LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

FRESHMAN ENGINEERING DEPARTMENT

COURSE HANDOUT

PART-A

PROGRAM
ACADEMIC YEAR
COURSE NAME \& CODE
L-T-P STRUCTURE : 3-0-0
COURSE CREDITS : 3
COURSE INSTRUCTOR : M. Rami Reddy
COURSE COORDINATOR : M. Rami Reddy
PRE-REQUISITES : None

COURSE EDUCATIONAL OBJECTIVES (CEO): The objective of this course is to provide students with the foundations and applications of probabilistic and statistical methods mainly used in varied applications in engineering and science.

COURSE OUTCOMES (COs): At the end of the course, the student will be able to

CO1	Understand various probabilistic situations using the laws of probability and Random variables.	Understand $-\mathbf{L 2}$
$\mathbf{C O 2}$	Apply probability distributions like Binomial, Poisson, Normal and Exponential distributions in solving engineering problems.	Apply - L3
$\mathbf{C O 3}$	Calculate the standard error of sampling distribution and confidence intervals for parameters like mean and proportion based on sample data.	Apply - L3
$\mathbf{C O 4}$	Analyze the data scientifically with the appropriate statistical methodologies to apply the suitable test of hypothesis.	Analyze - L4
$\mathbf{C O 5}$	Construct the regression lines to predict the dependent variables and calculate the Correlation Coefficient for a bivariate statistical data.	Apply - L3

COURSE ARTICULATION MATRIX (Correlation between COs, POs \& PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	2	-	-	-	-	-	-	-	2	-	-	-
CO2	3	2	2	3	-	-	-	-	-	-	-	2	-	-	-
CO3	3	2	2	2	-	-	-	-	-	-	-	2	-	-	-
CO4	3	3	3	3	-	-	-	-	-	-	-	2	-	-	-
CO5	3	2	2	3	-	-	-	-	-	-	-	2	-	-	-

Note: Enter Correlation Levels $\mathbf{1}$ or $\mathbf{2}$ or $\mathbf{3}$. If there is no correlation, put ' - ' 1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

T1 Jay L.Devore "Probability and Statistics for engineering and the sciences.", 8th edition, Cengage Learning india, 2012
T2 S.C.Gupta, V.K.Kapoor, "Fundamentals of Mathematical Statistics", 11thEdition, Sultan Chand and sons, New Delhi,2014.

BOS APPROVED REFERENCE BOOKS:

R1 Miller \& Freund's "Probability and Statistics for Engineers",8th edition. PHI, New Delhi,2011.
R2 B.V. Ramana, "Higher Engineering Mathematics", 1st Edition, TMH, New Delhi, 2010.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Probability and Random Variables

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction class, course outcomes	1	$31-01-23$		TLM1	
2.	Basic concepts of probability	1	$02-02-23$		TLM1	
3.	problems on basic probability	1	$03-02-23$		TLM1	
4.	Addition theorem, problems	1	$06-02-23$		TLM1	
5.	Problems on Addition theorem	1	$07-02-23$		TLM1	
6.	Multiplication theorem, examples	1	$09-02-23$		TLM1\&2	
7.	Independent events, theorems	1	$10-02-23$		TLM1	
8.	Problems	1	$13-02-23$		TLM1	
9.	Baye's theorem, Examples	1	$14-02-23$		TLM1\&22	
10.	Problems on Baye's theorem	1	$16-02-23$		TLM1	
11.	Random variables, Expectations	1	$20-02-23$		TLM1	
12.	Problems on PMF	1	$21-02-23$		TLM1	
13.	Problems on PMF	1	$23-02-23$		TLM1	
14.	Problems on PDF	$24-02-23$		TLM1		
15.	Problems on PDF	TLM1				
No. of classes required to complete UNIT-I: 15		No. of classes taken:				

UNIT-II: Probability Distributions

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Binomial Distribution- mean \& variance	1	$27-02-23$		TLM1\&2	
2.	Problems on Binomial distribution	1	$28-02-23$		TLM1	
3.	Applications of Binomial	1	$02-03-23$		TLM1	
4.	Fitting of binomial distribution	1	$03-03-23$		TLM1	
5.	Poisson distribution, mean and variance	1	$06-03-23$		TLM1\&2	
6.	Problems on Poisson distribution	1	$07-03-23$		TLM1	
7.	Fitting of Poisson distribution	1	$09-03-23$		TLM1	
8.	Normal distribution: mean \&variance	1	$10-03-23$		TLM1\&2	
9.	Problems on Normal Distribution	1	$13-03-23$		TLM1	
10.	Problems on Normal Distribution	1	$14-03-23$		TLM1	
11.	Applications	1	$16-03-23$		TLM1	
12.	Exponential distribution:	1	$17-03-23$		TLM1	
No. of classes required to complete UNIT-II: 12		No. of classes taken:				

UNIT-III: Sampling distribution and Estimation

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Sampling distribution ,definitions	1	$20-03-23$		TLM1\&2	
2.	Sampling distribution of mean, variance	1	$21-03-23$		TLM1	
3.	Central limit theorem, Examples	1	$23-03-23$		TLM1	
4.	Problems on Central Limit Theorem	1	$24-03-23$		TLM1	
5.	Mid-I examinations		$27-03-23$ to $01-04-23$			
6.	Estimation -Point and Interval	1	$03-04-23$		TLM1	
7.	Confidence interval of Mean	1	$04-04-23$		TLM1\&2	
8.	Confidence Interval of mean	1	$06-04-23$		TLM1	
9.	Confidence Interval of proportion	1	$10-04-23$		TLM1	
10.	Confidence Interval of proportion	1	$11-04-23$		TLM1	
11.	Confidence Interval of mean (n<30)	1	$13-04-23$		TLM1	
12.	problems	1	$17-04-23$		TLM1	
No. of classes required to complete UNIT-III: 11						

UNIT-IV: Tests of Hypothesis

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Testing of Hypothesis , definitions	1	$18-04-23$		TLM1\&2	
2.	Z-test for single mean	1	$20-04-23$		TLM1	
3.	Z-test for difference of means	1	$21-04-23$		TLM1	
4.	Applications on mean tests	1	$24-04-23$		TLM1	
5.	Z-test for single Proportion	1	$25-04-23$		TLM1	
6.	Z-test for difference of Proportions	1	$27-04-23$		TLM1	
7.	t-test for single mean	1	$28-04-23$		TLM1	
8.	t-test for difference of means	1	$01-05-23$		TLM1	
9.	Paired t-test	1	$02-05-23$		TLM1	
10.	Applications on t-tests	1	$04-05-23$		TLM1	
11.	F-test for variances	$05-05-23$		TLM1		
12.	χ^{2}-test for goodness of fit	$08-05-23$		TLM1		
13.	χ^{2}-test for independence of attributes	1	$09-05-23$		TLM1	
No. of classes required to complete UNIT-IV: 11		No. of classes taken:				

UNIT-V :Correlation and Regression

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Simple Bi-variate Correlation	1	$11-05-23$		TLM1\&2	
2.	Problems on Pearson's Correlation	1	$12-05-23$		TLM1	
3.	Regression lines	1	$15-05-23$		TLM1	
4.	Problems on Regression lines	1	$16-05-23$		TLM1	
5.	Properties of Regression coefficients	1	$18-05-23$		TLM1\&2	
6.	Problems on Regression coefficients	1	$19-05-23$		TLM1	
7.	Problems on rank Correlation	1	$22-05-23$		TLM1	
8.	Problems on repeated ranks	1	$23-05-23$		TLM1	
9.	Practice problems	1	$25-05-23$		TLM1	
10.	Revision	1	$26-05-23$		TLM1	
No. of classes required to complete UNIT-V: 10						
No. of classes taken:						

Teaching Learning Methods

TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	PPT	TLM5	ICT (NPTEL/SwayamPrabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

PART-C

EVALUATION PROCESS (R20 Regulations):

Evaluation Task	Marks
Assignment-I (Units-I, II \& UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II \& UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II \& UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV \& V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV \& V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV \& V)	Q2=10
Mid Marks =80\% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20\% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30
Cumulative Internal Examination (CIE): M	30
Semester End Examination (SEE)	70
Total Marks = CIE + SEE	100

PART-D

Program Educational Objectives (PEOs):

PEO1	To possess knowledge in both fundamental and application aspects of mathematical, scientific, engineering principles to analyze complex engineering problems for meeting the national and international requirements and demonstrating the need for sustainable development.
PEO2	To adapt to the modern engineering tools for planning, analysis, design, implementation of analytical data and assess their relevant significance in societal and legal issues necessary in their professional career.
PEO3	To exhibit professionalism, ethical attitude, communication, managerial skills, team work and social responsibility in their profession and adapt to current trends by engaging in continuous learning.

Program Outcomes (POs):

PO1 - Engineering Knowledge	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO2 - Problem Analysis	Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO3 - Design / Development of Solutions	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO4 - Conduct Investigations of Complex Problems	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO5 - Modern Tool Usage	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO7 - Environment and Sustainability	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8 - Ethics	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9 - Individual and Team Work	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10 - Communication	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO11 - Project Management and Finance	Demonstrate knowledge and understanding of the ring and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12 - Life-long Learning

Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. the engineering practice.
Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. Demonstrate knowledge and understanding of the ring and management principles and apply multidisciplinary environments.
Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs):

PSO1

Possesses necessary skill set to analyze and design various systems using analytical and software tools related to civil engineering.
Possesses ability to plan, examine and analyse the various laboratory tests required for the professional demands.

PSO3

Course Instructor
(M.Rami Reddy)

Course Coordinator
(M.Rami Reddy)

Module Coordinator
(Dr.A.Rami Reddy)

HOD
(Dr.A.Rami Reddy)

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)
Accredited by NAAC \& NBA (Under Tier - I), ISO 9001:2015 Certified Institution
Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada
L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF CIVIL ENGINEERING

COURSE HANDOUT
 PART-A

Name of Course Instructor	$:$ S.RAMI REDDY	
Course Name \& Code	$:$ H\&HMS	Regulation: R20
L-T-P Structure	$: 3-0-0$	Credits: 3
Program/Sem/Sec	: II B.TECH.,/II SEM	A.Y.: 2022-23

PREREQUISITE: Applied Mechanics, Mechanics of Fluids
COURSE EDUCATIONAL OBJECTIVES (CEOs): The course allows the student to get insight into open channel hydraulics, and the various theories dealing with the flow phenomenon of fluid in an open channel. The student is exposed to the basics, components, and working of the hydro machinery, applicationsof different types of turbines and pumps.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Understand the various types of flows, specific energy curves, hydraulic jumps and working of hydraulic machines in fluid flows. (Understand-L2)
CO2	Apply the basic principles to design the open channels and determine the energy losses due to formation of hydraulic jump. (Apply-L3)
CO3	Apply the impulse-momentum equation to determine the force exerted by a jet on different configurations of vanes. (Apply-L3)
CO4	Apply the working principle to draw the velocity triangles and determine the efficiencies of hydraulic machines.(Apply-L3

COURSE ARTICULATION MATRIX (Correlation between COs, POs \& PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	3	-	-	-	-	-	-	-	-	-	-	-	2	1	-
CO2	3	-	-	-	-	-	-	-	-	-	-	-	2	1	-
CO3	3	-	-	-	-	-	-	-	-	-	-	-	2	1	-
CO4	3	-	-	-	-	-	-	-	-	-	-	-	2	1	-
1 - Low							2 -Medium		3 - High						

TEXT BOOKS

1. R.K. Bansal, "A Textbook of Fluid Mechanics and Hydraulic Machines", Laxmi

Publications (p) Ltd.
2. R.K. Rajput "Textbook of Fluid Mechanics and Hydraulic Machinery", Revised edition, S. Chand \& Company, Ltd., New Delhi, 2005.

REFERENCES

1. A.K. Jain, Fluid Mechanics 2nd edition, Khanna Publishers, Delhi. 2001 revised edition, Standard Book Home, New Delhi, 2005.
2. P.N. Modi, and S.M. Seth, "Hydraulics and Fluid Mechanics including Hydraulic

Machines", Rajsons Publications Pvt Ltd., Standard Book House, New Delhi, 2009.
3. K.R. Arora, "Fluid Mechanics, Hydraulic and Hydraulic Machines", Standard Publishers and Distributors, New Delhi, 2005.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN)

UNIT - I: UNIFORM FLOW

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Review of basics	1	$31-01-2023$		TLM1	
2.	Introduction to open channel flow, Classification of flows in channels.	1	$02-02-2023$		TLM1	
3.	Chezy, manning's, bazin, Kutter's formulae	1	$03-02-2023$		TLM1	
4.	Most economical Rectangular Sections	1	$06-02-2023$		TLM1	
5.	Problems	1	$07-02-2023$		TLM3	
6.	Most economical Trapezoidal Sections	1	$09-02-2023$		TLM1	
7.	Problems	1	$10-02-2023$		TLM1	
8.	Problems	1	$13-02-2023$		TLM1	
9.	Most economical Circular sections-	1	$14-02-2023$		TLM1	
10.	Problems	1	$16-02-2023$		TLM3	
11.	Problems	1	$17-02-2023$		TLM1	
12.	Problems	1	$20-02-2023$		TLM1	
No. of classes required to complete UNIT-I: $\mathbf{1 2}$		No. of classes taken:				

UNIT - II: NON - UNIFORM FLOW

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Specific energy curves; - critical depth, critical velocity, minimum Specific energy	1	$21-02-2023$		TLM1	
2.	Problems	1	$23-02-2023$		TLM3	
3.	Critical flow in rectangular channels	1	$24-02-2023$		TLM1	
4.	Problems	1	$27-02-2023$		TLM1	
5.	Gradually Varied Flow: Dynamic equation	1	$28-02-2023$		TLM1	
6.	Problems	1	$02-03-2023$		TLM3	
7.	Surface Profiles; Computation of surface profiles by single step method	1	$03-03-2023$		TLM1	
8.	Back water Curves and Draw down curves	1	$06-03-2023$		TLM1	
10.	Hydraulic jump Types of hydraulic jumps; Location and applications of hydraulic jump, Energy loss in a hydraulic jump.	1	$07-03-2023$		TLM1	

UNIT-III: BASICS OF TURBO MACHINERY

S. No .	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Stationary flat, inclined and curved vanes,	1	$09-03-2023$		TLM1	
2.	Problems	1	$10-03-2023$		TLM3	
3.	Moving flat, inclined vanes,	1	$13-03-2023$		TLM1	
4.	Problems	1	$14-03-2023$		TLM1	
5.	Moving curved vanes,	1	$16-03-2023$		TLM1	
6.	Problems	1	$20-03-2023$		TLM1	
7.	Problems	1	$21-03-2023$		TLM1	
8.	Jet striking centrally and at tip	1	$23-03-2023$		TLM1	
9.	Velocity triangles at inlet and outlet	1	$24-03-2023$		TLM3	
10.	Expressions for work done and efficiency	1	$03-04-2023$		TLM1	
11.	Problems	1	$04-04-2023$		TLM1	
12.	Problems	1	$06-04-2023$		No. of classes taken:	
13.	Angular momentum principle					

UNIT-IV: HYDRAULIC TURBINES

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Layout of a typical Hydropower installation - Heads and efficiencies - classification of turbines	1	$10-04-2023$		TLM1	
2.	Pelton wheel	1	$11-04-2023$		TLM1	
3.	Problems	1	$13-04-2023$		TLM3	
4.	Problems	1	$17-04-2023$		TLM1	
5.	Francis turbine	1	$18-04-2023$		TLM1	
6.	Problems	1	$21-04-2023$		TLM1	
7.	Kaplan turbine	1	$24-04-2023$		TLM1	
8.	Problems	1	$25-04-2023$		TLM3	
9.	Draft tube - theory and efficiency			TLM1		

10.	Problems	1	$27-04-2023$		TLM1
11.	Specific turbines	1	$28-04-2023$		TLM1
12.	Unit speed - unit quantity - unit power	1	$01-05-2023$		TLM1
13.	Problems	1	$02-05-2023$		TLM3
14.	Specific speed characteristics- geometric similarity- cavitation	1	$04-05-2023$		TLM1

UNIT-V: PUMPS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Centrifugal Pumps: Classification, work done, , losses and efficiencies,	1	$05-05-2023$		TLM1	
2.	Minimum starting speed, specific speed	1	$08-05-2023$		TLM1	
3.	Multistage pumps	1	$09-05-2023$		TLM1	
4.	Problems	1	$11-05-2023$		TLM3	
5.	Specific speed, characteristic curves,	1	$12-05-2023$		TLM1	
6.	NPSH, Cavitation in pumps	1	$15-05-2023$		TLM1	
7.	Reciprocating Pumps: Types, working, Work done	1	$16-05-2023$		TLM1	
8.	Problems	1	$18-05-2023$		TLM3	
9.	Problems	1	$22-05-2023$		TLM1	
10.	Coefficient of discharge and slip	1	$23-05-2023$		TLM1	
11.	Effects of acceleration and frictional resistance	1	$25-05-2023$		TLM1	
12.	Indicator diagrams, separation	1	$26-05-2023$		TLM1	
13.	Revision		No. of classes taken:			
No. of classes required to complete UNIT-V: $\mathbf{1 2}$						

Teaching Learning Methods

TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Ma
Assignment-I (Units-I, II \& UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II \& UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II \& UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV \& V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV \& V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV \& V)	Q2=10
Mid Marks =80\% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20\% of Min ((M1+Q1+A1), (M2+Q2+A2))	$\mathrm{M}=30$
Cumulative Internal Examination (CIE): M	30
Semester End Examination (SEE)	70
Total Marks = CIE + SEE	100

PART-D

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO 1	To possess knowledge in both fundamental and application aspects of mathematical, scientific, engineering principles to analyze complex engineering problems for meeting the national and international requirements and demonstrating the need for sustainable development.
PEO 2	To adapt to the modern engineering tools for planning, analysis, design, implementation of analytical data and assess their relevant significance in societal and legal issues necessary in their professional career.
PEO 3	To exhibit professionalism, ethical attitude, communication, managerial skills, team work and social responsibility in their profession and adapt to current trends by engaging in continuous learning.

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problem
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and wwith society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Possesses necessary skill set to analyze and design various systems using analytical and software tools related to civil engineering.
PSO 2	Possesses ability to plan, examine and analyse the various laboratory tests required for the professional demands.
PSO 3	Possesses basic technical skills to pursue higher studies and professional practice in civil engineering domain.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	S.Rami Reddy	J.Rangaiah	J.Rangaiah	Dr.V.Ramakrishna

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)
Accredited by NAAC \& NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF CIVIL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: M.KARTHIK KUMAR
Course Name \& Code
L-T-P Structure
Program/Sem/Sec
: GEOTECHNICAL ENGINEERING
: 3-0-0
: II B.TECH.,/II SEM

Regulation: R20
Credits: 3
A.Y.: 2022-23

PREREQUISITE: NIL

COURSE EDUCATIONAL OBJECTIVES (CEOs): The course aims to teach the different properties and classifications of soil. The course coverage includes the various procedures for determining index and engineering properties of soils.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

C01	Understand the engineering and index properties of soil. (Understand-L2)
C02	Classify the soils based on ISC system and grain size distribution. (Understand-L2)
C03	Evaluate the permeability, shear strength and consolidation properties of soil. (Apply-L3)
C04	Illustrate the stress distribution of soil subjected to different loading conditions. (Apply-L3)

COURSE ARTICULATION MATRIX (Correlation between COs, POs \& PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	2	3	-	-	-	-	-	-	-	-	-	1	-	-	2
C02	2	3	-	-	-	-	-	-	-	-	-	1	-	-	2
C03	2	3	-	-	-	-	-	-	-	-	-	1	2	-	2
CO4	2	3	-	-	-	-	-	-	-	-	-	1	2	-	2
1-Low 2-Medium 3-High															

TEXTBOOKS:

T1 Arora. K.R, "Soil Mechanics and Foundation Engineering", Standard Publishers \& Distributors, Nai Sarak, Delhi, 1987

T2 Murthy.V.N.S, "A Text book of Soil Mechanics and Foundation Engineering", KripaTechnical Consultants, Bangalore, 1992
REFERENCE BOOKS:
R1 Venkataramaiah, "Geotechnical Engineering", Wiley Eastern Ltd., Madras, 1993.
R2 Punmia. B.C, "Soil Mechanics and Foundation Engineering", A.Saurabh and Co.,(P) Ltd., Madras, 1988.
R3 Taylor. D.W, "Fundamentals of Soil Mechanics", Asia Publishing house, 1948.
R4 Terzaghi and Peck, "Soil Mechanics in Engineering", Asia Publishing house,

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Types and physical properties of soil

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	H0D Sign Weekly
1.	Geotechnical engineering Introduction	1	$31-1-23$		TLM1	
2.	Introduction to soil	1	$1-2-23$		TLM1	
3.	Types of soil	1	$4-2-23$		TLM1	
4.	Physical properties of soil	1	$6-2-23$		TLM3	
5.	Basic definition on mass, volumes	1	$7-2-23$		TLM1	
6.	Basic definition on weights	1	$13-2-23$		TLM1	
7.	Three phase diagram	1	$14-2-23$		TLM1	
8.	Relationships among basic definitions	1	$15-2-23$		TLM1	
9.	Derive an expression on volumes	1	$20-2-23$		TLM1	
10.	Derive an expression on weights	1	$21-2-23-2-23$		TLM1	
11.	Derive an expression on saturation	1	$25-2-23$		TLM1	
12.	Derive an expression on unit weights	1	$27-2-23$		TLM1	
13.	Over view of inter relationship	1	$28-2-23$		TLM1	
14.	Classification of soils based on grain size distribution	1	$1-3-23$		TLM3	
15.	Hydrometer analysis		No. of classes taken:			
16.	Problems and Tutorial					
No. of classes required to complete UNIT-I: $\mathbf{1 6}$						

UNIT-II: Consistency and plasticity characteristics of soil and Soil compaction

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
17.	introduction to Consistency limits	1	$4-3-23$		TLM1	
18.	Determination of LL, PL and SL	1	$6-3-23$		TLM4	
19.	Plasticity characteristics of soil	1	$7-3-23$		TLM1	
20.	Laboratory methods of compaction of soils	1	$11-3-23$		TLM4	
21.	Field compaction methods and factors affecting compaction of soil	1	$13-3-23$		TLM1	
22.	Field compaction control	1	$14-3-23$		TLM3	
23.	Problems	1	$15-3-23$		TLM1	
24.	Problems and Tutorial	1	$18-3-23$			
No. of classes required to complete UNIT-II: 8	No. of classes taken:					

UNIT-III: Permeability characteristics of soil and Concept of effective stress in soils

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	H0D Sign Weekly
25.	Darcy's law, Factors affecting permeability	1	$20-3-23$		TLM4	
26.	laboratory determination of permeability of cohesion less and cohesive soils	1	$21-3-23$		TLM1	
27.	Permeability of layered soil deposits	1	$25-3-23$		TLM1	
28.	Terzaghi's effective stress concept	1	$3-4-23$		TLM1	
29.	Seepage flow and seepage pressure	1	$4-4-23$		TLM1	
30.	Quick Sand Condition, Critical hydraulic gradient	1	$8-4-23$		TLM1	
31.	Problems	1	$10-4-23$		TLM1	
32.	Problems and Tutorial	1	$11-4-23$		TLM3	
No. of classes required to complete UNIT-III: 8						No. of classes taken:

UNIT-IV: Shear strength of soils

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods
H0D Sign Weekly					
33.	Analysis of shear failure	1	$12-4-23$		TLM1
34.	Shear and normal stress at a point	1	$15-4-23$		TLM1
35.	Mohr's circle and Tutorial	1	$17-4-23$		TLM3
36.	Relationship with Mohr's circle	1	$18-4-23$		TLM1
37.	Mohrs strength theory	1	$19-4-23$		TLM4
38.	Mohr's coulomd failure theory	1	$24-4-23$		TLM1
39.	Direct shear test	1	$25-4-23$		TLM4
40.	Triaxial test	1	$26-4-23$		TLM4
41.	UCC test	1	$29-4-23$		TLM1
42.	Vane shear test	1	$1-5-23$		TLM1
43.	Advantages of triaxial tests	1	$2-5-23$		TLM1
44.	Classification of shear test based on drainage conditions	1	$6-5-23$		TLM1
45.	Problems	1	$8-5-23$		TLM1
46.	Problems	No. of classes taken:			
No. of classes required to complete UNIT-IV: $\mathbf{1 4}$					

UNIT-V: Stress distribution in soils and Compressibility characteristics of soils

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	H0D Sign Weekly
47.	Boussinesq's theory\& Westergaard's theory for point load	1	$9-5-23$		TLM1	
48.	Boussinesq's and Westergaard's theory comparison	1	$10-5-23$		TLM1	
49.	Approximate methods for stresses and its validilty	1	$13-5-23$		TLM1	
50.	Computation of stresses beneath circular and Square loaded areas	1	$15-5-23$		TLM3	
51.	Concept of pressure bulb and Newmarks chart and its application	1	$16-5-23$		TLM1	
52.	Terzaghi's theory of 1-D consolidation	1	$17-5-23$		TLM1	
53.	Concept consolidation	1	$20-5-23$		TLM1	
54.	Consolidometer test	1	$22-5-23$		TLM3	
55.	consolidation settlement	1	$23-5-23$		TLM1	
56.	Problems	1	$24-5-23$		TLM3	
57.	Problems	$27-5-23$		No. of classes taken:		
No. of classes required to complete UNIT-V: $\mathbf{1 1}$						

Teaching Learning Methods

TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II \& UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II \& UNIT-III (Half of the Syllabus))	M1 $=15$
I-Quiz Examination (Units-I, II \& UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV \& V)	A2 $=5$
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV \& V)	M2 $=15$
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV \& V)	Q2=10
Mid Marks =80\% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20\% of Min ((M1+Q1+A1), (M2+Q2+A2))	M $=30$
Cumulative Internal Examination (CIE): M	30
Semester End Examination (SEE)	70
Total Marks $=$ CIE + SEE	100

PART-D

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO 1	To possess knowledge in both fundamental and application aspects of mathematical, scientific, engineering principles to analyze complex engineering problems for meeting the national and international requirements and demonstrating the need for sustainable development.
PEO 2	To adapt to the modern engineering tools for planning, analysis, design, implementation of analytical data and assess their relevant significance in societal and legal issues necessary in their professional career.
PEO 3	To exhibit professionalism, ethical attitude, communication, managerial skills, team work and social responsibility in their profession and adapt to current trends by engaging in continuous learning.
PROGRAMME OUTCOMES (POs):	
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problem
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Possesses necessary skill set to analyze and design various systems using analytical and software tools related to civil engineering.
PSO 2	Possesses ability to plan, examine and analyse the various laboratory tests required for the professional demands.
PSO 3	Possesses basic technical skills to pursue higher studies and professional practice in civil engineering domain.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	M.Karthik kumar	M.Karthik kumar	B Narasimharao	Dr. V. Ramakrishna
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING
(AUTONOMOUS)
Accredited by NAAC \& NBA (CSE, IT, ECE, EEE \& ME)
Âpproved by HICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF CIVIL ENGINEERING

Name of Course Instructor
Course Name \& Code
L-T-P Structure
Program/Sem/Sec
: C.Rajamallu
: Structural Analysis
: 3-0-0
: B.Tech.,CE., IV-Sem., Sections- A

Credits : 3
A.Y : 2022-2023

COURSE DELIVERY PLAN (LESSON PLAN)

UNIT-I: Arches and Cables

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction about SA	1	$30-1-2023$	$30-1-2023$	TLM1	
2.	Introduction about Arches, Three hinged arches.	1	$30-1-2023$	$30-1-2023$	TLM1	
3.	Elastic theory of arches - Eddy's theorem	1	$1-2-2023$	$1-2-2023$	TLM1	
4.	Determination of horizontal thrust, bending moment	1	$4-2-2023$	$4-2-2023$	TLM1	
5.	Problems on three hinged arches	1	$6-2-2023$	$6-2-2023$	TLM1	
6.	Normal thrust and radial shear	1	$6-2-2023$	$6-2-2023$	TLM1	
7.	Effect of temperature.	1	$8-2-2023$	$8-2-2023$	TLM1	
8.	Problems on three hinged arches	1	$11-2-2023$	$11-2-2023$	TLM1	
9.	Introduction to cables, General Cable Theorem	1	$13-2-2023$	$13-2-2023$	TLM3	
10.	Uniformly Loaded Cable	1	$15-2-2023$	$15-2-2023$	TLM1	
11.	Anchor Cable	1	$18-2-2023$	$18-2-2023$	TLM1	
12.	Tutorial-I	1	$20-2-2023$	$20-2-2023$	TLM3	
No. of classes required to complete UNIT-I:12	No. of classes taken:					

UNIT-II: Deflection of Beams

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to deflection of Beams	1	$20-2-2023$	$20-2-2023$	TLM 1	
2.	Bending into a circular arc, slope, deflection and radius of curvature	1	$22-2-2023$	$22-2-2023$	TLM 1	
3.	Differential Equation for the elastic line of a beam	1	$25-2-2023$	$25-2-2023$	TLM 1	
4.	Double integration Determination of slope and deflection for cantilever	1	$27-2-2023$	$27-2-2023$	TLM 1	
5.	Determination of slope and deflection for simply supported beams	1	$27-2-2023$	$27-2-2023$	TLM 1	

6.	Macaulay's methods- Determination of slope and deflection for cantilever	1	$1-3-2023$	$1-3-2023$	TLM 1
7.	Determination of slope and deflection for simply supported beams	1	$4-3-2023$	$4-3-2023$	TLM 1
8.	Mohr's theorems - Moment Area method	1	$6-3-2023$	$6-3-2023$	TLM 1
9.	application to simple cases including overhanging beams	1	$11-3-2023$	$11-3-2023$	TLM 1
10.	Problems on Deflection of Beams	1	$13-3-2023$	$13-3-2023$	TLM 1
11.	Tutorial-II	1	$13-3-2023$	$13-3-2023$	TLM 1
No. of classes required to complete UNIT-II:11					No. of classes taken:

UNIT-III: Introduction to Indeterminate Structures and Energy Theorems

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Determinacy of static indeterminacies for beams, Frames, Trusses	1	$15-3-2023$	$15-3-2023$	TLM1	
2.	Determinacy of kinematic indeterminacies for beams, Frames, Trusses	1	$18-3-2023$	$18-3-2023$	TLM1	
3.	Problems on Indeterminate Structures	1	$20-3-2023$	$20-3-2023$	TLM1	
4.	Introduction-Strain energy in linear elastic system	1	$22-3-2023$	$22-3-2023$	TLM1	
5.	expression of strain energy due to axial load	1	$25-3-2023$	$25-3-2023$	TLM1	
6.	bending moment and shear forces	1	$3-4-2023$	$3-4-2023$	TLM1	
7.	Castigliano's first theorem- Deflections of simple beams	1	$5-4-2023$	$5-4-2023$	TLM3	
8.	pin jointed trusses	1	$8-4-2023$	$8-4-2023$	TLM1	
9.	application of Castigliano's second theorem	2	$10-4-2023$	$10-4-2023$	TLM1	
10.	Problems on Castigliano's theorems	2	$10-4-2023$	$10-4-2023$	TLM1	
11.	Tutorial-III	1	$12-4-2023$	$12-4-2023$	TLM1	
No. of classes required to complete UNIT-III:11	No. of classes taken:					

UNIT-IV:Fixed Beams and Propped Cantilevers

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Fixed Beams	1	$15-4-2023$	$15-4-2023$	TLM1	
2.	statically indeterminate beams with U.D.load central point load	1	$17-4-2023$	$17-4-2023$	TLM1	
3.	Eccentric Point Load and Number of point loads	1	$17-4-2023$	$17-4-2023$	TLM1	
4.	uniformly varying load	1	$19-4-2023$	$19-4-2023$	TLM1	
5.	couple and combination of loads shear force and bending moment diagrams	1	$18-5-2023$	$18-5-2023$	TLM1	

6.	Deflection of fixed beams effect of sinking of support	1	$24-5-2023$	$24-5-2023$	TLM1	
7.	Effect Of Rotation of A Support	1	$26-5-2023$	$26-5-2023$	TLM3	
8.	Analysis of propped cantilevers- shear force and bending moment diagrams	1	$29-5-2023$	$29-5-2023$	TLM1	
9.	Deflection of propped cantilevers	1	$1-5-2023$	$1-5-2023$	TLM1	
10.	Problems on propped cantilevers	1	$3-5-2023$	$3-5-2023$	TLM1	
11.	Tutorial-IV	1	$6-5-2023$	$6-5-2023$	TLM3	
No. of classes required to complete UNIT-IV:11	No. of classes taken:					

UNIT-V:Continuous Beams and Slope Deflection Method

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction-Clapeyron's theorem of three moments	1	$8-5-2023$	$8-5-2023$	TLM1	
2.	Analysis of continuous beams with constant moment of inertia	1	$8-5-2023$	$8-5-2023$	TLM1	
3.	continuous beams with overhang	1	$10-5-2023$	$10-5-2023$	TLM1	
4.	continuous beams with different moment of inertiafor different Spans	1	$13-5-2023$	$13-5-2023$	TLM1	
5.	Effects of sinking of supports	1	$15-5-2023$	$15-5-2023$	TLM1	
6.	Shear Force and Bending moment diagrams.	1	$15-5-2023$	$15-5-2023$	TLM1	
7.	Introduction to slope deflection method, Sign Conventions	1	$17-5-2023$	$17-5-2023$	TLM3	
8.	Fundamental Equations	1	$20-5-2023$	$20-5-2023$	TLM1	
9.	Continuous Beams with Sinking of Supports.	1	$22-5-2023$	$22-5-2023$	TLM1	
10.	Continuous Beams without Sinking of Supports.	1	$22-5-2023$	$22-5-2023$	TLM1	
11.	Tutorial-V	1	$24-5-2023$	$24-5-2023$	TLM3	
No. of classes required to complete UNIT-V:11	No. of classes taken:					

Teaching Learning Methods

TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

Course Instructor	Course Coordinator	Module Coordinator	HOD
C.Rajamallu	C.Rajamallu	B.Ramakrishna	Dr.V.Ramakrishna

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (Autonoмоия)

Accredited by NAAC \& NBA (Under Tier - I), ISO 9001:2015 Certified Institution
Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada
L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF CIVIL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor:
Course Name \& Code
L-T-P Structure
Program/Sem/Sec

Dr. V. Ramakrishna
: Universal Human Values-II (20HS01)
: 3-0-0
: B.Tech/IV/A

Credits: 3
A.Y.: 2022-23

PREREQUISITE: NIL

COURSE EDUCATIONAL OBJECTIVES (CEOs): To become more aware of themselves, and their surroundings (family, society, nature); they would become more responsible in life, and in handling problems with sustainable solutions, while keeping human relationships and human nature in mind.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Apply the value inputs in life and profession (Apply - L3)
$\mathbf{C O 2}$	Distinguish between values and skills, happiness and accumulation of physical facilities, the self, and the Body (Understand $-\mathbf{L 2}$)
$\mathbf{C O 3}$	Understand the role of a human being in ensuring harmony in society (Understand $-\mathbf{L 2}$)
$\mathbf{C O 4}$	Understand the role of a human being in ensuring harmony in the nature and existence. (Understand $-\mathbf{L 2}$)
$\mathbf{C O 5}$	Distinguish between ethical and unethical practices (Apply - L3)

COURSE ARTICULATION MATRIX (Correlation between Cos, Pos \& PSOs):

TEXTBOOKS:

1. Human Values and Professional Ethics by R R Gaur, R Sangal, G P Bagaria, Excel Books, New Delhi, 2010

REFERENCE:

1. Jeevan Vidya: EkParichaya, A Nagaraj, Jeevan Vidya Prakashan, Amarkantak, 1999.
2. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
3. The Story of My Experiments with Truth - by Mohandas Karamchand Gandhi

COURSE DELIVERY PLAN (LESSON PLAN

UNIT-I: NEED, BASIC GUIDELINES, CONTENT AND PROCESS FOR VALUE EDUCATION

S.		No of	Date of	pletion	Teaching	HOD Sign
No.	Topics to be covered	classes required	Tentative	Actual	Learning Methods	
1	Introduction	1	1.2.23		TLM1	
2	Introduction	1	3.2.23		TLM1	
3	Understanding Value Education	1	4.2.23		TLM2	
4	Self Exploration	1	6.2.23		TLM2	
5	Continuous Happiness and Prosperity	1	8.2.23		TLM2	
6	Holistic Development	1	10.2.23		TLM2	
7	Role of Education	1	13.2.23		TLM2	
8	Cases	1	15.2.23		TLM2	
9	Happiness and Prosperity	1	17.2.23		TLM2	
10	Happiness and Prosperity	1	20.2.23		TLM2	
11	Cases	1	22.2.23		TLM2	
12	Fulfilling Basic Human aspirations	1	24.2.23		TLM2	
No. of classes required to complete UNIT-I: 12					No. of classes taken: 12	

UNIT-II: UNDERSTANDING HARMONY IN THE HUMAN BEING - HARMONY IN MYSELF!

S. No.	Topics to be covered	No. of Classes Required	Tentative	Actual	Date of Completion	Teaching Learning
	Understanding human being as a co-existence of the self and Body	1	25.2 .23		TLM2	
2	Understanding human being as a co-existence of the self and Body	1	27.2 .23		TLM2	
3	Understanding needs of Self and body	1	1.3 .23		TLM2	
4	Understanding needs of Self and body	1	3.3 .23		TLM2	
5	Body as an instrument of Self	1	4.3 .23		TLM2	
6	Body as an instrument of Self	1	6.3 .23		TLM2	
7	Understanding the characteristics and activities of 'I' and harmony in 'I'	1	10.3 .23		TLM2	
8	Understanding the characteristics and activities of 'I' and harmony in 'I'	1	20.3 .23		TLM2	
9	Understanding the harmony of I with the Body	1	24.3 .23		TLM2	
10	Correct appraisal of Physical needs	1	25.3 .23		TLM2	
11	Meaning of Prosperity in detail	1	27.3 .23		TLM2	
No. of classes required to complete UNIT-II: $\mathbf{1 1}$		No. of classes taken:				

UNIT-III: UNDERSTANDING HARMONY IN THE FAMILY AND SOCIETY- HARMONY IN HUMAN-HUMAN RELATIONSHIP

S. No.	Topics to be covered	No. of Classes Required	Tentative	Actual	Teaching Learning Methods	HOD Sign
	Understanding values in human- human relationship	1	3.4 .23		TLM2	
2	Meaning of Justice	1	8.4 .23		TLM2	
3	Fulfillment of Justice	1	10.4 .23		TLM2	
4	Trust and respect	1	12.4 .23		TLM2	
5	Trust and respect	1	15.4 .23		TLM2	
6	Understanding harmony in society	1	17.4 .23		TLM2	
7	Understanding harmony in society	1	19.4 .23		TLM2	
8	Universal harmonious order in society	1	21.4 .23		TLM2	
9	Universal harmonious order in society	1	24.4 .23		TLM2	
10	Gratitude as universal value in relationship	1	26.4 .23		TLM2	
11	Cases	1	28.4 .23		TLM2	
12	Cases	1	29.4 .23		TLM2	
No. of classes required to complete UNIT-III: $\mathbf{1 2}$		No. of classes taken:				

Mid-I from 27-3-2023 to 1-4-2023

UNIT-IV: UNDERSTANDING HARMONY IN THE NATURE AND EXISTENCE - WHOLE EXISTENCE AS COEXISTENCE

S. No.	Topics to be covered	No. of Classes Required	Tentative	Actual	Date of Completion	Teaching Methods
	Understanding harmony in nature	1	1.5 .23		TLM2	
2	Understanding harmony in nature	1	3.5 .23		TLM2	
3	Interconnectedness and mutual fulfillment among four orders of nature	1	5.5 .23		TLM2	
4	Recyclability and self regulation in Nature	1	6.5 .23		TLM2	
5	Understanding existence as co- existence of mutually interacting units	1	8.5 .23		TLM2	
6	Understanding existence as co- existence of mutually interacting units	1	10.5 .23	TLM2		
7	Understanding existence as co- existence of mutually interacting units	1	12.5 .23		TLM2	
8	Holistic perception of harmony at all levels	1	13.5 .23		TLM2	
9	Holistic perception of harmony at all levels	1	15.5 .23		TLM2	
10	Cases	1	17.5 .23		TLM2	
No. of classes required to complete UNIT-IV: 10		No. of classes taken:				

UNIT-V: IMPLICATIONS OF THE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL ETHICS

S. No.	Topics to be covered	No. of Classes Required	Tentative	Actual	Date of Completion Learning Methods	HOD Sign
1	Natural acceptance of human values	1	19.5 .23		TLM2	
2	Definitiveness of ethical human conduct	1	20.5 .23		TLM2	
3	Basis for humanistic education	1	22.5 .23		TLM2	
4	Basis for humanistic constitution	1	24.5 .23		TLM2	
5	Basis for humanistic universal order	1	26.5 .23		TLM2	
6	Competence in professional ethics	1	27.5 .23		TLM2	
7	Strategy for transition from present state to universal human order	1	29.5 .23		TLM2	
8	Strategy for transition from present state to universal human order	1	31.5 .23		TLM2	
9	Cases	1	2.6 .23		TLM2	
10	Cases	1	3.6 .23		TLM2	
No. of classes required to complete UNIT-V: 10		No. of classes taken:				

Mid-II from 5-6-2023 to 10-6-2023

Teaching Learning Methods			
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

PART-C

EVALUATION PROCESS (R20 Regulation)

Evaluation Task	Marks
Assignment-I (Units-I, II \& UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II \& UNIT-III (Half of the Syllabus))	$\mathrm{D} 1=15$
I-Quiz Examination (Units-I, II \& UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV \& V)	$\mathrm{A} 2=5$
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV \& V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV \& V)	$\mathrm{Q} 2=10$
Mid Marks =80\% of Max ((M1+Q1+A1), (M2+Q2+A2)) +20\% of Min ((M1+Q1+A1), (M2+Q2+A2))	$\mathrm{M}=30$
Cumulative Internal Examination (CIE): D+Q+A	30
Semester End Examination (SEE)	70
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations
PO 7	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.	
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering Pommunity and with society at large, such as, being able to and design documentation, make effective presentations, and give and receive clear instructions. repre
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments. independent and life-long learning in the broadest context of technological change. ability to engage in

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Possesses necessary skill set to analyze and design various systems using analytical and software tools related to civil engineering
PSO 2	Possesses ability to plan, examine and analyze the various laboratory test required for the professional demands
PSO 3	Possesses basic technical skills to pursue higher studies and professional practice in civil engineering domain

Title	Course Instructor	Course Coordinator	HOD
Name of faculty	Dr V. Ramakrishna	Dr B. Srinivasa Rao	Dr V. Ramakrishna
Signature			

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING
(AUTONOMOUS)
Accredited by NAAC \& NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF CIVIL ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor : S.RAMI REDDY\&D.MALLIKARJUNARAO
Course Name \& Code : H \& H M LAB \& 20CE57 Regulation: R20
L-T-P Structure : 0-0-3
Program/Sem/Sec : II B.Tech,. II sem
Credits: 1.5

PREREQUISITE : Mechanics of Fluids, Hydraulics and Hydraulic Machinery Systems
COURSE EDUCATIONAL OBJECTIVES (CEOs): The student is given hands on training in working on fluid flow hydraulic machinery equipment and performs experiments to verify the principles of fluid mechanics and hydraulics based on laws of conservation of mass, energy, and momentum.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Develop knowledge on the fundamental principles of fluid flow. (Apply-L3)
CO2	Apply the laws of conservation of mass, energy, and momentum to solve practical problems in fluid mechanics. (Apply-L3)
CO3	Practically visualize the functioning and performance of hydraulic turbines and pumps. (Understand-L2)

COURSE ARTICULATION MATRIX (Correlation between COs, POs \& PSOs):

COs	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	-	-	3	-	-	-	-	-	2	-	-	1	2	-
CO2	2	-	-	3	-	-	-	-	-	2	-	-	1	2	-
CO3	2	-	-	3	-	-	-	-	-	2	-	-	1	2	-
1 - Low							$\mathbf{2}$-Medium					3 - High			

TEXTBOOKS/REFERENCE BOOKS:

Laboratory manual developed by Civil Engineering Department

HYDRAULICS AND HYDRAULIC MACHINERY LAB (20CE57)

COURSE: IV SEMESTER

PART-B

LIST OF EXPERIMENTS

I CYCLE

1. Determination of coefficient of discharge of Mouth-piece apparatus
2. Determination of coefficient of discharge of given Notches
3. Calibration of given Venturimeter.
4. Experiment on Orifice meter set-up
5. Verification of Bernoulli's theorem

II CYCLE

1. Experiment on Friction in pipes.
2. Impact of jet on vanes.
3. Calibration of Turbine Flow Meter.
4. Performance characteristics of Pelton Wheel Turbine.
5. Operating characteristics of Centrifugal Pump.

LIST OF BATCHES

BATCH:A (Tuesday)	BATCH:B (Friday)
A_{1}------21761A0137 to 21761A0143	$\mathrm{B}_{1}-\ldots-\mathrm{-}$ 21761A0101 to 21761A0108
$A_{2}------\quad 21761$ A0144,145 \& 22765A0101 to 105	B_{2}------. 21761 A 0109 to 21761A0115
$A_{3}-\mathrm{-}-\mathrm{-}-22765 \mathrm{~A} 0106$ to 22765A0112	$\mathrm{B}_{3}-\ldots-\mathrm{-}$ - 21761 A 0116 to 21761A0122
$\mathrm{A}_{4}-\mathrm{-}-\mathrm{-}-\mathrm{-}$ 22765A0113 to 22765A0119	$\mathrm{B}_{4}-\mathrm{-}-\mathrm{-}$ 21761A0123 to 20761A0130
A5--------22765A0120 to 22765A0125	$\mathrm{B}_{5}-\mathrm{-}-\mathrm{-}$ 21765A0131 to 21765A0136

HYDRAULICS AND HYDRAULIC MACHINERY LAB (20CE57)

I CYCLE SCHEDULE: BATCH-A (TUESDAY)

Tentative Date of Completion	Actual Date of Completion	I	II	III	IV	V
$31 / 01 / 2023$		Demo	Demo	Demo	Demo	Demo
$07 / 02 / 2023$		$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{5}$
$14 / 02 / 2023$		$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{1}$
$21 / 02 / 2023$		$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$
$28 / 02 / 2023$		$\mathrm{~A}_{4}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$
$07 / 03 / 2023$		$\mathrm{~A}_{5}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$
$14 / 03 / 2023$		$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{5}$

I CYCLE SCHEDULE: BATCH-B (FRIDAY)

Tentative Date of Completion	Actual Date of Completion	I	II	III	IV	V
$03 / 02 / 2023$		Demo	Demo	Demo	Demo	Demo
$10 / 02 / 2023$		$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$	$\mathrm{~B}_{5}$
$17 / 02 / 2023$		$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$	$\mathrm{~B}_{5}$	$\mathrm{~B}_{1}$
$24 / 02 / 2023$		$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$	$\mathrm{~B}_{5}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$
$03 / 03 / 2023$		$\mathrm{~B}_{4}$	$\mathrm{~B}_{5}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$
$10 / 03 / 2023$		$\mathrm{~B}_{5}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$
$17 / 03 / 2023$		$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$	$\mathrm{~B}_{5}$

Lab-In charge

HYDRAULICS AND HYDRAULIC MACHINERY LAB (20CE57)

II CYCLE SCHEDULE: BATCH-A (TUESDAY)

Tentative Date of Completion	Actual Date of Completion	I	II	III	IV	V	
$21 / 03 / 2023$		$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{5}$	
$04 / 04 / 2023$		$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{1}$	
$11 / 04 / 2023$		$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	
$18 / 04 / 2023$		$\mathrm{~A}_{4}$	$\mathrm{~A}_{5}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	
$25 / 04 / 2023$		$\mathrm{~A}_{5}$	$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	
$02 / 05 / 2023$		$\mathrm{~A}_{1}$	$\mathrm{~A}_{2}$	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{5}$	
$09 / 05 / 2023$		REPETITION					
$16 / 05 / 2023$		REPETITION					
$23 / 05 / 2023$		INTERNAL EXAMINATION					

II CYCLE SCHEDULE: BATCH-B (FRIDAY)

Tentative Date of Completion	Actual Date of Completion	I	II	III	IV	V	
$24 / 03 / 2023$		$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$	$\mathrm{~B}_{5}$	
$21 / 04 / 2023$		$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$	$\mathrm{~B}_{5}$	$\mathrm{~B}_{1}$	
$28 / 04 / 2023$		$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$	$\mathrm{~B}_{5}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	
$05 / 05 / 2023$		$\mathrm{~B}_{4}$	$\mathrm{~B}_{5}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	
$12 / 05 / 2023$		$\mathrm{~B}_{5}$	$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$	
$19 / 05 / 2023$		$\mathrm{~B}_{1}$	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$	$\mathrm{~B}_{5}$	
$26 / 05 / 2023$		INTERNAL EXAMINATION					

HYDRAULICS AND HYDRAULIC MACHINERY LAB (20CE57)
COURSE: IV SEMESTER
A.Y: 2022-23

LAB TIME TABLE

Day	FN	AN
Monday		
Tuesday	IV Semester Batch- B	
Wednesday		
Thursday		
Friday		
Saturday		

Batch - A: 21761A0101-21761A0136=33
Batch - B: 21761 A0137-21761A0145 \&22765A0101-22765A0125=34

ACADEMIC CALENDAR

Description	From	To	Weeks
I Phase of Instructions	$30-01-2023$	$25-03-2023$	8 W
I Mid Examinations	$27-03-2023$	$01-04-2023$	1 W
II Phase of Instructions	$03-04-2023$	$27-05-2023$	8 W
II Mid Examinations	$05-06-2023$	$10-06-2023$	1 W
Preparation and Practicals	$12-06-2023$	$17-06-2023$	1 W
Semester End Examinations	$03-07-2023$	$15-07-2023$	2 W

PART-C

EVALUATION PROCESS (R20 Regulation):

		Marks
Evaluation Task	Ex. no's	
Day to Day work = A	$1,2,3,4,5,6,7,8,9,10$	A=05
Record $=\mathbf{B}$	$1,2,3,4,5,6,7,8,9,10$	$\mathrm{~B}=05$
Internal Test $=\mathbf{C}$	$1,2,3,4,5,6,7,8,9,10$	$\mathrm{C}=05$
Cumulative Internal Examination: A + B + C = 15	$1,2,3,4,5,6,7,8,9,10$	15
Semester End Examinations = D	$1,2,3,4,5,6,7,8,9,10$	$\mathrm{D}=35$
Total Marks: A + B + C + D = 50	$1,2,3,4,5,6,7,8,9,10$	50

PART-D

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

PEO 1	To possess knowledge in both fundamental and application aspects of mathematical, scientific, engineering principles to analyze complex engineering problems for meeting the national and international requirements and demonstrating the need for sustainable development.
PEO 2	To adapt to the modern engineering tools for planning, analysis, design, implementation of analytical data and assess their relevant significance in societal and legal issues necessary in their professional career.
PEO 3	To exhibit professionalism, ethical attitude, communication, managerial skills, team work and social responsibility in their profession and adapt to current trends by engaging in continuous learning.

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problem
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Possesses necessary skill set to analyze and design various systems using analytical and software tools related to civil engineering.
PSO 2	Possesses ability to plan, examine and analyse the various laboratory tests required for the professional demands.
PSO 3	Possesses basic technical skills to pursue higher studies and professional practice in civil engineering domain.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	S.Rami Reddy/D.Malli karjuna rao	J.Rangaiah	J.Rangaiah	Dr. V.Ramakrishna
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC \& NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF CIVIL ENGINEERING

COURSE HANDOUT
 PART-A

Name of Course Instructor: M. KARTHIK KUMAR B. NARASIMHARAO

Course Name \& Code
L-T-P Structure
Program/Sem/Sec

PREREQUISITE

COURSE EDUCATIONAL OBJECTIVES (CEOs): The course aims to train the students in performing laboratory experiments to find the basic properties soil. The course coverage includes the various field applications of soil.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

C01	Identify the tools, equipment required, and experimental procedure used in soil investigation (Understand-L2)
C02	Determine the index and engineering properties of soil (Apply-L3)
C03	Perform field and laboratory tests for soil investigations to compute desired parameters (Apply-L3)
$\mathbf{C 0 4}$	Apply field conditions for computing and analyzing the experimental data (Understand-L2)

COURSE ARTICULATION MATRIX (Correlation between COs, POs \& PSOs):

TEXTBOOKS/REFERENCE BOOKS:

Laboratory manual developed by Civil Engineering Department

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

CYCLE-I

1. Determination of water content by over dry method(EXP-I)
2. Particle size distribution curve by Mechanical Sieve Analysis(EXP-II)
3. Determination of specific gravity by Pycnometer method. (EXP-III)
4. Determination of Atterberg limits (EXP-IV)
5. Determination of free swell index. (EXP-V)
6. Determination of field unit weight of soil by Core cutter method. EXP-VI
7. Determination of field unit weight of soil by Sand replacement method. EXP- VII

CYCLE-II

8. Determination of coefficient of permeability of Coarse-grained soil by Constant head permeameter. (EXP-VIII)
9. Determination of MDD and OMC of given soil by Standard proctor test. (EXP-IX)
10. Determination of MDD and OMC of given soil by Modified proctor test. (EXP-X)
11. Determination of shear strength parameters of given soil by direct shear test. (EXP-XI)
12. Determination of undrained shear strength of soil by unconfined compression test. (EXPXII)

CYCLE-I

DATE	A-1	A-2	A-3	A-4	A-5	A-6
$02-02-2023$	DEMO	DEMO	DEMO	DEMO	DEMO	DEMO
$09-02-2023$	EXP-I	EXP-II	EXP-III	EXP-IV	EXP-V	EXP-VI
$16-02-2023$	EXP-II	EXP-III	EXP-IV	EXP-V	EXP-VI	EXP-VII
$23-02-2023$	EXP-III	EXP-IV	EXP-V	EXP-VI	EXP-VII	EXP-I
$02-03-2023$	EXP-IV	EXP-V	EXP-VI	EXP-VII	EXP-I	EXP-II
$09-03-2023$	EXP-V	EXP-VI	EXP-VII	EXP-I	EXP-II	EXP-III
$16-03-2023$	EXP-VI	EXP-VII	EXP-I	EXP-II	EXP-III	EXP-IV
$23-03-2023$	EXP-VII	EXP-I	EXP-II	EXP-III	EXP-IV	EXP-V
DATE	B-1	B-2	B-3	B-4	B-5	B-6
$03-02-2023$	DEMO	DEMO	DEMO	DEMO	DEMO	DEMO

$10-02-2023$	EXP-I	EXP-II	EXP-III	EXP-IV	EXP-V	EXP-VI
$17-02-2023$	EXP-II	EXP-III	EXP-IV	EXP-V	EXP-VI	EXP-VII
$24-02-2023$	EXP-III	EXP-IV	EXP-V	EXP-VI	EXP-VII	EXP-I
$03-03-2023$	EXP-IV	EXP-V	EXP-VI	EXP-VII	EXP-I	EXP-II
$10-03-2023$	EXP-V	EXP-VI	EXP-VII	EXP-I	EXP-II	EXP-III
$17-03-2023$	EXP-VI	EXP-VII	EXP-I	EXP-II	EXP-III	EXP-IV
$24-03-2023$	EXP-VII	EXP-I	EXP-II	EXP-III	EXP-IV	EXP-V

CYCLE-II

DATE	A-1	A-2	A-3	A-4	A-5	A-6
$06-04-2023$	EXP-VIII	EXP-IX	EXP-X	EXP-XI	EXP-XII	EXP-VIII
$13-04-2023$	EXP-IX	EXP-X	EXP-XI	EXP-XII	EXP-VIII	EXP-IX
$20-04-2023$	EXP-X	EXP-XI	EXP-XII	EXP-VIII	EXP-IX	EXP-X
$27-04-2023$	EXP-XI	EXP-XII	EXP-VIII	EXP-IX	EXP-X	EXP-XI
$04-05-2023$	EXP-XII	EXP-VIII	EXP-IX	EXP-X	EXP-XI	EXP-XII
$11-05-2023$	REVISION	REVISION	REVISION	REVISION	REVISION	REVISION
$18-05-2023$	REVISION	REVISION	REVISION	REVISION	REVISION	REVISION
$25-05-2023$	INTERNAL	INTERNAL	INTERNAL	INTERNAL	INTERNAL	INTERNAL
DATE	B-1	B-2	B-3	B-4	B-5	B-6
$21-04-2023$	EXP-VIII	EXP-IX	EXP-X	EXP-XI	EXP-XII	EXP-VIII
$28-04-2023$	EXP-IX	EXP-X	EXP-XI	EXP-XII	EXP-VIII	EXP-IX
$05-05-2023$	EXP-X	EXP-XI	EXP-XII	EXP-VIII	EXP-IX	EXP-X
$12-05-2023$	EXP-XI	EXP-XII	EXP-VIII	EXP-IX	EXP-X	EXP-XI
$19-05-2023 ~$	EXP-XII	EXP-VIII	EXP-IX	EXP-X	EXP-XI	EXP-XII
$26-05-2023 ~$	INTERNAL	INTERNAL	INTERNAL	INTERNAL	INTERNAL	INTERNAL

BATCHES

$\underline{\text { BATCH-B }}$	$\underline{\text { BATCH-A }}$
B1-21761A0101,102,104,105,106,107	A1-21761A0137,138,139,140,141,142
B2-21761A0108,109,110,111,112,113	A2-21761A0143,144,145,22765A0101,102,103
B3-21761A0114,115,116,117,118,119	A3-22765A0104,105,106,107,108,109
B4-21761A0120,121,122,123,124	A4-22765A0110,111,112,113,114,115
B5-21761A0125,126,129,130,131	A5-22765A0116,117,118,119,120
B6-21761A0132,133,134,135,136	A6-22765A0121,122,123,124,125

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Expt. no's	Marks
Day to Day work $=\mathbf{A}$	$1,2,3,4,5,6,7,8 \ldots$	$\mathrm{~A}=05$
Record $=\mathbf{B}$	$1,2,3,4,5,6,7,8$	$\mathrm{~B}=05$
Internal Test $\boldsymbol{=} \mathbf{C}$	$1,2,3,4,5,6,7,8$	$\mathrm{C}=05$
Cumulative Internal Examination: $\mathbf{A}+\mathbf{B}+\mathbf{C}=\mathbf{1 5}$	$1,2,3,4,5,6,7,8$	$\mathbf{1 5}$
Semester End Examinations $=\mathbf{D}$	$1,2,3,4,5,6,7,8$	$\mathbf{D}=\mathbf{3 5}$
Total Marks: $\mathbf{A}+\mathbf{B}+\mathbf{C}+\mathbf{D}=\mathbf{5 0}$	$1,2,3,4,5,6,7,8$	$\mathbf{5 0}$

PART-D

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):

$\left.$| PEO 1 | To possess knowledge in both fundamental and application aspects of mathematical, scientific, engineering
 principles to analyze complex engineering problems for meeting the national and international
 requirements and demonstrating the need for sustainable development. |
| :---: | :--- |
| PEO 2 | To adapt to the modern engineering tools for planning, analysis, design, implementation of analytical data
 and assess their relevant significance in societal and legal issues necessary in their professional career. |
| PEO 3 | To exhibit professionalism, ethical attitude, communication, managerial skills, team work and social
 responsibility in their profession and adapt to current trends by engaging in continuous learning. |
| PROGRAMME OUTCOMES (POs): | |
| PO 1 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and
 an engineering specialization to the solution of complex engineering problem |
| PO 2 | Problem analysis: Identify, formulate, review research literature, and analyze complex engineering
 problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and
 engineering sciences. |
| PO 4 | Design/development of solutions: Design solutions for complex engineering problems and design system
 components or processes that meet the specified needs with appropriate consideration for the public health
 and safety, and the cultural, societal, and environmental considerations. |
| PO 5 | Conduct investigations of complex problems: Use research-based knowledge and research methods
 including design of experiments, analysis and interpretation of data, and synthesis of the information to
 provide valid conclusions. |
| Podern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering | |
| and IT tools including prediction and modelling to complex engineering activities with an understanding | |
| of the limitations. | |\(\left|\begin{array}{l}The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,

health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional

engineering practice.\end{array}\right|\)| Environment and sustainability: Understand the impact of the professional engineering solutions in |
| :--- |
| societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable |
| development. | \right\rvert\, | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the |
| :--- |
| engineering practice. |

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Possesses necessary skill set to analyze and design various systems using analytical and software tools related to civil engineering.
PSO 2	Possesses ability to plan, examine and analyse the various laboratory tests required for the professional demands.
PSO 3	Possesses basic technical skills to pursue higher studies and professional practice in civil engineering domain.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	M. KARTHIK KUMAR	M. KARTHIK KUMAR	B. NARASIMHARAO	Dr. V. Ramakrishna
Signature				

Name of Course Instructor : C.Rajamallu

Course Name \& Code : Advanced Survey Field Work (L186)
Program/Sem/Sec
: B.Tech.,CE., IV-Sem., Sections- A
A.Y : 2022-2023

Lesson plan

COURSE: V SEMESTER
A.Y: 2022-2023

I Cycle Schedule: BATCH-A Tuesday)

Sl.No	Name of the Experiment	Tentative Date	Actual Date
1	(a) Study of Transit Theodolite	$31 / 01 / 2023$	$31 / 01 / 2023$
	(b) Measurement of Horizontal Angle by Repetition Method	$07 / 02 / 2023$	$07 / 02 / 2023$
2	Closed Traversing using Theodolite Survey	$14 / 02 / 2023$	$14 / 02 / 2023$
3	(a) Measurement of Vertical Angles (b) Heights and Distances - Single Plane Method	$21 / 02 / 2023$	$21 / 02 / 2023$
4	(a) Tacheometer Constants (b) Tacheometry - Stadia System	$28 / 02 / 2023$	$28 / 02 / 2023$

I Cycle Schedule: BATCH-B (Thursday)

Sl.No	Name of the Experiment	Tentative Date	Actual Date
1	(a) Study of Transit Theodolite	$02 / 02 / 2023$	$02 / 02 / 2023$
	(b) Measurement of Horizontal Angle by Repetition Method	$09 / 02 / 2023$	$09 / 02 / 2023$
2	Closed Traversing using Theodolite Survey	$16 / 02 / 2023$	$16 / 02 / 2023$
3	(a) Measurement of Vertical Angles (b) Heights and Distances - Single Plane Method	$23 / 02 / 2023$	$23 / 02 / 2023$
4	(a) Tacheometer Constants (b) Tacheometry - Stadia System	$02 / 03 / 2023$	$02 / 03 / 2023$

II Cycle Schedule: BATCH-A (Tuesday)

		Tentative Date	Actual Date
1	(a) Study of Total Station (b) Measurement of Horizontal Angle, Horizontal Distance, Vertical Distance and Vertical Angle [Total Station] $007 / 03 / 2023$	$07 / 03 / 2023$	
2	Area and Perimeter by Total Station	$14 / 03 / 2023$	$14 / 03 / 2023$

3	(a) Stake out of The Given Points by Total Station (b) Remote Distance Measurement (RDM) by Total Station	$21 / 03 / / 2023$	$21 / 03 / / 2023$
4	(a) Distance Between Two Given Points by Total Station (b) Determine the Point Coordinates by Total Station	$28 / 03 / 2023$	$28 / 03 / 2023$
5	Setting out The Foundation Plan of The Building	$04 / 04 / 2023$	$04 / 04 / 2023$
7	Simple Circular Curve by Linear Method	$11 / 04 / 2023$	$11 / 04 / 2023$
8	Simple Circular Curve by Rankine Method	$18 / 04 / 2023$	$18 / 04 / 2023$
9	Internal Test	$25 / 04 / 2023$	$25 / 04 / 2023$

II Cycle Schedule: BATCH-B (Thursday)

		Tentative Date	Actual Date
1	(a) Study of Total Station (b) Measurement of Horizontal Angle, Horizontal Distance, Vertical Distance and Vertical Angle [Total Station]	$09 / 03 / 2023$	$09 / 03 / 2023$
2	Area and Perimeter by Total Station	$16 / 03 / 2023$	$16 / 03 / 2023$
3	(a) Stake out of The Given Points by Total Station (b) Remote Distance Measurement (RDM) by Total Station	$23 / 03 / 2023$	$23 / 03 / 2023$
4	(a) Distance Between Two Given Points by Total Station (b) Determine the Point Coordinates by Total Station	$06 / 04 / 2023$	$06 / 04 / 2023$
5	Setting out The Foundation Plan of The Building	$13 / 04 / 2023$	$13 / 04 / 2023$
6	Simple Circular Curve by Linear Method	$20 / 04 / 2023$	$20 / 04 / 2023$
7	Simple Circular Curve by Rankine Method	$27 / 04 / 2023$	$27 / 04 / 2023$
8	Internal Test	$4 / 05 / 2023$	$4 / 05 / 2023$

Batch - A: 21761A0101 to 21761A0136
Batch - B: 21761A0137 to 21761A0145 \& 22765A0101 to 22765A 0125

C.Rajamallu

Lab-In charge

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)
Accredited by NAAC \& NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF ECE

COURSE HANDOUT

PART-A

Name of Course Instructor: Mrs.B Rajeswari/Mr.M.Siva Sankara Rao/J.Rangaiah
Course Name \& Code : Problem Solving Using MATLAB- 20CES1
Regulation
: R20
L-T-P Structure : 1-0-2
Credits: 2
Program/Sem/Sec : B.Tech., CIVIL, IV-Sem.
A.Y.: 2022-23

PREREQUISITE:

COURSE EDUCATIONAL OBJECTIVES (CEOs):

In this course, student will learn about basic operations and functions of MATLAB and apply them for solving civil engineering problems.
COURSE OUTCOMES (COs): At the end of the course, student will be able to

C01	Understand the basics of MATLAB programming through simple exercises. (Understanding -L2)
C02	Apply the MATLAB fundamentals to solve Civil engineering problems. (Apply-L3).

COURSE ARTICULATION MATRIX (Correlation between COs, POs \& PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	3	2		3											2
CO2	3	2		3									1		3
1 - Low						2 -Medium				3 - High					

TEXTBOOKS:

T1
Rudra Pratap., Getting started with MATLAB: A Quick Introduction for Scientists and Engineers

UNIT-1:MATLAB Basics

$\begin{gathered} \text { s. } \\ \text { No. } \end{gathered}$	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	$\begin{gathered} \hline \text { HOD } \\ \text { Sign } \\ \text { Weekly } \end{gathered}$
1.	Introduction to MATLAB, MATLAB windows, On-line help, Input-output, File types	1	01.02.23			
2.	General commands, Platform dependence, Built-in functions, Tool Boxes.	1	08.02.23			
No. of classes required to complete UNIT-I: 02				No. of classes taken:		
UNIT - II: MATLAB COMPUTATIONS						
$\begin{gathered} \text { s. } \\ \text { No. } \end{gathered}$	Topics to be covered		Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	$\begin{aligned} & \hline \text { HOD } \\ & \text { Sign } \end{aligned}$ Weekly
1.	Arithmetic operators, simple additions, Subtraction,	,	15.02.23			

| | Trigonometric values,
 exponential functions, logarithms
 multiplications, divisions | | | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| 2. | Advanced computations:
 Working with arrays, script file | 1 | 22.02 .23 | | |
| 3. | Working with function file | 1 | 01.03 .23 | | |
| 4. | Working with files and
 directories, Publishing Reports | 1 | 15.03 .23 | | |
| No. of classes required to complete UNIT-I: 04 | | | | No. of classes taken: | |

UNIT - III: MATLAB APPLICATIONS

$\begin{array}{\|c\|} \hline \text { S. } \\ \text { No. } \end{array}$	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Matrix Operations-addition, subtraction, multiplication, Inverse Calculations	1	05.04.23			
2.	Creating and Printing simple 2D/3D plots	1	12.04.23			
3.	Solving linear equations	1	19.04.23			
4.	Curve fitting-polynomial curve	1	03.05.23			
5.	Linear fit, Least squares fitting	1	10.05.23			
6.	Interpolation, Simple statistical data analysis	1	17.05.23			
7.	Solving simple ODE problems	1	24.05.23			
No. of classes required to complete UNIT-I: 07				No. of classes taken:		

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

s. No.	Topics to be covered (Experiment Name)	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1	Introduction to MATLAB	3	01.02 .23			
2	Arithmetic operators, trigonometric values, exponential functions and logarithms	3	08.02 .23			
3	Working with arrays	3	15.02 .23			
4	Working with script file, files and directories	3	22.02 .23			
5	Creating simple 2D/3D plots, Matrix operations	3	01.03 .23			
6	Solving Linear equations	3	15.03 .23			
7	Curve fitting-polynomial curve, linear fit, Least squares fitting and Interpolation	3	05.04 .23			
8	Statistical data analysis and solving ODE problems	3	12.04 .23			
CYCLE-II(Any three)						
69	Determination of Young's modulus for the given data	3	19.04 .23			

| | using stress-strain relationship. | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 10 | Computation of discharge
 coefficient for flow over a
 rectangular notch. | 3 | 26.04 .23 | | |
| 11 | Determination of shear
 parameters of a soil sample. | 3 | 03.05 .23 | | |
| 12 | Plotting of Longitudinal and
 cross sectional profile of a
 given data. | 3 | 10.05 .23 | | |
| 13 | Determination of specific
 energy and hydraulic jump for
 the given flow parameters. | 3 | 17.05 .23 | | |
| 14 | . Plotting SFD and BMD for the
 given loading conditions of a
 simple beam. | 3 | 24.05 .23 | | |
| No. of classes required to complete:12 | | No. of classes taken: | | | |

Teaching Learning Methods			
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Semester End Examinations -Mini project	$\mathbf{5 0}$
Total Marks:	$\mathbf{5 0}$

PART-D

Program Educational Objectives (PEOs):

PEO1: To possess knowledge in both fundamental and application aspects of mathematical, scientific, engineering principles to analyze complex engineering problems for meeting the national and international requirements and demonstrating the need for sustainable development.

PEO2: To adapt to the modern engineering tools for planning, analysis, design, implementation of analytical data and assess their relevant significance in societal and legal issues necessary in their professional career.

PEO3: To exhibit professionalism, ethical attitude, communication, managerial skills, team work and social responsibility in their profession and adapt to current trends by engaging in continuous learning.

Program Outcomes (POs):

PO1 - Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO2 - Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO3 - Design / Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO4 - Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO5 - Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO6 - The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO7 - Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8 - Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9 - Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO10 - Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO11 - Project Management and Finance: Demonstrate knowledge and understanding of the ring and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO12 - Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO1: Possesses necessary skill set to analyze and design various systems using analytical and software tools related to civil engineering.
PSO2: Possesses ability to plan, examine and analyze the various laboratory tests required for the professional demands.
PSO3: Possesses basic technical skills to pursue higher studies and professional practice in civil engineering domain.

Course Instructor Course Coordinator Module Coordinator \(\begin{gathered}Head of the
Department\end{gathered}\)
B.Rajeswari/ M.Siva Sankara Rao
Smt. B. Rajeswari
Dr. G. L.N.Murthy
Dr. V. Rama Krishna

