

COURSE HANDOUT

PART-A

Name of Course Instructo	r: Mr. G V SURYA NARAYANA	
Course Name & Code	: 20AE08-Aircraft Systems and Instrumen	its
L-T-P Structure	: 3-0-0	Credits: 3
Program/Sem/Sec	: B.Tech-V SEM	A.Y.: 2023-24

PREREQUISITE: Elements of Aerospace Engineering

COURSE EDUCATIONAL OBJECTIVES (CEOs): To learn the conventional and modern control systems and working principle of different types of hydraulic and pneumatic systems, engine systems, auxiliary systems, and flight and navigation instruments used in an aircraft.

COURSE OUTCOMES (COs): At the end of the semester, the student will be able to

- **CO1** To identify the various types of controls in the airplane design (Understand-L2)
- **CO2** To understand the performance of hydraulic and pneumatic systems in the aircraft operation (Understand-L2)
- **CO3** To analyze the performance of various engine systems of an aircraft (Analyze-L4)
- **CO4** To employ necessary auxiliary systems in the operation of an aircraft (Apply-L3)
- **CO5** To employ various instruments necessary of the aircraft operation (Understand-L2)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	1	1	-	-	-	-	-	-	-	3	2	3
CO2	3	1	1	1	-	-	-	-	-	-	-	3	2	3
CO3	3	1	1	1	-	-	-	-	-	-	-	3	2	3
CO4	3	1	1	1	-	-	-	-	-	-	-	3	2	3
CO5	3	1	1	1	I	-	-	I	I	-	I	3	2	3
		1 -	Low				2 –I	Mediu	m		3	- High	L	

TEXTBOOKS:

- T1 McKinley. J. L, Bent. R.D, Aircraft Maintenance and Repair, McGraw-Hill, 1993.
- **T2** General Handbooks of Airframe and Power Plant Mechanics, U.S. Dept. of Transportation, Federal Aviation Administration, The English Book Store, New Delhi1995.

REFERENCE BOOKS:

- R1 Mekinley. J. L, Bent. R. D, Aircraft Power Plants, McGraw-Hill, 1993.
- R2 Pallet. E. H. J, Aircraft Instruments & Principles, Pitman & Co, 1993.
- **R3** Treager. S, Gas Turbine Engine Technology, Third Edition, McGraw-Hill Education.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: AIRPLANE CONTROL SYSTEMS:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to airplane control systems	01	03-07-2023		TLM1, TLM2	
2.	Conventional Control Surfaces	01	04-07-2023		TLM1, TLM2	
3.	Power Assisted and	01	06-07-2023		TLM1, TLM2	
4.	Fully Powered Flight Controls	01	07-07-2023		TLM1, TLM2	
5.	Power Actuated Systems,	01	10-07-2023		TLM1, TLM2	
6.	Engine Control Systems (FADEC)	01	11-07-2023		TLM1, TLM2	
7.	Push Pull Rod System	01	13-07-2023		TLM1, TLM2	
8.	Operating Principles	01	14-07-2023		TLM1	
9.	Modern Control Systems	01	17-07-2023		TLM1	
10.	Digital Fly by Wire Systems	01	18-07-2023		TLM1, TLM2	
11.	Auto Pilot System	01	20-07-2023		TLM1,	
12.	Active Control Technology.Assignment-1	01	21-07-2023		TLM1, TLM2	
	No. of classes required to c	No. of c	classes take	n:		

UNIT-II: AIRCRAFT SYSTEMS:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
13.	Introduction to aircraft systems	01	24-07-2023		TLM1	
14.	Hydraulic Systems	01	25-07-2023		TLM1	
15.	Pneumatic Systems	01	27-07-2023		TLM1	
16.	Study of Typical Workable System Components	01	28-07-2023		TLM1, TLM2	
17.	System Components Advantages	01	31-07-2023		TLM1	
18.	System Components Working Principles	01	01-08-2023		TLM1	
19.	Typical Air Pressure System	01	03-08-2023		TLM1, TLM2	

	No. of classes required to co	No. of classes taken:		
24.	Classifications (Air Oleo). Assignment-I	01	11-08-2023	TLM1, TLM2
23.	Landing Gear Systems	01	10-08-2023	TLM1, TLM2
22.	Types of Landing Gear Systems	01	08-08-2023	TLM1
21.	Typical Pneumatic Power System Components,	01	07-08-2023	TLM1, TLM2
20.	Brake System	01	04-08-2023	TLM1

UNIT-III: ENGINE SYSTEMS:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
25.	Introduction to Engine Systems	01	14-08-2023		TLM1	
26.	Engine Systems	01	17-08-2023		TLM1	
27.	Fuel Systems	01	18-08-2023		TLM1, TLM2	
28.	Fuel Systems for Piston Engines and	01	21-08-2023		TLM1, TLM2	
29.	Fuel Systems for Jet Engines,	01	22-08-2023		TLM1	
30.	Types of Fuel Systems	01	24-08-2023		TLM1, TLM2	
31.	Components of Multi Engines. Assignment-I	01	25-08-2023		TLM1	
		MI	D EXAM			
32.	Lubricating Systems for Piston	01	04-09-2023		TLM1	
33.	and Jet Engines, Starting	01	05-09-2023		TLM1, TLM2	
34.	Ignition Systems,	01	07-09-2023		TLM1, TLM2	
35.	Typical Examples for Piston	01	08-09-2023		TLM1	
36.	and Jet Engines. Assignment-II	01	11-09-2023		TLM1	
	No. of classes required to c	omplete UN	IT-III: 12	No. of o	classes take	n:

UNIT-IV: AUXILIARY SYSTEM:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
37.	Introduction to Auxiliary System	01	12-09-2023		TLM1, TLM2	
38.	Basic Air Cycle Systems	01	14-09-2023		TLM1	
39.	Vapor Cycle Systems	01	15-09-2023		TLM1	
40.	Boot-Strap Air Cycle System	01	19-09-2023		TLM1	
41.	Evaporative Vapor Cycle Systems	01	21-09-2023		TLM1, TLM2	
42.	Evaporation Air Cycle Systems	01	22-09-2023		TLM1, TLM2	
43.	Oxygen Systems	01	25-09-2023		TLM1, TLM2	
44.	Fire Protection Systems	01	26-09-2023		TLM1	
45.	De-icing and Anti-Icing System. Assignment-II	01	29-09-2023		TLM1	
	No. of classes required to cor	No. of	classes take	en:		

UNIT-V: AIRCRAFT INSTRUMENTS:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
46.	Introduction to Aircraft Instruments	01	03-10-2023		TLM1	
47.	Flight Instruments	01	05-10-2023		TLM1, TLM2	
48.	Navigation Instruments	01	06-10-2023		TLM1, TLM2	
49.	Principles and Operation	01	09-10-2023		TLM1	
50.	Accelerometers , Air Speed Indicators	01	10-10-2023		TLM1	
51.	Mach Meters, Altimeters	01	12-10-2023		TLM1, TLM2	
52.	Gyroscopic Instruments	01	13-10-2023		TLM1, TLM2	
53.	Study of Various Types of Engine Instruments	01	16-10-2023		TLM1	
54.	Operation and Principles	01	17-10-2023		TLM1, TLM2	
55.	Tachometers, Temperature Gauges	01	19-10-2023		TLM1	
56.	Pressure Gauge Assignment-II	01	20-10-2023		TLM1, TLM2	
	No. of classes required to co	No. of	classes take	en:		

Advance Topics:

S. No.	Advance Topic	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
57.	Advance controlls and Syatems	01	24-10-2023		TLM1, TLM5	
58.	Engine parameters	01	26-10-2023		TLM1, TLM5	
59.	Advance Instruments	01	27-10-2023		TLM1, TLM5	
	No. of Advance classes required to complete: 03				classes take	n:

Teaching	Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

EVALUATION PROCESS (R17 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	<mark>M=30</mark>
Cumulative Internal Examination (CIE): M	<mark>30</mark>
Semester End Examination (SEE)	70
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: To apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethic s: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and teamwork : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures, and Flight				
	Dynamics in Aerospace vehicle design.				
PSO 2	To prepare the students to work effectively in Aerospace and Allied Engineering				
	organizations.				

Title

Course Instructor

Module Coordinator

Head of the Department

Signature

Name of	MR. G V SURYA NARAYANA
the Faculty	MR. G V SURIA NARAIANA

DR. P. LOVARAJU

DEPARTMENT OF AEROSPACE ENGINEERING COURSE HANDOUT

PART-A

Name of Course Instructor	: I.Dakshina Murthy		
Course Name & Code	: Gas Dynamics20AE09		
L-T-P Structure	: 2-1-0	Credits	: 3
Program/Sem/Sec	: B.Tech., V-Sem.	A.Y	: 2023-2024

PRE-REQUISITE: Engineering Fluid Mechanics, Engineering Thermodynamics, Aerodynamics

Course Educational Objectives: To learn the basic concepts of compressible fluid flows, steady one-dimensional flow properties discharging from a reservoir, the supersonic flow properties, the basic formulation for flow with friction and heat transfer and the theoretical aspects of compressible flow over wings.

20AE09: 1	Apply the of compressible fluid flow equations solve flow problems (Apply-L3)					
20AE09:2	Apply the steady one-dimensional flow principles in designing the nozzles and					
	diffusers(Apply-L3)					
20AE09: 3	Analyze the supersonic flow behavior over objects (Analyze-L4)					
20AE09: 4	Analyze fluid flow through ducts by considering friction and heat transfer affects					
	(Analyze-L4)					
20AE09: 5	Apply compressible flow theory to analyze flow over wings (Apply-L3)					

CourseCode	COs			Program Outcomes									PSOs		
		1	2	3	4	5	6	7	8	9	10	11	12	1	2
	CO1	3	3	2	2	-	-	-	-	-	-	-	3	3	3
	CO2	3	2	2	2	-	-	-	-	-	-	-	3	3	3
20AE09	CO3	3	3	2	3	-	-	-	-	-	-	-	3	3	3
	CO4	3	2	2	3	-	-	-	-	-	-	-	3	3	3
	CO5	3	2	2	3	-	-	-	-	-	-	-	3	3	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'1- Slight (Low), 2 – Moderate(Medium), 3 - Substantial (High).

TEXT BOOKS:

T1 Rathakrishnan. E, Gas Dynamics, 7th Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2021

REFERENCE BOOKS:

R1	Ascher H. Shapiro, The dynamics and thermodynamics of compressible fluid flow Vol 1,
	The Ronald press Co. New York, 1953
R2	Lipmann. H. W, Roshko. A, Elements of Gas Dynamics, John Wiley & Sons, New York
R3	Thomson P.A., Compressible Fluid Dynamics, McGraw-Hill, New York, 1972
R4	Anderson, J.D., "Fundamentals of Aerodynamics", McGraw-Hill Book Co., New York, 1998

PART-B

COURSE DELIVERY PLAN (LESSON PLAN): UNIT-I: Basics of Compressible Flow

	T. Dasies of Compressible Flow	No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes Required	Date of Completion	Date of Completion	Learning Methods	Sign Weekly
1.	Overview of the Course, Course outcome, Introduction	2	04-07-2023 05-07-2023	Completion	TLM1	weekiy
2.	Revision of Thermodynamics related to this course	2	06-07-2023 11-07-2023		TLM2	
3.	Compressibility and its limiting conditions	1	12-07-2023		TLM1	
4.	Speed of Sound and its thermodynamics formulation	1	13-07-2023		TLM1	
5.	Introduction to Entropy, Entropy formulations	1	15-07-2023		TLM2	
6.	Basic form of Isentropic relations	1	18-07-2023		TLM1	
7.	Isentropic relations suitable for Compressible flows (in terms of Mach number), Stagnation Properties	1	19-07-2023		TLM1	
8.	Mach Angle, Mach cone, Mach wave, Shock Wave	1	20-07-2023		TLM2	
9.	Wave Propagation	1	22-07-2023		TLM2	
10.	Tutorial-I	1	25-07-2023		TLM3	
No. of	classes required to complete UNIT-I:	12		No. of classes	s taken:	

UNIT-II: Steady One-Dimensional Flow

	~	No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
		Required	Completion	Completion	Methods	Weekly
1.	Introduction, Fundamental	1	26-07-2023		TLM1	
11	Equations				12.011	
2.	Discharge from a reservoir	1	27-07-2023		TLM1	
2.	formulation				I LIVI I	
3.	Mass flow per Unit Area	1	01-08-2023		TLM1	
4.	Critical Values	1	02-08-2023		TLM1	
5.	Stream tube Area velocity relation	1	03-08-2023		TLM1	
	Nozzle and its types, Applications	1	05-08-2023		TLM1&	
6.	of Nozzle, De Laval Nozzle, Area				TLM1&	
	Mach number relation				I LIVIZ	
7.	Isentropic flow through nozzle,	2	08-08-2023		TLM1	
1.	Nozzle flow physics		09-08-2023		I LIVI I	
8.	Diffusers, Compressibility	1	10-08-2023		TI M1	
0.	correction to dynamic pressure				TLM1	
9.	Tutorial-2	1	16-08-2023		TLM3	
No. of	classes required to complete UNIT-II	: 10	·	No. of classes	taken:	

UNIT-III: Shock and Expansion Waves

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction and Types of Waves	1	17-08-2023		TLM2	
2.	Normal Shock-Equations of Motion, Normal Shock relation for perfect gas	2	19-08-2023 22-08-2023		TLM1	

3.	Hugoniot Equation	1	23-08-2023		TLM1	
4.	Oblique Shock introduction, Oblique Shock relations	2	24-08-2023 26-08-2023		TLM1	
5.	Relation Between β-θ-M	2	05-09-2023 07-09-2023		TLM1	
6.	Detached shocks, Expansion waves, Prandtl Meyer Flow	1	09-09-2023		TLM1& TLM2	
7.	Flow with shocks and expansion waves at the exit of a convergent- divergent nozzle	1	12-09-2023		TLM 1	
8.	Tutorial-3	1	13-09-2023		TLM 3	
No. of	classes required to complete	UNIT-III: 11	1	No. of classes	taken:	

Mid-1 28-08-2023 to 02-09-2023

UNIT-IV: Flow with Friction and Heat Transfer

		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
		Required	Completion	Completion	Methods	Weekly
1.	Introduction, Flow in constant Area	1	14-09-2023		TLM1	
1.	Duct with friction				I LIVII	
2.	Adiabatic Constant area flow of a	2	16-09-2023		TLM1	
۷.	perfect gas (basic Formulation)		19-09-2023		I LIVI I	
	Definition of Friction Coefficient,	1	20-09-2023			
3.	Effect of Wall Friction on Fluid				TLM1	
	Properties					
4.	Working Relations	1	21-09-2023		TLM1	
5.	Flow with heating and cooling in	1	23-09-2023		TLM1	
5.	ducts, Rayleigh line relation					
6.	Basic Formulation	1	26-09-2023		TLM1	
7.	Working Relations	1	27-09-2023		TLM1	
8.	Tutorial - 4	1	30-09-2023		TLM3	
No. of	classes required to complete UNIT-IV	:09		No. of classes	s taken:	

UNIT-V: Compressible Flow over Wings

S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign
		Required	Completion	Completion	Methods	Weekly
	Introduction, Potential		03-10-2023			
1.	Equation for Compressible	2	04-10-2023		TLM1&2	
	flow		01 10 2025			
2.	Linearization of Potential	1	05-10-2023		TLM1&	
۷.	Equation	1			2	
3.	Prandtl-Glauert Rule	1	07-10-2023		TLM1&2	
4.	Critical Mach Number	1	10-10-2023		TLM1	
5.	Drag-Divergence Mach	1	11-10-2023		TLM1&2	
5.	Number	1			1 L N 1 & 2	
	Area-Rule, Supercritical					
6.	Aerofoil, Forward Swept	2	12-10-2023		TI M1 9 2	
	and Swept Back Wings,	2	17-10-2023		TLM1&2	
	Delta Wings					

7.	Crocco's Theorem	1	18-10-2023		TLM1	
8.	Tutorial -5	1	19-10-2023		TLM3	
No. of	classes required to complete U	JNIT-V:10		No. of classes	s taken:	

Revision/Advanced Topics/Content Covered beyond Syllabus:

S.No.	Topics to be covered	Dates	TLM	
1	Revision Cycle -1	21-10-2023	TLM	
1.	Revision Cycle -1	24-10-2023	I LIVI	
2	Revision Cycle -2	25-10-2023	TLM1	
۷.	Revision Cycle -2	26-10-2023		
3.	Hypersonic Flows Introduction & Basic Aspects, Applications	28-10-2023	TLM1	

Mid-2 10-07-2023 to 15-07-2023

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

EVALUATION PROCESS (R20 Regulations):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30
Cumulative Internal Examination (CIE) :M	30
Semester End Examination (SEE)	70
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering					
	fundamentals, and an engineering specialization to the solution of complex engineering					
	problems.					
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex					
	engineering problems reaching substantiated conclusions using first principles of mathematics,					
	natural sciences, and engineering sciences.					
PO 3	Design/development of solutions: Design solutions for complex engineering problems and					
	design system components or processes that meet the specified needs with appropriate					
	consideration for the public health and safety, and the cultural, societal, and environmental					
	considerations.					

PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modeling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight Dynamics
	in the Aerospace vehicle design
PSO 2	To prepare the students to work effectively in aerospace and allied engineering organizations

Course Instructor` I.Dakshina Murthy Module Coordinator Dr. P. Lovaraju HOD Dr. P. Lovaraju Estd.: 1998

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

L. B. Reddy Nagar, Mylavaram – 521 230, N.T.R. District, Andhra Pradesh, India Affiliated to JNTUK, Kakinada & Approved by AICTE New Delhi Accredited by NBA under Tier – I, Accredited by NAAC with 'A' grade, An ISO 21001:2018, 500001:2018, 14001:2015 Certified Institution

DEPARTMENT OF AEROSPACE ENGINEERING

Website: https://www.lbrce.ac.in/ase/index.php Email: hodaero@lbrce.ac.in Phone:08659-222933 Ext:624/623

COURSE HANDOUT

PART-A

Name of Course Instructor: Mr. Nazumuddin Shaik						
Course Name & Code	: Aircraft Structures-II-20AE10					
L-T-P Structure	: 2-1-0					
Program/Sem/Sec	: B.Tech, V-Sem					

Credits: 3 **A.Y.:** 2023-24

PREREQUISITE: Strength of Materials and Aircraft Structures-I

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The objective of the course is to enable the students apply standard methods calculate the stress and displacement of thin walled symmetrical and unsymmetrical components located in fuselage, wing and landing gear are subjected static loads.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

C01	Assess the behaviour of beam structures subjected to different loading conditions (Apply-L3)
CO2	Estimate the shear flow distribution and location of shear centre for open sections (Apply-L3)
CO3	Determine the shear flow distribution and location of shear centre in closed section beams (Apply-L3)
CO4	Formulate the relations for thin plates subjected to bending and buckling loads (Apply-L3)
C05	Analyze the behaviour of bending and shear flow over aircraft wing and fuselage cross-sections (Analyze-L4)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
CO1	3	2	2	2	-	-	-	-	-	-	-	2	2	3
CO2	3	3	2	2	-	-	-	-	-	-	-	2	2	3
CO3	3	3	2	2	-	-	-	-	-	-	-	3	3	3
CO4	3	3	3	2	-	-	-	-	I	-	-	3	3	3
CO5	3	3	3	2	-	-	-	-	I	-	-	3	3	3
1 - Low					2 -1	Mediu	m		3	– High				

TEXTBOOKS:

T1	Peery. D. J, Azar. J. J, Aircraft Structures, Second Edition, McGraw–Hill, New York, 2007.
T2	Megson, T. H. G, Aircraft Structures for Engineering Students, Sixth Edition, Elsevier 2017.
DDDD	

REFERENCE BOOKS:

R1	Bruhn. E. F. Analysis and Design of Flight Vehicles Structures, S. r. Jacobs, 1973.
R2	Rivello. R. M, Theory and Analysis of Flight Structures, McGraw-Hill, 1993.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: BENDING STRESS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Course and COs	1	03-07-2023			
2.	Introduction to Unit-I	1	04-07-2023		TLM1	
3.	Introduction - Principal Axis	1	05-07-2023		TLM1	
4.	Neutral Axis Methods	1	10-07-2023		TLM1	
5.	Bending Stresses- Beams of Symmetric Sections Symmetric Loads	1	11-07-2023		TLM1&2	
6.	Beams of Symmetric Sections with Skew Loads	1	12-07-2023		TLM1&2	
7.	TUTORIAL	1	15-07-2023		TLM3	
8.	Unsymmetrical Sections with Symmetric Loads.	1	17-07-2023		TLM1	
9.	Unsymmetrical Sections with Symmetric Loads.	1	18-07-2023		TLM1	
10.	Unsymmetrical Sections with Skew Loads.	1	19-07-2023		TLM1&2	
11.	Unsymmetrical Sections with Skew Loads	1	22-07-2023		TLM1&2	
12.	Problems	1	24-07-2023		TLM1	
13.	Problems	1	25-07-2023		TLM1	
No.	of classes required to co	omplete UN	IT-I: 13	No. of classes	s taken:	

UNIT-II: SHEAR FLOW IN OPEN SECTIONS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
14.	Introduction to Unit-II	1	26-07-2023		TLM1&2	
15.	Thin Walled Beams Shear Flow	1	31-07-2023		TLM1&2	
16.	Concept of Shear Flow	1	01-08-2023		TLM1&2	
17.	Shear Centre	1	02-08-2023		TLM1	
18.	Shear Flow in Open- Section	1	05-08-2023		TLM1	
19.	TUTORIAL	1	07-08-2023		TLM3	
20.	Shear Flow in Open- Section Symmetrical	1	08-08-2023		TLM1	
21.	Shear Flow in Open- Section Symmetrical	1	09-08-2023		TLM1	
22.	Shear Flow in Open- Section Unsymmetrical	1	14-08-2023		TLM1	
23.	Shear Flow in Open- Section Unsymmetrical	1	16-08-2023		TLM1	
24.	Problems	1	19-08-2023		TLM1	
25.	TUTORIAL	1	19-08-2023		TLM3	
No.	No. of classes required to complete UNIT-II: 12 No. of classes taken:					

UNIT-III: SHEAR FLOW IN CLOSED SECTIONS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
26.	Introduction to Unit-III	1	21-08-2023		TLM1	
27.	Bredt–Batho Theory	1	22-08-2023		TLM1	
28.	Shear Flow in Closed- Section	1	23-08-2023		TLM1&2	
29.	Single Cell –Shear Flow	1	26-08-2023		TLM1&2	
30.	Multi-Cell –Shear Flow	1	04-09-2023		TLM1&2	
31.	Shear Centre	1	05-09-2023		TLM1	
32.	TUTORIAL	1	06-09-2023		TLM3	
33.	Shear Centre & Torsion	1	11-09-2023		TLM1	
34.	Thin Wall Bending with skin Effective	1	12-09-2023		TLM1&2	
35.	Thin Wall Bending with skin Ineffective	1	13-09-2023		TLM1&2	
36.	TUTORIAL	1	16-09-2023		TLM3	
37.	Problems	1	18-09-2023		TLM1	
N	No. of classes required to complete UNIT-III: 12 No. of classes taken:					

UNIT-IV: BENDING & BUCKLING OF THIN PLATES

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
38.	Plates Subjected to Pure Bending and Twisting	1	20-09-2023		TLM1	
39.	Plates Subjected to Distributed and Transverse Load	1	23-09-2023		TLM1&2	
40.	In-Plane Loading	1	25-09-2023		TLM1&2	
41.	Thin Rectangular Plate with Small Initial Curvature.	1	26-09-2023		TLM1&2	
42.	TUTORIAL	1	27-09-2023		TLM3	
43.	Introduction to Inelastic buckling of plates	1	30-09-2023		TLM1&2	
44.	Determination of critical load for a flat plate	1	02-10-2023		TLM1&2	
45.	Local instability, Instability of stiffened panels	1	03-10-2023		TLM1&2	
46.	Failure stress in plates and stiffened panels	1	04-10-2023		TLM1&2	
No.	No. of classes required to complete UNIT-IV: 09 No. of classes taken:					

UNIT-V: STRESS ANALYSIS IN WING AND FUSELAGE

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
47.	Introduction to Unit-V	1	07-10-2023		TLM1	
48.	Study of Wing Spars and Box Beams	1	09-10-2023		TLM1	
49.	Shear Resistant Web Beams	1	10-10-2023		TLM1&2	
50.	Tension Field Web Beams (Wagner's)	1	11-10-2023		TLM1&2	

51.	TUTORIAL	1	14-10-2023	TLM3	
52.	Procedures to Find Shear stress Distribution for Cantilever Beam.	1	16-10-2023	TLM1&2	
53.	Procedures to Bending Moment Distribution for Cantilever Beam.	1	17-10-2023	TLM1&2	
54.	TUTORIAL	1	18-10-2023	TLM3	
55.	Problems	1	21-10-2023	TLM1	
56.	Problems	1	28-10-2023	TLM1	
No. c	No. of classes required to complete UNIT-V: 10 No. of classes taken:				

Teaching	Teaching Learning Methods				
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

PART-C

EVALUATION PROCESS (R17 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30
Cumulative Internal Examination (CIE): M	30
Semester End Examination (SEE)	70
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs): Engineering Graduates will be able to:

	Engineering Knowledge: Apply the knowledge of mathematics, science,
PO 1	engineering fundamentals and an engineering specialization to the solution of
	complex engineering problems.
	Problem Analysis: Identify, formulate, review research literature and analyze
PO 2	complex engineering problems reaching substantiated conclusions using first
	principles of mathematics, natural sciences and engineering sciences.
PO 3	Design/Development of Solutions: Design solutions for complex engineering
PU 3	problems and design system components or processes that meet the specified needs

	with appropriate consideration for the public health and safety, and the cultural,
	societal, and environmental considerations.
PO 4	Conduct Investigation of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of
PO 5	data and synthesis of the information to provide valid conclusions. Modern Tool Usage: Create, select and apply appropriate techniques, resources, and modern engineering and IT tools including predictions and modeling to complex engineering activities with an understanding of the limitations.
PO 6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and Teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO	To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and
1	Flight Dynamics in the Aerospace vehicle design
PSO	To prepare the students to work effectively in Aerospace and Allied
2	Engineering organizations

Title	Course Instructor	Module Coordinator	Head of the Department
Name of the Faculty	Mr. Nazumuddin Shaik	Mr. Nazumuddin Shaik	Dr. P. Lovaraju
Signature			

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) L. B. Reddy Nagar, Mylavaram - 521 230, N.T.R. District, Andhra Pradesh, India Affiliated to JNTUK, Kakinada & Approved by AICTE New Delhi Accredited by NBA (Tier - I) and NAAC with 'A' grade, An ISO 9001:2015 Certified DEPARTMENT OF AEROSPACE ENGINEERING Website: https://www.lbrce.ac.in/ase/index.php Email: hodaero@lbrce.ac.in Phone:08659-222933 Ext:624/623

COURSE HANDOUT PART-A

Name of Course Instructor:B. Udaya LakshmiCourse Name & Code: FEME & 20AE12L-T-P Structure:3-1-0Program/Sem/Sec: B.Tech/V Sem

Credits: 3 **A.Y.:** 2023-24

PREREQUISITE: Engineering Mechanics

COURSE EDUCATIONAL OBJECTIVES (CEOs):

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Identify mathematical model for solution of common engineering problems (Understand-L2)
CO2	Analyze structural behavior of Plane Truss Elements (Analyze-L4)
CO3	Determine the design quantities (deformation, strain, stress) for engineering structures under
CO3	different loading conditions (Apply-L3)
CO4	Formulate new solutions for the existing problems using FEM approaches (Apply-L3)
CO5	Estimate natural frequencies of bar and beam structures (Apply-L3)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PS01	PSO2
CO1	3	3	2	1	-	-	-	-	-	-	-	2	3	3
CO2	3	3	3	3	-	-	-	-	-	-	-	3	3	3
CO3	3	3	3	3	-	-	-	-	-	-	-	3	3	3
CO4	3	3	2	3	-	-	-	-	-	-	-	3	3	3
CO5	3	3	3	2	-	-	-	-	-	-	-	3	3	3
		1	- Low			2 –M	edium			2	3 - High			

REFERENCES

- Chandraputla, Ashok, Belegundu., Introduction to Finite Elements in Engineering, 4th edition, Pearson Education India, 2015
- 2. Rao.S.S, The Finite Element Methods in Engineering, 4th edition, 6th reprint, B.H. Pergamon, 2010.
- Reddy.J.N, An introduction to Finite Element Method, 3rd edition, 13th reprint, McGraw Hill, 2011.
- Kenneth H. Huebner, Donald L. Dewhirst, Douglas E Smith, Ted G. Byrom., The Finite Element Method for Engineers, 4th edition, John Wiley & sons (ASIA) Pvt Ltd, 2001.
- 5. David Hutton., Fundamentals of Finite Element Analysis, Tata McGraw Hill, 2005
- 6. George R Buchanan, R.Rudra Moorthy., Finite Element Analysis, Tata McGraw Hill,

2006

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: INTRODUCTION TO FEM & 1-D PROBLEMS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to FEM	1	4-7-2023		TLM1	
2.	Equilibrium equations	1	5-7-2023		TLM1	
3.	Stresses and equilibrium	1	7-7-2023		TLM1	
4.	Strain displacement relations	1	11-7-2023		TLM1	
5.	Stress strain relations	1	12-7-2023		TLM1	
6.	Plane stress and plane strain problems	1	14-7-2023		TLM1	
7.	Potential energy and equilibrium method	1	15-7-2023		TLM1	
8.	FE Formulation from governing diff. equations	1	18-7-2023		TLM1	
9.	Weighted residual methods	1	19-7-2023		TLM1	
10.	FE Modeling, 1-D bar problems	1	21-7-2023		TLM1	
11.	coordinates of shape functions	1	22-7-2023		TLM1	
12.	Assembly of GSM & Load vector	1	25-7-2023		TLM1	
13.	Finite element equations	1	26-7-2023		TLM3	
14.	FE-treatment of boundary conditions	1	28-7-2023		TLM1	
No. of classes required to complete UNIT-I: 14				No. of clas	sses taker	1:
	UNIT-II: ANALYSIS OF TRUSSES:					

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
15.	Introduction- Plane Trusses	1	1-8-2023		TLM1	
16.	Local and Global Coordinate Systems	1	2-8-2023		TLM1	
17.	Transformation Matrix	1	4-8-2023		TLM1	
18.	Derivation of Element Stiffness Matrix	1	5-8-2023		TLM1	
19.	Stress Calculations.	1	8-8-2023		TLM1	
20.	Element Stiffness Matrix	1	9-8-2023		TLM1	
21.	Plane truss Problems – Vertical deformation	1	11-8-2023		TLM1	
22.	Plane truss Problems	1	12-8-2023		TLM3	
23.	Plane truss Problems -Stresses	1	16-8-2023		TLM1	
No.	No. of classes required to complete UNIT-II: 09 No. of classes taken:					

UNIT-III: ANALYSIS OF BEAMS:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completio n	Actual Date of Completio n	Teaching Learning Methods	HOD Sign Week ly
24.	Analysis of Beams: Beam elements	1	18-8-2023		TLM1	
25.	Types loading ,DOF, BC's	1	19-8-2023		TLM1	
26.	Hermite shape functions	1	22-8-2023		TLM1	
27.	Hermite shape functions-Derivation	1	25-8-2023		TLM1	
28.	Element Stiffness matrix	1	26-8-2023		TLM1	
29.	Load vector, Boundary conditions	1	5-9-2023		TLM1	
30.	Beam problems	1	6-9-2023		TLM3	
31.	Two dimensional elements (CST)	1	12-9-2023		TLM1	
32.	CST problems	1	13-9-2023		TLM1	
33.	Shape functions, Stiffness matrix,	1	15-9-2023		TLM1	
34.	Strain-Displacement matrix	1	16-9-2023		TLM1	
35.	Force terms	1	20-9-2023		TLM1	
No.	No. of classes required to complete UNIT-III: 12 No. of classes taken:					

|--|

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
36.	Axisymmetric solids	1	22-9-2023		TLM1	
37.	Finite element modeling-Jacobian Matrix	1	23-9-2023		TLM1	
38.	Element Stiffness matrix	1	26-9-2023		TLM1	
39.	Axisymmetric loading with triangular elements	1	27-9-2023		TLM1	
40.	Axisymmetric Problems	1	29-9-2023		TLM1	
41.	Problems on Axisymmetric Loading	1	30-9-2023		TLM3	
42.	Four nodded isoparametric elements	1	3-10-2023		TLM1	
43.	Jacobian, shape functions	1	4-10-2023		TLM1	
44.	4- node quadrilateral element	1	6-10-2023		TLM1	
45.	Numerical integration	1	7-10-2023		TLM1	
46.	Gauss Quadrature	1	10-10-23		TLM1	
No.	No. of classes required to complete UNIT-IV: 11 No. of classes taken:					

UNIT-V: DYNAMIC ANALYSIS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
47.	Dynamic Analysis intro	1	11-10-23		TLM1	
48.	Lumped mass matrices	1	13-10-23		TLM1	
49.	Consistent mass matrices	1	17-10-23		TLM1	
50.	Problems	1	18-10-23		TLM1	
51.	Evaluation of Eigen values, Eigen vectors	1	20-10-23		TLM1	
52.	Evaluation of stepped bars	1	21-10-23		TLM1	
53.	Eigen values, Eigen vectors	1	21-10-23		TLM3	
54.	Stepped bars Problems	1	25-10-23		TLM1	
55.	Stepped bars Problems- Eigen values	1	27-10-23		TLM1	
56.	Evaluation of Eigen values-Problems	1	28-10-23		TLM1	
No. o	f classes required to complete UNIT-V: 11			No. of clas	sses takei	1:

Teaching	Learning Methods		
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha /MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

PART-C

EVALUATION PROCESS (R17 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	<mark>M=30</mark>
Cumulative Internal Examination (CIE): M	<mark>30</mark>
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight									
	Dynamics in the Aerospace vehicle design									
PSO 2	To prepare the students to work effectively in Aerospace and Allied Engineering									
	organizations									

Course Instructor	Course Coordinator	Module Coordinator	HOD
(B.Udaya Lakshmi)	(S.Indrasena Reddy)	(S.Indrasena Reddy)	(Dr.P.Lovaraju)

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

COURSE HANDOUT

PART-A

Name of Course Instructor	: P. James Vijay		
Course Name & Code	: SATELLITE TECHNOLOGY - 20EC81		
L-T-P Structure	: 3-0-0		Credits : 3
Program/Sem/Sec	: B.Tech., ASE., V-Sem.,	A.Y	: 2023-24
PRE-REQUISITE: Basics re	lated to Dynamics, Kinematics, Thermodyn	amics and H	Properties of
an Ellipse.			

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course provides the knowledge on different laws associated with the motion of a satellite. The course gives the knowledge on launching a satellite into orbit with launch vehicles. The course also provides the knowledge on various subsystems, structures, thermal control, and applications of a satellite.

COURSE OUTCOMES (COs): At the end of the course, students are able to

cocitor	L'OUTEONIED (COS). At the ond of the course, students are usie to
CO 1	List out the operational bands, Space craft control mechanisms, sensors and
	navigational aids for satellite applications (Remember-L1)
CO 2	Summarize the functions of satellite space segment, earth segment, Multiple access
	techniques and satellite services. (Understand-L2)
CO 3	Illustrate the operational principles of satellite power system and space craft
	Control mechanism. (Understand-L2)
CO 4	Outline the concepts of orbital mechanics & satellite communication and its
	application(Understand-L2)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	1	-	-	-	-	3	2	-	-	-	-	1	1	-	-
CO2	1	1	1	-	-	2	1	-	-	-	-	1	2	-	-
CO3	1	1	1	-	-	2	1	-	-	-	-	1	2	-	-
CO4	1	1	1	-	-	2	1	-	-	-	-	1	2	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

T1 Timothy Pratt, Charles Bostian, Jeremy Allnutt, "Satellite communications", John Wiley & Sons,2^{"d} edition, 2003.

REFERENCE BOOKS:

- R1 M. Richharia, "Satellite Communications Systems: Design principles", BS Publications, 2nd Edition, 2005.
- **R2** D.C Agarwal, "Satellite communications", Khanna Publications, 5th Edition, 2006.
- **R3** Richard, Filipowsky Eugen 1 Muehllorf, 'Space Communication Systems', Prentice Hall 1995.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
1.	Course Objectives	1	10/07/2023		TLM2		
2.	Brief introduction about the course and its importance.	1	11/07/2023		TLM2		
3.	Need for Space Communications, Definition of a satellite and Orbit.	1	13/07/2023		TLM2		
4.	General Structure of satellite Communication	1	15/07/2023		TLM2		
5.	Types of Spacecraft Orbits	1	17/07/2023		TLM2		
6.	Common satellite applications and missions	1	18/07/2023		TLM2		
7.	Launch Vehicles and Launching of a satellite	1	20/07/2023		TLM2		
8.	Satellite system and their functions- (Structural, thermal, power mechanisms, propulsion, etc)	2	24/07/2023		TLM2		
9.	Revision	1	25/07/2023				
No. o	No. of classes required to complete UNIT-I: 10 No. of classes taken:						

UNIT-I: Introduction to Satellite Systems:

UNIT-II: Orbital Mechanics:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction and overview of Orbital Mechanics	1	27/07/2023		TLM1	
2.	Newton's laws of Force, Fundamentals of Orbital Dynamics- Kepler's laws	1	31/07/2023		TLM2	
3.	Orbital parameters and determination	2	03/08/2023		TLM2	
4.	Orbital Perturbations-Need for station keeping	2	08/08/2023		TLM1	
5.	GPS systems-Architecture of GPS, Working Principle of GPS	2	14/08/2023		TLM2	
6.	Ground station or Earth station Requirements	1	17/08/2023		TLM1	
7.	Problems and Revision	1	19/08/2023		TLM1	
No. of	f classes required to complete UN	IT-II: 10		No. of clas	ses taken:	

UNIT-III: Power System and Bus Electronics:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Power system and Bus electronics	1	21/08/2023		TLM2	
2.	Solar Panels: Silicon and Ga-As Cells	2	24/08/2023		TLM2	
3.	Power generation capacity, efficiency	1	26/08/2023		TLM1, TLM2	
4.	Space Battery Systems	1	04/09/2023		TLM2	
5.	Battery Types, Characteristics, Battery efficiency Parameters	2	07/09/2023		TLM2	

6.	Telemetry, Tracking and Command Control (TT&C) functions	2	11/09/2023		TLM2	
7.	Telemetry, Tracking and Command Control (TT&C) functions	2	16/09/2023		TLM2	
8.	Generally Employed Communication Bands	1	19/09/2023		TLM2	
9.	Revision	1	21/09/2023			
No. o	No. of classes required to complete UNIT-III: 13 No. of classes taken:					

UNIT-IV : Spacecraft Control:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Spacecraft Control	1	23/09/2023		TLM2	
2.	Control Requirements: Attitude Control and station keeping functions, type of control maneuvers	2	26/09/2023		TLM2	
3.	Stabilization Schemes: Spin stabilization	1	30/09/2023		TLM2	
4.	gravity gradient method, 3 axis stabilization	2	05/10/2023		TLM2	
5.	Commonly Used Control Systems: Mass expulsion systems, Momentum exchange systems.	2	09/10/2023		TLM2	
6.	Gyro and Magnetic Torque -sensors, Star and sun sensor, Earth sensor.	1	10/10/2023		TLM2	
7.	Magnetometers and Inertial Sensors.	1	12/10/2023		TLM2	
No. of	f classes required to complete UN	IT-IV: 10		No. of class	ses taken:	

UNIT-V : Satellite Services and Applications:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction, GPS architecture, Location Principle	1	14/10/2023		TLM2	
2.	Direct to home, home receiver	1	16/10/2023		TLM2	
3.	Satellite mobile services, VSAT	1	17/10/2023		TLM2	
4.	MSAT, RADARSAT	1	19/11/2023		TLM2	
5.	IRNSS Constellation	1	21/11/2023		TLM2	
6.	Satellite structures and materials	1	24/11/2023		TLM2	
7.	Revision	1	26/11/2023			
No. o	f classes required to complete UN	NIT-V: 7		No. of clas	sses taken:	

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

PART-C

VALUATION PROCESS (R17 Regulations):			
Evaluation Task	Marks		
Assignment-I (Unit-I)	A1=5		
Assignment-II (Unit-II)	A2=5		
I-Mid Examination (Units-I & II)	M1=15		
I-Quiz Examination (Units-I & II)	Q1=10		
Assignment-III (Unit-III)	A3=5		
Assignment-IV (Unit-IV)	A4=5		
Assignment-V (Unit-V)	A5=5		
II-Mid Examination (Units-III, IV & V)	M2=15		
II-Quiz Examination (Units-III, IV & V)	Q2=10		
Attendance			
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5		
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20		
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10		
Cumulative Internal Examination (CIE) : A+B+M+Q	40		
Semester End Examination (SEE) 60			
Total Marks = CIE + SEE	100		

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
DO 5	the information to provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
100	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
DO 11	clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in
1012	independent and life-long learning in the broadest context of technological change.
	independent and me-fong rearining in the oroadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
	systems and Implement real time applications in the field of VLSI and Embedded Systems
	using relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Course Instructor Mr. P. James Vijay Course Coordinator Mr. V. V. Ramakrishna Module Coordinator Dr. M. V. Sudhakar HOD Dr. Y. Amar Babu LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' grade& NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF AEROSPACE ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructo	or: Dr.P.Lovaraju/Mr.I.Dakshina	Murthy/Mr.A.Pratyush
Course Name & Code	: Aerodynamics Lab-20AE56	Regulation: R20
L-T-P Structure	: 0-0-3	Credits: 1.5
Program/Sem/Sec	: B.Tech/V-SEM	A.Y.: 2023-24

Course Educational Objectives:

- 1. To learn the basic experiments in wind tunnel
- 2. To learn the basic experiments in open jet facility
- 3. To learn the basic flow visualization techniques

Course Outcomes: At the end of the semester, the student will be able to CO1: To analyze the flow characteristics over aerodynamic bodies (Analyze-L4) CO2: To analyze nozzle flow characteristics (Analyze-L4)

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

COs	PO	PSO	PSO											
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
C01	3	3	3	3								3	3	3
CO2	3	3	3	3								3	3	3

Note: Enter Correlation Levels **1** or **2** or **3**. If there is no correlation, **put '-'1-** Slight (Low), **2** – Moderate (Medium), **3** - Substantial (High).

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

S. No.	Topics to be covered (Experiment Name)	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
			BATC	CH-A	BATC	H-B		
1.	Introduction	03	03-07-2023		07-07-2023		TLM4	
2.	Exp No 1	03	10-07-2023		14-07-2023		TLM4	
3.	Exp No 2	03	17-07-2023		21-07-2023		TLM4	
4.	Exp No 3	03	24-07-2023		28-07-2023		TLM4	
5.	Exp No 4	03	07-08-2023		04-08-2023		TLM4	
6.	Exp No 5	03	14-08-2023		11-08-2023		TLM4	
7.	Repeat	03			18-08-2023		TLM4	

8.	Repeat	03		 25-08-2023	TLM4
9.	Exp No 6	03	21-08-2023	08-09-2023	TLM4
10.	Exp No 7	03	04-09-2023	15-09-2023	TLM4
11.	Exp No 8	03	11-09-2023	22-09-2023	TLM4
12.	Exp No 9	03	25-09-2023	29-09-2023	TLM4
13.	Exp No 10	03	09-10-2023	22-09-2023	TLM4
14.	Repeat	03		 06-10-2023	TLM4
15.	Repeat	03		 13-10-2023	TLM4
16.	Repeat	03		 20-10-2023	TLM4
17.	Internal Exam	03	16-10-2023	27-10-2023	TLM4
No. of classes required to complete: 13 & 17					No. of classes taken:

Teaching	Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Expt. no's	Marks
Day to Day work = A	1,2,3,4,5,6,7,8	A=05
Record = \mathbf{B}	1,2,3,4,5,6,7,8	B=05
Internal Test = C	1,2,3,4,5,6,7,8	C = 05
Cumulative Internal Examination : A + B + C = 15	1,2,3,4,5,6,7,8	15
Semester End Examinations = D	1,2,3,4,5,6,7,8	D = 35
Total Marks: $A + B + C + D = 50$	1,2,3,4,5,6,7,8	50

PART-D PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO 1	To provide students with sound mathematical, engineering, and multidisciplinary
FEO I	knowledge to solve Aerospace and Allied Engineering problems.
PEO 2	To prepare students to excel in higher education programs and to succeed in
	industry/academia profession.
PEO 3	To inculcate ethical attitude, leadership qualities, problem solving abilities and life-
PEO 3	long learning for a successful professional career.

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex
	engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs

	with appropriate consideration for the public health and safety, and the cultural,
	societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures and Flight Dynamics in the Aerospace vehicle design.
PSO 2	To prepare the students to work effectively in Aerospace and Allied Engineering organizations.

Title	Course Instructor	Module Coordinator	Head of the Department	
Signature				
Name of the Faculty	Mr. I Dakshina Murthy	Dr. P. Lovaraju	Dr. P. Lovaraju	

NEUDY COLLEGE OF COLLE

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

Accredited by NAAC with 'A' grade& NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF AEROSPACE ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Mr. Nazumuddin Shaik/ Mr. Ashutosh Shukla

Course Name & Code : Aircraft Structures Lab - 20AE57 Regulation: R20

L-T-P Structure

Program/Sem/Sec

: 0-0-3 : B.Tech/V-SEM **Credits:** 1.5 **A.Y.:** 2023-24

PRE-REQUISITES: Engineering workshop

COURSE EDUCATIONAL OBJECTIVES (CEOs):

To understand the various principles and theorems involved in the theory of aircraft structure, vibrations and experimental analysis by doing simple and advanced experiments and analysing the results.

COURSE OUTCOMES (COs): After completion of the course students are able to:

CO 1	Analyze beam structures subjected to different loading conditions (Analyze-L4)						
CO2	Analyze deflection based on different theories (Analyze-L4)						
CO3	Analyze the performance of cams, governors and gyroscope (Analyze-L4)						

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO	PSO	PSO											
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	3	2	3	-	-	-	-	-	-	-	3	3	3
CO2	2	3	2	3	-	-	-	-	-	-	-	3	3	3
CO3	2	3	2	3	-	-	-	-	-	-	-	3	3	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

S. No.	Topics to be covered (Experiment Name)	Tentative Date of Completion	Actual Date of Completion	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
		BAT	CH-II	BAT	CH-I		
1.	Demo	03-07-2023		07-07-2023		TLM4	
2.	Compression Test of Columns.	10-07-2023		14-07-2023		TLM4	
3.	Verification of Maxwell's Reciprocal Theorem.	17-07-2023		21-07-2023		TLM4	
4.	Verification of Castigliano's Theorem.	24-07-2023		28-07-2023		TLM4	
5.	Shear Failure of Bolted and Riveted Joints.	31-07-2023		04-08-2023		TLM4	
6.	Non Destructive Test- Dye Penetration Test	07-08-2023		11-08-2023		TLM4	
7.	Unsymmetrical beam Direct stress of Cantilever Beam (C, Z, L and T- Sections)	14-08-2023		18-08-2023		TLM4	
8.	Wagner Beam- Tension Field Beam.	21-08-2023		25-08-2023		TLM4	
9.	Non Destructive Test-Magnetic Particle Detection.	04-09-2023		08-09-2023		TLM4	
10.	Shear Centre of Open section beam	11-09-2023		15-09-2023		TLM4	
11.	Unsymmetrical deflection of a Cantilever Beam	18-09-2023		22-09-2023		TLM4	
12.	Repetition	25-09-2023		29-09-2023		TLM4	
13.	Lab internal Exam	16-10-2023		27-10-2023		TLM4	

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Expt. no's	Marks
Day to Day work = A	1,2,3,4,5,6,7,8	A=05
Record = \mathbf{B}	1,2,3,4,5,6,7,8	B=05
Internal Test = C	1,2,3,4,5,6,7,8	C = 05
Cumulative Internal Examination : A + B + C = 15	1,2,3,4,5,6,7,8	15
Semester End Examinations = D	1,2,3,4,5,6,7,8	D = 35
Total Marks: A + B + C + D = 50	1,2,3,4,5,6,7,8	50

PART-D PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO 1	To provide students with sound mathematical, engineering and multidisciplinary knowledge to solve Aerospace and Allied Engineering problems
PEO 2	To prepare students to excel in higher education programs and to succeed in industry/academia profession.
	To inculcate ethical attitude, leadership qualities, problem solving abilities and life-long learning for a successful professional career

PROGRAMME OUTCOMES (POs): Engineering Graduates will be able to:

	Engineering Knowledge: Apply the knowledge of mathematics, science,
PO 1	engineering fundamentals and an engineering specialization to the
	solution of complex engineering problems.
	Problem Analysis: Identify, formulate, review research literature and
PO 2	analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and
	engineering sciences.
	Design/Development of Solutions: Design solutions for complex
	engineering problems and design system components or processes that
PO 3	meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
	Conduct Investigation of Complex Problems: Use research-based
PO 4	knowledge and research methods including design of experiments,
	analysis and interpretation of data and synthesis of the information to provide valid conclusions.
	Modern Tool Usage: Create, select and apply appropriate techniques,
PO 5	resources, and modern engineering and IT tools including predictions
	and modeling to complex engineering activities with an understanding of
	the limitations. The Engineer and Society: Apply reasoning informed by the contextual
	knowledge to assess societal, health, safety, legal and cultural issues and
PO 6	the consequent responsibilities relevant to the professional engineering
	practice.
PO 7	Environment and Sustainability: Understand the impact of the
	professional engineering solutions in societal and environmental
	contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and

	responsibilities and norms of the engineering practice.						
PO 9	Individual and Teamwork: Function effectively as an individual, and as						
107	a member or leader in diverse teams, and in multidisciplinary settings.						
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.						
PO 11	Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.						
PO 12	Life-long Learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.						

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO	To apply the knowledge of Aerodynamics, Propulsion, Aircraft structures						
1	and Flight Dynamics in the Aerospace vehicle design						
PSO	To prepare the students to work effectively in Aerospace and Allied						
2	Engineering organizations						

Title	Course Instructor	Module Coordinator	Head of the Department	
Name of the Faculty	Mr. Nazumuddin Shaik	Mr. Nazumuddin Shaik	Dr.P.Lovaraju	
Signature				