-11-2022 10-11-2022		TLM2	CO5	T2, R1	
5.	Finite difference application in convective heat transfer.	1	14-11-2022		TLM2	CO5	T2, R1	
6.	Tutorial	1	15-11-2022		TLM3			
7.	Assignment-5/Quiz 5	1	16-11-2022					1
8.	Revision	2	17-11-2022 18-11-2022		TLM2			
No. of UNIT-	classes required to complete V:12	13	No. of classes ta	ıken:				

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

ACADEMIC CALENDAR:

Description	From	То	Weeks
I Phase of Instructions-1	11-07-2022	3-09-2022	8W
CRT	5-09-2022	17-09-2022	2W
I Mid Examinations	19-09-2022	24-09-2022	1W
II Phase of Instructions	26-09-2022	19-11-2022	8W
II Mid Examinations	21-11-2022	26-11-2022	1W
Preparation and Practical	28-11-2022	3-12-2022	1W
Semester End Examinations	5-12-2022	17-12-2022	2W

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Assignment/Quiz – 1	1	A1=5
Assignment/Quiz – 2	2	A2=5
I-Mid Examination	1,2	B1=20
I-Mid Examination(Objective)	1,2	C1=10
Assignment/Quiz – 3	3	A3=5
Assignment/Quiz-4	4	A4=5
Assignment/Quiz – 5	5	A5=5
II-Mid Examination	3,4,5	B2=20
II-Mid Examination(Objective)	3,4,5	C2=10
Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=5
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=20
Evaluation of Quiz Marks: C=75% of Max(C1,C2)+25% of Min(C1,C2)	1,2,3,4,5	C=10
Attendance Marks: D(>95%=5, 90-95%=4,85-90%=3,80-85%=2,75-80%=1)		D=5

Cumulative Internal Examination : A+B+C+D	1,2,3,4,5	40
Semester End Examinations	1,2,3,4,5	E=60
Total Marks: A+B+C+D+E	1,2,3,4,5	100

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

PO1: Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.

PO2: Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.

PO3: Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4: Conduct Investigation of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.

PO5: Modern Tool Usage: Create, select and apply appropriate techniques, resources, and modern engineering and IT tools including predictions and modeling to complex engineering activities with an understanding of the limitations.

PO6: The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7: Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9: Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11: Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12: Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight Dynamics in the Aerospace vehicle design **PSO2:** To prepare the students to work effectively in Aerospace and Allied Engineering organizations

Course Instructor	Module Coordinator	HOD

MODULE COORDINATOR: Dr.P.LOVARAJU							
COURSE INSTRUCTOR	: M.BHUVANESHWARI						
COURSE CREDITS	:3						
L-T-P STRUCTURE	: 3-0-0						
COURSE NAME & CODE	: INTRODUCTION TO SPACE TECHNOLOGY – 17AE28						
ACADEMIC YEAR	: 2022-23						
PROGRAM	: B.Tech., VII-Sem., ASE						

PRE-REQUISITE: NONE

COURSE OBJECTIVE: In this course student will be able to learn the space mission strategies and fundamental orbital mechanics. She/he can be able to calculate flight trajectories of rockets and missiles. He will be able to understand the fundamentals of atmospheric re-entry issues and satellite attitude control techniques.

COURSE OUTCOMES (CO)

CO1	Understand the concepts of launching satellites in space (Understand-L2)
CO2	Apply the principles of orbital mechanics on motion of bodies in orbits (Apply-L3)
CO3	Comprehend the trajectories of rockets and missiles (Understand-L2)
CO4	Describe the dynamics of spacecraft attitude (Understand-L2)

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1	1	-	-	-	-	-	-	-	2	3	3
CO2	3	3	3	2	-	-	-	-	-	-	-	2	3	3
CO3	3	3	3	2	-	-	-	-	-	-	-	2	3	3
CO4	3	3	3	2	-	-	-	-	-	-	-	2	2	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'
1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- T1 W.E.Wiesel, Spaceflight Dynamics, McGraw-Hill, 1997
- **T2** Cornelisse, Schoyer HFR, Wakker KF, Rocket Propulsion and Space Flight Dynamics, pitman publications, 1984

BOS APPROVED REFERENCE BOOKS:

- **R1** J.Sellers., "Understanding Space: An Introduction to Astronautics", McGraw- Hill, 2000.
- R2 Francis J Hale., "Introduction to Space Flight", Prentice-Hall, 1994.

COURSE DELIVERY PLAN (LESSON PLAN)

		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
	Turken der stimmten er formannen and	Required	Completion	Completion	Methods	Weekly
1.	Introduction to origin of space and	2	11/07/2022&		TLM2	
1.	Space Missions- Types	_	12/07/2022			
2.	Space Environment-Introduction	2	13/07/2022&		TLM2	
۷.		2	14/07/2022		1 0112	
3.	Launch vehicle selection	2	16/07/2022&		TLM2	
5.		2	18/07/2022		1 0112	
4	Introduction to Rocket Propulsion	2	19/07/2022&		TLM2	
4.		2	20/07/2022			
_	Fundamentals of solid Rocket		21/07/2022&			
5.	Propellants	2	23/07/2022		TLM2	
	Solid Rocket Propellants- Burn rate &	_	25/07/2022&			
6.	properties	2	26/07/2022		TLM2	
_	Fundamentals of Liquid Rocket	1	27/07/2022		771 340	
7.	Propellants	1			TLM2	
			28/07/2022&			
8.	Liquid Rocket Propellants-Pump &	2	30/07/2022		TLM2	
0.	Pressure Feed Systems	_				
9.	Rocket Equation	1	01/08/2022		TLM2	
10	DEVISION		02/08/2022&			
10.	REVISION	2	03/08/2022			
No.	of classes required to complete UNIT-I	18	No. of class	ses taken:		

UNIT-I: INTRODUCTION

UNIT-II: ORBITAL MECHANICS & ORBITAL MANEUVERS

		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
		Required	Completion	Completion	Methods	Weekly
11.	Two body motion-Inertial Frame	2	04/08/2022&		TLM1	
11.		2	06/08/2022			
10	Two body motion-Angular Momentum	2	08/08/2022&		MT 1/1	
12.	& Orbit Eq.		10/08/2022		TLM1	
10	Conic Sections- Circular Orbits and	2	11/08/2022&			
13.	Elliptical Orbits		13/08/2022		TLM1	
	Conic Sections- Parabolic Orbits and -	3	16/08/2022&			
14.	Hyperbolic Orbits		17/08/2022&		TLM1	
			18/08/2022			
1.5	Classic Orbital Elements & Ground	2	20/08/2022&			
15.	Tracks		22/08/2022		TLM1	
16	Orbital Maneuvers-Hohmann transfer	2	23/08/2022&		TLM1	
16.			24/08/2022			
17.	Bi-elliptical	2	25/08/2022&		TLM1	
17.			27/08/2022			
10	Plane changes and Combined	2	29/08/2022&		MT 1/1	
18.	maneuvers		30/08/2022		TLM1	
10	Propulsion for maneuvers	2	01/09/2022&			
19.	_		03/09/2022			
No.	of classes required to complete UNIT-II	19	No. of classes	taken:		

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
20.	Two-Dimensional trajectories of rockets and missiles	1	26/09/2022		TLM1	
21.	Multi-Stage Rockets	2	27/09/2022& 28/09/2022		TLM1	
22.	Vehicle Sizing	1	29/09/2022		TLM1	
23.	Two-Stage Rockets	1	01/10/2022		TLM1	
24.	Trade-off Ratios	2	04/10/2022& 06/10/2022		TLM1	
25.	Single Stage to Orbit	1	08/10/2022		TLM1	
26.	Sounding Rockets	2	10/10/2022& 11/10/2022		TLM1	
27.	Gravity turn trajectories	1	12/10/2022		TLM1	
No. of classes required to complete UNIT-III		11	No. of clas	ses taken:		

UNIT III- ASCENT FLIGHT MECHANICS OF ROCKETS & MISSILES

Unit IV- ATMOSPHERIC REENTRY

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
28.	Introduction to Reentry	1	13/10/2022		TLM1	
29.	Steep Ballistic Reentry	2	15/10/2022& 17/10/2022		TLM1	
30.	Ballistic Orbital Reentry	2	18/10/2022& 19/10/2022		TLM1	
31.	Skip Reentry	2	20/10/2022& 22/10/2022		TLM1	
32.	Double Dip Reentry	2	25/10/2022& 26/10/2022		TLM1	
33.	Aero Braking	2	27/10/2022& 29/10/2022		TLM1	
34.	Lifting Body Reentry	2	31/10/2022& 01/11/2022		TLM1	
No. o	of classes required to complete UNIT-IV	13	No. of clas	ses taken:		

Unit V- SATELLITE ATTITUDE DYNAMICS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
35.	Introduction	1	02/11/2022		TLM1	
36.	Torque Free Axi-symmetric Body	2	03/11/2022& 05/11/2022		TLM1	
37.	Attitude Control for spinning Spacecraft	2	07/11/2022& 09/11/2022		TLM1	

38.	Attitude Control for non-spinning Spacecraft	1	10/11/2022	TLM1	
39.	The Yo-Yo Mechanism	2	12/11/2022& 14/11/2022	TLM1	
40.	Gravity Gradient Satellite	2	15/11/2022& 16/11/2022	TLM1	
41.	Dual Spin Spacecraft- Attitude Determination	2	17/11/2022& 19/11/2022	TLM1	
No. of classes required to complete UNIT-V		12	No. of classes taken:		

Teach	Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD		
TLM2	PPT	TLM5	Programming	TLM8	Lab Demo		
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study		

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Assignment/Quiz – 1	1	A1=5
Assignment/Quiz – 2	2	A2=5
I-Mid Examination	1,2	B1=20
Assignment/Quiz – 3	3	A3=5
Assignment/Quiz – 4	4	A4=5
Assignment/Quiz – 5	5	A5=5
II-Mid Examination	3,4,5	B2=20
Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=5
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=20
Cumulative Internal Examination : A+B	1,2,3,4,5	A+B=25
Semester End Examinations	1,2,3,4,5	C=75
Total Marks: A+B+C	1,2,3,4,5	100

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

- **PO1: Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- **PO2: Problem Analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3: Design/Development of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified

needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

- **PO4: Conduct Investigation of Complex Problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.
- **PO5: Modern Tool Usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including predictions and modeling to complex engineering activities with an understanding of the limitations.
- **PO6: The Engineer and Society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional engineering practice.
- **PO7: Environment and Sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8: Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9: Individual and Teamwork:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10: Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11: Project Management and Finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12: Life-long Learning:** Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

- **PSO1:** To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight Dynamics in the Aerospace vehicle design
- **PSO2:** To prepare the students to work effectively in Aerospace and Allied Engineering organizations.

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

COURSE HANDOUT

PART-A

Name of Course Instr	uctor : K. Bhanu	
Course Name & Coo	le : SATELLITE TECHNOLOGY - 17EC	.80
L-T-P Structure	: 3-0-0	Credits : 3
Program/Sem/Sec	: B.Tech., ASE., VII-Sem.,	A Y · 2022-23
PRE-REQUISITE: an Ellipse.	Basics related to Dynamics, Kinematics, Thermo-	dynamics and Properties of

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course provides the knowledge on different laws associated with the motion of a satellite. The course gives the knowledge on launching a satellite into orbit with launch vehicles. The course also provides the knowledge on various subsystems, structures, thermal control, and applications of a satellite.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Identify various applications of satellites, launch vehicles and basic functions of satellite system
CO 2	Understand components, characteristics of a power subsystem and various aspects of spacecraft control
CO 3	Evaluate the orbital model, parameters related to satellites and the requirements needed for the selection an earth station.
CO 4	Analyze the satellite structures, internal and external design issues of a spacecraft.

PO1 PO2 PO3 PO4 COs PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PS01 PSO2 PSO3 C01 `_ 1 --_ ------1 1 _ -CO₂ 2 1 ----_ --1 --1 --CO3 2 3 1 ------_ 2 _ 2 -**CO4** 1 3 1 _ -_ 1 2 ---

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

T1 Timothy Pratt, Charles Bostian, Jeremy Allnutt, "Satellite communications", John Wiley & Sons,2"^d edition, 2003.

REFERENCE BOOKS:

- R1 M. Richharia, "Satellite Communications Systems: Design principles", BS Publications, 2nd Edition, 2005.
- R2 D.C Agarwal, "Satellite communications", Khanna Publications, 5th Edition, 2006.
- **R3** Richard, Filipowsky Eugen 1 Muchllorf, 'Space Communication Systems', Prentice Hall 1995.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction to Satellite Systems:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teachin g Learnin g Methods	HOD Sign Weekly
	Course Objectives	1	12/7/22	2/8/22	TLM2	
2.	Brief introduction about the course and its importance.	1	13/7/22	3/5/2	TLM2	
3.	Need for Space Communications, Definition of a satellite and Orbit.	2	15/7/22, 16/7/22	5 8, 6 8	TLM2	
4.	General Structure of satellite Communication, Types of Spacecraft Orbits	2	19/7/22, 20/7/22	10/8,12/8	TLM2	
5.	Common satellite applications and missions, Launch Vehicles and Launching of a satellite	2	22/7/22, 23/7/22	16/8,12/9	TLM2	M)
6.	Satellite system and their functions- (Structural, thermal, power mechanisms, propulsion, etc)	2	26/7/22, 27/7/22	20/5	TLM2	
No. o	of classes required to complete UN	IT-I: 10		No. of class	es taken:	

UNIT-II: Orbital Mechanics:

S.No.	Topics to be covered	No. of Classes Require d	Tentative Date of Completion	Actual Date of Completion	Teachin g Learnin g	HOD Sign Weekly
1.	Introduction and overview of Orbital Mechanics	1	29/7/22	23/5/22	Methods TLM1	
2.	Newton's laws of Force, Fundamentals of Orbital Dynamics- Kepler's laws	2	30/7/22, 2/8/22	24/8/22	TLM2	
3.	Orbital parameters and determination	1	3/8/22	2618/22	TLM2	
4.	Orbital Perturbations-Need for station keeping	1	5/8/22	29/8/22	TLM2	
5.	GPS systems-Architecture of GPS, Working Principle of GPS	2	6/8/22, 10/8/22	30/5/22	TLM2	
6.	Ground station or Earth station Requirements	1	12/8/22	2/9/22	TLM1	
7.	Problems and Revision N	2	16/8/22, 17/8/22	319/22	FLM2	
No. c	of classes required to complete UN	IT-II: 10		No. of class	ses taken:	

UNIT-III: Power System and Bus Electronics:

S.No.	Topics to be covered	No. of Classes Require d	Tentative Date of Completion	Actual Date of Completion	Teachin g Learnin g Methods	HOD Sign Weekly
1.	Introduction to Power system and Bus electronics	1	20/8/22	27/9/22	TLM2	
2.	Solar Panels: Silicon and Ga-As Cells	1	23/8/22	28/9/2	TLM2	
3.	Power generation capacity, efficiency	1	24/8/22	20/9/22	TLM2	
4.	Space Battery Systems	1	26/8/22	110/22	TLM2	
5.	Battery Types, Characteristics , Battery efficiency Parameters	1	27/8/22	11/10/-2	TLM2	J.F
6.	Telemetry, Tracking and Command	1	30/8/22	12/10/22	-FLM2	

	Control (TT&C) Amethons Telemony : Tracking and Command Commut (TT&C) I Amethons		3/0/33	11/10/37	TIM	
R.	Generally Employed Community and Hands		1/0/33	16/10/11	TIMA	
0	Coding Systems Onlyand Computer		27/8/22 28/0/22	18/11/1-1	TLM2 TLM2	
11. 1	Ground Checkowi Systems Revision Telosses required to complete UN		10/0/33			

and a second second

UNITALY (Spacecraft Control)

N.N.	Tuples to be ensered	Nii nf Flasses Require	Tentative Date of Completion	A sinal Date of Completio	Feachlag Learniag Alsthailt	HOD Algo Weekty
1	Introduction to Spacecraft Control		1/10/22	2+119/17-	TLM2	
	Control Requirements: Attimute Control and station beeping Ametions, type of control maneuvers	2	7/10/33, 11/10/33	ast inter	TLM2	
1	Stabilisation Schemes: Spin stabilisation	1	19/10/39	24/1923	TLM2	
r l ,	provity pradient method, 3 axis stabilization	1	14/10/23	24 for for	11.M2	
ā,	Commonly Used Control Systems: Mass exputation systems, Momentum exchange systems	9	14/10/22, 18/10/22	21/10/20	TLM2	
Ô;	Civro and Magnetic Torque scensors, Stor and son sensor, Earth sensor,	2	19/10/22, 21/10/22	alita	TLM2	
7.	Magnetumeters and Inertial Sensors.	1	22/10/22	5/11/22-	-11.M2	
10:0	f classes required to complete UN	T-IV: 10		No. of clas	ises takeni	

UNIT:N : Satellite Structures and Thermal Control:

0

A,NA,	Toples to be covered	No, of Classes Required	Tentative Date of Completion	Actual Date of Completio B	Teaching Learning Methods	H()I) Siyn Weekiy
1	Introduction to Satellite Structures and Thermal Control	1	25/10/22	2/11/22	TI-M2	
2,	Batellite mechanical and structural Configuration: Satellite Configuration choices, Launch loads, Separation induced loads, Deployment requirements	3	26/10/22, 28/10/22, 29/10/22	9/10/11 10/10/12 11/10/22	TLM2	
3.	Design and Analysis of Satellite Structures, Structural materials and Patrication	2	1/11/22, 2/11/22	19/1122	TLM2	
4.	The Heed of Thermal Control Internally and externally induced Illemnal control	1	4/11/22	18/1/22-	TLM2	
6,	Heat Fransfer Mechanism: Internal and External to the Spacecraft	1	5/11/22	10/1/22-	TLM2	
6	Thermal Control Systems Active method and Passive method	2	9/11/22, 11/11/22	19/1/22	TLM2	
No, o	r I classes required to complete UNIT	V 10		No. of cla	ises taken:	2012231

Teaching	Learning Methods
TIMI	Chalk and Talk

TLM4 Dem

Demonstration (Lab/Field Visit)

TLM2	PPT scheroe	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project
has a construction of the second s			a an a thread of a composited spectra to the second system of a single district of a single statement of the second spectrum of the

,	1 1 1
ſ	1 Mar
ŝ	8. 31 41
11	2 3+ 4 + 3- 3- 3- 3-

PART-C

EVALUATION PROCESS (R17 Regulations):

• 1 1 - 14 ·

1 Carlo

ř.

Evaluation Task	Marks
Assignment-1 (Unit-1)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-1 & 11)	M1⇔20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II=Mid Examination (Units-III, JV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100
f(x)	
6 a to 5 to 1	
I p to the	1. A.

PART-D

PROGRAMME OUTCOMES (POs):

1 04	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
1.0 5	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
roă	Dexign/development of solutions: Design solutions for complex engineering problems and dexign system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct invextigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, logal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
107	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
10.6	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
r0 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
r0 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the inter disciplinary skills to meet current and future needs of industry.
rso 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues related to real time applications

Esula manuctor Mr. K. Bhanu

(

m **Course Coordinator**

Course Coordinator Mr. P. James Vijay

Module Coordinator Dr. M. V. Sudhakar

Dr. Y. Amar Babu

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) L.B.Reddy Nagar, Mylavaram - 521 230, N.T.R. District, Andhra Pradesh, India Affiliated to JNTUK, Kakinada & Approved by AICTE New Delhi Accredited by NAAC with 'A' grade, An ISO 9001:2015 Certified Institution

DEPARTMENT OF AEROSPACE ENGINEERING

Website: https://www.lbrce.ac.in/ase/index.php Email: hodaero@lbrce.ac.in Phone:08659-222933 Ext:624/623

ACADEMIC YEAR: 2022-23

COURSE HANDOUT Part-A

COURSE INSTRUCTORS : Mr. Nazumuddin Shaik / Mr.G.V.Surya Narayana.

COURSE NAME & CODE : Aircraft Component Modeling and Analysis-17AE66

L-T-P STRUCTURE : 0-0-2 COURSE CREDITS : 1

PROGRAM : B.Tech. VII-Sem.

COURSE COORDINATOR: Mr.S. Indrasena Reddy

PRE-REQUISITE: Engineering Graphics, Computer Aided Machine Drawing

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The main objective of this course is to learn surface modeling package (CATIA) to draw 2D sketches, 3D parts, various aircraft components and assembly drawing and finite element package (ANSYS) to analyze the behavior of simple structural elements under static loading system.

COURSE OUTCOMES (COs)

At the end of the semester, the student will be able

- CO1: Draw aircraft components in 2D and 3D geometric modeling (Apply-L3)
- **CO2:** Solve and analyze the structural components of aircraft for deformations and stresses using a numerical tool. (Analyze-L4)

COURSE ARTICULATION MATRIX (Correlation between COs& POs, PSOs):

COs	PO 1	PO 2	PO 3	PO 4	РО 5	PO 6	РО 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
C01	3	2	3	2	3	-	-	-	-	-	-	2	3	3
CO2	3	3	3	3	3	-	-	-	-	-	-	3	3	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

<u>Part-B</u>

S.No	Tentative Date of Completion	Actual Date of Completion		6 - AIRCRAFT COMPONENT LING AND ANALYSIS(ACMA) LAB	Learning Outcome COs	HOD Sign Weekly
			List of E	xperiments		
1	04-08-2022		ACMA I	ntroduction-CATIA Introduction	CO1	
2	11-08-2022		Exp-1	Aircraft Component Design-I	CO1	
3	18-08-2022		Exp-2	Aircraft Component Design-II	CO1	
4	25-08-2022		Exp-3	Aircraft Component Design-III	CO1	
5	01-09-2022		Exp-4	Aircraft Component Design-IV	CO1	
6	29-09-2022		Exp-5	Assembly of Components	CO1	
7	13-10-2022		Exp-6	Static analysis on beam	CO2	
8	20-10-2022		Exp-7	Eigenvalue Buckling analysis	CO2	
9	27-10-2022		Exp-8	Model analysis on Wing	CO2	
10	03-11-2022		Exp-9	Thermal analysis	CO2	
11	10-11-2022		Exp-10	Static analysis of composite laminate	CO2	

COURSE DELIVERY PLAN (LESSON PLAN):

Contents beyond the Syllabus:

<u>Part - C</u>

EVALUATION PROCESS (R17 Regulations) :

Pa	rameter	Marks		
Day – to – Day	Observation	A1 = 10 Marks		
Work	Record	A2 = 10 Marks		
Internal Test		B =10 Marks		
Attendance		C = 05 Marks		
Viva – Voce During	Regular Lab Sessions	D = 05 Marks		
Cumulative Internal	Examination	A1+ A2 + B+C+D = 40 Marks		
Semester End Exami	nations	E = 60 Marks		
Total Marks: A1+ A	A2 + B + C + D + E	100 Marks		

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

Program Educational Objectives (PEO)

- **PEO1:** To provide students with sound mathematical, engineering and multidisciplinary knowledge to solve Aerospace and Allied Engineering problems.
- **PEO2:** To prepare students to excel in higher education programs and to succeed in industry/academia profession.
- **PEO3:** To inculcate ethical attitude, leadership qualities, problem solving abilities and lifelong learning for a successful professional career.

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

- **PO1: Engineering Knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- **PO2: Problem Analysis:** Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
- **PO3: Design/Development of Solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4: Conduct Investigation of Complex Problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.
- **PO5: Modern Tool Usage:** Create, select and apply appropriate techniques, resources, and modern engineering and IT tools including predictions and modeling to complex engineering activities with an understanding of the limitations.
- **PO6: The Engineer and Society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7: Environment and Sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8: Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9: Individual and Team Work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
 - **PO10: Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

- **PO11: Project Management and Finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12: Life-long Learning:** Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

PSO1: To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight Dynamics in the Aerospace vehicle design

PSO2: To prepare the students to work effectively in Aerospace and Allied Engineering organizations

Mr. Nazumuddin Shaik

Dr.Prabhu L

Dr.P.Lovaraju

Course Instructor

Module Coordinator

HOD