LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE HANDOUT PART-A

Name of Course Instructor : Mr. L V Krishna rao

Course Name & Code : Design and Analysis of Algorithms- 17CI08

L-T-P Structure : 3-0-0 Credits : 3

Program/Sem/Sec : B.Tech., CSE., IV-Sem., Sections- A A.Y : 2019-20

PRE-REQUISITE: : Basic of Programming language and Data structure

COURSE EDUCATIONAL OBJECTIVES (CEOs):

Students undergoing this course are expected to:

Explain the fundamental concepts of various algorithm design techniques. Make the students familiar to conduct performance evaluation of algorithms. Expertise the students with the various existing algorithm design techniques .Motivate the students to design a new algorithms for various problems and introduce the concepts of P&NP-class problems.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Identify the basic properties and analysis methods of algorithms and design divide and
	conquer paradigm for solving a few example problems and analyze them.
CO 2	Design Greedy algorithms for knapsack problem, minimum cost spanning tree, single
	source shortest path problem and analyze them.
CO 3	Apply dynamic programming paradigm to solve travelling sales person problem,0/1
	knapsack problem,Optimal binary search tree.
CO 4	Apply Backtracking search methods on state space trees for few example problems
CO 5	Analyze branch and bound search methods through problems such as 0/1 knapsack
	problem, Travelling salesperson problem.

COURSE ARTICULATION MATRIX(Correlation between COs, POs & PSOs):

COs	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	ı	ı	ı	ı	ı	ı	ı	1	1	3		
CO ₂	2	3	1	1	1	ı	ı	ı	1	1	1	1	3		
CO3	2	3	1	ı	ı	ı	ı	ı	ı	ı	ı	ı	3		
CO4	2	3	1	-	1	-	-	-	-	-	-	-	1		
CO5	2	3	1	-	-	-	-	-	-	-	-	-	1		

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

T1: Ellis Horowitz, SartajSahni, 'Fundamentals of Computer Algorithms', Galgotia Publications.

T2: Data Structures and Algorithm Analysis in C++, 3/e, Mark Allen Weiss, Pearson , 2007.

REFERENCE BOOKS:

R1: Aho, Hopcroft& Ullman, 'The Design and Analysis of Computer Algorithms', Addison Wesley publications

R2: Thomas H. Cormen et al, 'Introduction to Algorithms', PHI.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT -I: INTRODUCTION

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion (DD-MM-YY)	Actual Date of Completion (DD-MM-YY)	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to course	1	26-11-19		TLM1	
2.	Algorithm definition and Specifications	1	28-11-19		TLM1	
3.	Performance Analysis	1	29-11-19		TLM1	
4.	Time Complexity and space complexity	1	03-12-19		TLM1	
5.	Asymptotic Notations- Big-Oh, Omega and Theta	1	05-12-19		TLM1 /TLM2	
6.	Divide & Conquer Technique: General Method	1	06-12-19		TLM1 /TLM2	
7.	Binary Search and its analysis	1	10-12-19		TLM1 /TLM2	
8.	Finding Maximum and Minimum and its Analysis	1	12-12-19		TLM1 /TLM2	
9.	Merge sort and its Analysis	1	13-12-19		TLM1 /TLM2	
10.	Quick Sort algorithm and its analysis	1	17-12-19		TLM1 /TLM2	
11.	Assignment- 1/Tutorial-1	1	19-12-19		TLM 3	
No. of	classes required to com	plete UNIT-	I : 11	No. of classes	s taken:	

UNIT -II: Greedy Method

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion (DD-MM-YY)	Actual Date of Completion (DD-MM- YY)	Teaching Learning Methods	HOD Sign Weekly
12.	Greedy Method – Introduction, General method	1	20-12-19		TLM1/ TLM2	
13.	Knapsack problem , Example problem	1	24-12-19		TLM1 /TLM2	
14.	Job sequencing with deadlines, Example problem	1	26-12-19		TLM1 /TLM2	
15.	Minimum cost spanning trees, example problem	1	27-12-19		TLM1 /TLM2	
16.	Optimal storage on tapes, Example problem	1	31-12-19		TLM1 /TLM2	
17.	Optimal Merge patterns, Example problem	1	02-01-20		TLM1 /TLM4	
18.	Single source Shortest path problem	1	03-01-20		TLM1 /TLM2	
19.	Assignment-2/Tutorial-2	1	07-01-20		TLM 3	
No. of	classes required to complet	No. of classes	taken:			

UNIT -III: DYNAMIC PROGRAMMING

		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
		Required	Completion	Completion	Methods	Weekly
20.	Dynamic Programming- General method	1	09-01-20		TLM1	
21.	Multistage Graph, Example problem	1	10-01-20		TLM1 /TLM2	
22.	All pairs Shortest path, Example problem	1	28-01-20		TLM1 /TLM2	
23.	Optimal Binary Search Tree , Example problem	1	30-01-20		TLM1 /TLM2	
24.	0/1 Knapsack Problem	1	31-01-20		TLM1 /TLM2	
25.	Travelling Sales Person Problem	1	04-02-20		TLM1	
26.	Single source shortest path problem, Example Problem	1	05-02-20		TLM1	
27.	Reliability design, Example Problem	1	07-02-20		TLM1	
28.	Tutorial-3/ Assignment-3	1	11-02-20		TLM 3	
No. of	No. of classes required to complete UNIT-3:09				taken:	

UNIT -IV: BACK TRACKING

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
29.	General Method	1	13-02-20		TLM1	
30.	The 8-Queens problem	2	14-02-20, 18-02-20		TLM1 /TLM2	
31.	Sum of subsets problem	2	20-02-20, 25-02-20		TLM1 /TLM2	
32.	Graph coloring problem	1	27-02-20		TLM1 /TLM2	
33.	Hamiltonian cycles	1	28-02-20		TLM1 /TLM2	
34.	Tutorial-4/Assignment-4	1	03-03-20		TLM 3	
No. of	classes required to complete					

UNIT-V: NP- HARD AND NP-COMPLETE PROBLEMS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
35.	Branch and Bound- General method	1	05-03-20		TLM1	
36.	LC Branch and bound solution for Travelling Sales Person Problem	1	06-03-20		TLM1 /TLM2	
37.	LC Branch and bound solution 0/1 Knapsack problem	2	12-03-20 & 13-03-20		TLM1 /TLM2	
38.	FIFO Branch and bound solution for Travelling Sales Person Problem	2	17-03-20 & 19-03-20		TLM1 /TLM2	
39.	FIFO Branch and bound solution 0/1 Knapsack problem	1	20-03-20		TLM1 /TLM2	
40.	Assignment-5 /Tutorial-5	1	24-03-20		TLM 3	
	No. of classes required to con	nplete UNIT	-5:08			

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
41.	Huffman Coding	1	26-03-20		TLM1 /TLM4	
42.	Matrix chain multiplication & Longest common subsequence	1	27-03-20		TLM1 /TLM4	

Teaching	Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering problems.
	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental considerations.
	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and
	write effective reports and design documentation, make effective presentations, and give and
	receive clear instructions. Project management and finance : Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
	Life-long learning : Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Programming Paradigms: To inculcate algorithmic thinking, formulation techniques and				
	visualization, leading to problem solving skills using different programming paradigms.				
PSO 2	Data Engineering: To inculcate an ability to Analyze, Design and implement data driven				
	applications into the students.				
PSO 3	Software Engineering: Develop an ability to implement various processes / methodologies				
	/practices employed in design, validation, testing and maintenance of software products.				

Course Instructor Course Coordinator Module Coordinator HOD
Mr. L V Krishna rao Mr. D Srinivasa Rao Dr. D. Veeraiah Dr. D. Veeraiah

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE HANDOUT PART-A

Name of Course Instructor : Mr. D.SRINIVASA RAO

Course Name & Code : Design and Analysis of Algorithms- 17CI08

L-T-P Structure : 3-0-0 Credits : 3

Program/Sem/Sec : B.Tech., CSE., IV-Sem., Sections- B A.Y : 2019-20

PRE-REQUISITE: : Basic of Programming language and Data structure

COURSE EDUCATIONAL OBJECTIVES (CEOs):

Students undergoing this course are expected to:

Explain the fundamental concepts of various algorithm design techniques. Make the students familiar to conduct performance evaluation of algorithms. Expertise the students with the various existing algorithm design techniques .Motivate the students to design a new algorithms for various problems.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Identify the basic properties and analysis methods of algorithms and design divide and
	conquer paradigm for solving a few example problems and analyze them.
CO 2	Design Greedy algorithms for knapsack problem, minimum cost spanning tree, single
	source shortest path problem and analyze them.
CO 3	Apply dynamic programming paradigm to solve travelling sales person problem,0/1
	knapsack problem,Optimal binary search tree.
CO 4	Apply Backtracking search methods on state space trees for few example problems
CO 5	Analyze branch and bound search methods through problems such as 0/1 knapsack
	problem, Travelling salesperson problem.

COURSE ARTICULATION MATRIX(Correlation between COs, POs & PSOs):

COs	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	2	ı	ı	ı	ı	-	ı	ı	1	ı	3		
CO ₂	2	3	1	1	1	1	ı	-	ı	1	1	1	3		
CO3	2	3	1	-	1	-	-	-	-	-	-	-	3		
CO4	2	3	1	-	-	-	-	-	-	-	-	-	1		
CO5	2	3	1	-	-	-	-	-	-	-	-	-	1		

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

T1: Ellis Horowitz, SartajSahni, 'Fundamentals of Computer Algorithms', Galgotia Publications.

T2: Data Structures and Algorithm Analysis in C++, 3/e, Mark Allen Weiss, Pearson , 2007.

REFERENCE BOOKS:

R1: Aho, Hopcroft& Ullman, 'The Design and Analysis of Computer Algorithms', Addison Wesley publications

R2: Thomas H. Cormen et al, 'Introduction to Algorithms', PHI.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN): B-SEC

UNIT -I: INTRODUCTION

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion (DD-MM-YY)	Actual Date of Completion (DD-MM-YY)	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to course	1	26-11-19		TLM1	
2.	Algorithm definition and Specifications	1	27-11-19		TLM1	
3.	Performance Analysis	1	29-11-19		TLM1	
4.	Time Complexity and space complexity	1	29-12-19		TLM1	
5.	Asymptotic Notations- Big-Oh, Omega and Theta	1	03-12-19		TLM1 /TLM2	
6.	Divide & Conquer Technique: General Method	1	04-12-19		TLM1 /TLM2	
7.	Binary Search and its analysis	1	06-12-19		TLM1 /TLM2	
8.	Finding Maximum and Minimum and its Analysis	1	10-12-19 & 11-12-19		TLM1 /TLM2	
9.	Merge sort and its Analysis	1	13-12-19 & 17-12-19		TLM1 /TLM2	
10.	Quick Sort algorithm and its analysis	1	20-12-19		TLM1 /TLM2	
11.	Assignment- 1/Tutorial-1	1	24-12-19		TLM 3	
No. of	classes required to com	plete UNIT-	I : 11	No. of classes	s taken:	

UNIT -II: Greedy Method

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion (DD-MM-YY)	Actual Date of Completion (DD-MM- YY)	Teaching Learning Methods	HOD Sign Weekly	
12.	Greedy Method – Introduction, General method	1	31-12-19		TLM1/ TLM2		
13.	Knapsack problem , Example problem	1	31-12-19		TLM1 /TLM2		
14.	Job sequencing with deadlines, Example problem	1	03-01-20		TLM1 /TLM2		
15.	Minimum cost spanning trees, example problem	1	07-01-20		TLM1 /TLM2		
16.	Optimal storage on tapes, Example problem	1	08-01-20		TLM1 /TLM2		
17.	Optimal Merge patterns, Example problem	1	08-01-20		TLM1 /TLM4		
18.	Single source Shortest path problem	1	10-01-20		TLM1 /TLM2		
19.	Assignment-2/Tutorial-2	1	10-01-20		TLM 3		
No. of	No. of classes required to complete UNIT-2:08 No. of classes taken:						

UNIT -III: DYNAMIC PROGRAMMING

S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign
5.1 (0.	Topics to be covered	Required	Completion	Completion	Methods	Weekly
20.	Dynamic Programming- General method	1	28-01-20	_	TLM1	
21.	Multistage Graph, Example problem	1	29-01-20		TLM1 /TLM2	
22.	All pairs Shortest path, Example problem	1	31-01-20		TLM1 /TLM2	
23.	Optimal Binary Search Tree , Example problem	1	04-02-20		TLM1 /TLM2	
24.	0/1 Knapsack Problem	1	05-02-20		TLM1 /TLM2	
25.	Travelling Sales Person Problem	1	07-02-20		TLM1	
26.	Single source shortest path problem, Example Problem	1	11-02-20		TLM1	
27.	Reliability design, Example Problem	1	12-02-20		TLM1	
28.	Tutorial-3/ Assignment-3	1	14-02-20		TLM 3	
No. of	No. of classes required to complete UNIT-3:09 No. of classes taken:					

UNIT -IV: BACK TRACKING

		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
	•	Required	Completion	Completion	Methods	Weekly
29.	General Method	1	18-02-20	_	TLM1	
	The 8-Queens problem		19-02-20		TLM1	
30.		2	&		/TLM2	
			21-02-20			
21	Sum of subsets problem	2	25-02-20		TLM1	
31.	1	2			/TLM2	
32.	Graph coloring problem	1	26-02-20		TLM1	
32.		1			/TLM2	
33.	Hamiltonian cycles	1	28-02-20		TLM1	
33.		-			/TLM2	
34.	Tutorial-4/Assignment-4	1	03-03-20		TLM 3	
No. of	classes required to complete	UNIT-4:0	8			

UNIT-V: BRANCH AND BOUND

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
35.	Branch and Bound- General method	1	04-03-20 & 06-03-20		TLM1	
36.	LC Branch and bound solution for Travelling Sales Person Problem	1	11-03-20		TLM1 /TLM2	
37.	LC Branch and bound solution 0/1 Knapsack problem	2	13-03-20		TLM1 /TLM2	
38.	FIFO Branch and bound solution for Travelling Sales Person Problem	2	17-03-20		TLM1 /TLM2	
39.	FIFO Branch and bound solution 0/1 Knapsack problem	1	18-03-20		TLM1 /TLM2	
40.	Assignment-5 /Tutorial-5 No. of classes required to cor	1	20-03-20		TLM 3	

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
41.	Master theorem, Huffman Coding	1	24-03-20		TLM1 /TLM4	

42.	Matrix chain multiplication & Longest common	1	25-03-20	TLM1 /TLM4	
	subsequence				

Teaching	Teaching Learning Methods				
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.						
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.						
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.						
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.						
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations						
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice						
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.						
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.						
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.						
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.						
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.						
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.						

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Programming Paradigms: To inculcate algorithmic thinking, formulation techniques and
	visualization, leading to problem solving skills using different programming paradigms.
PSO 2	Data Engineering: To inculcate an ability to Analyze, Design and implement data driven
	applications into the students.
PSO 3	Software Engineering: Develop an ability to implement various processes / methodologies
	/practices employed in design, validation, testing and maintenance of software products.

Course Instructor Course Coordinator Module Coordinator HOD

Mr. D Srinivasa Rao Dr. D. Veeraiah Dr. D. Veeraiah

OF PLANE S.

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor : G.V.Rajva Lakshmi

Course Name & Code : DataBase Management Systems (17CI09)

L-T-P Structure : 3-1-0 Credits : 3 Program/Sem/Sec : B.Tech., CSE., IV-Sem., A A.Y : 2019-20

PRE-REQUISITE: Elementary set theory, concepts of relations and functions, propositional logic data structures (trees, Graphs, dictionaries) & File Concepts.

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course enables the students to know about

- ✓ DBMS basic concepts, Database Languages.
- ✓ Data base Design.
- ✓ Normalization process and Transaction processing.
- ✓ Indexing.

COURSE OUTCOMES (**COs**): At the end of the course, students are able to

CO 1	Outline the components of DBMS & design database using ER model
CO 2	Construct database using SQL and extract data from database using Relational algebra
	& SQL queries.
CO 3	Apply the normalization process for effective database design
CO 4	Analyze components of transaction processing, Concurrency control mechanisms and
	recovery strategies of DBMS
CO 5	Evaluate different File organization & Indexing Techniques

COURSE ARTICULATION MATRIX(Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2	-	-	1	-	1	-	-	-	-	-	3	-
CO2	3	3	-	-	1	-	-	1	-	-	-	-	2	3	-
CO3	3	2	-	-	-	-	-	1	-	-	-	-	2	3	-
CO4	2	1	2	-	-	-	-	-	-	-	-	-	1	3	-
CO5	2	1	2	-	ı	i	1	1	ı	-	ı	ı	1	3	ı

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- **T1** Henry F. Korth, Abraham Silberschatz, S.Sudarshan, "Database System Concepts", McGraw Hill, 6 thedition, 2009.
- **T2** Ramez Elmasri, Shamkanth B.Navathe, "Fundamentals of Database Systems", Addison Wesley, 6 thedition, 2010.

REFERENCE BOOKS:

- **R1** Raghu Ramakrishnan, Johannese Gehrke, "Database Management System", McGraw Hill, 3 rd edition, 2000.
- R2 Date C J, "An Introduction to Database System", Pearson Education, 8th edition, 2003
- **R3** Sharad Maheshwari, Ruchin Jain, "DBMS: Complete Practical Approach", Firewall Media, New Delhi, 2005

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT -I: Introduction & Data modeling using the Entity Relationship Model

S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign
		Required	Completion	Completion	Methods	Weekly
1.	Introduction, An overview of	1	25/11/19			
	database management system					
2.	Database system Vs file system	1	26/11/19			
3.	Database system concepts and architecture	1	29/11/19			
4.	Data models schema and instances	1	30/11/19			
5.	Data independence and data base language and interfaces	1	02/12/19			
6.	Data definitions language, DML, Overall Database Structure	1	03/12/19			
7.	Tutorial – I	1	06/12/19			
7.		1	00/12/19			
8.	ER model concepts- notation for ER diagram	1	07/12/19			
9.	Mapping constraints, keys	1	09/12/19			
10.	Concepts of Super Key, candidate key, primary key	1	10/12/19			
11.	Generalization, aggregation	1	13/12/19			
12.	Reduction of an ER diagrams to tables, Extended ER model	1	14/12/19			
13.	Relationships of higher degree	1	16/12/19			
14.	Tutorial – II	1	17/12/19			
No. o	f classes required to complete UN		No. of class	sses taken:		

UNIT -II: Relational data Model and Language & Introduction to SOL

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Relational data model concepts	1	20/12/19		TLM1	
2.	Integrity constraints: entity integrity, referential integrity	1	21/12/19		TLM1	
3.	Keys constraints, Domain constraints	1	23/12/19		TLM1	
4.	Relational algebra	1	24/12/19		TLM1	
5.	Tutorial – III	1	27/12/19		TLM3	
6.	Characteristics of SQL, Advantage of SQL	1	28/12/19		TLM1	
7.	SQL data types and literals, Types of SQL commands	1	30/12/19		TLM1	
8.	SQL operators and their procedure	1	31/12/19		TLM1	
9.	Tables, views and indexes,	1	03/01/20		TLM1	
10.	Queries and sub queries, Aggregate functions	1	04/01/20		TLM1/ TLM2	
11.	Insert, update and delete operations	1	06/01/20		TLM1	
12.	Unions, Intersection, Minus, Cursors in SQL	1	07/01/20		TLM1	
13.	Tutorial – IV	1	10/11/20		TLM3	
	f classes required to complete UN	IT-II: 13		No. of clas	sses taken:	
JNIT -	-III: Normalization	T			TD 1.*	HOD

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Functional Dependencies	1	27/01/20		TLM1	
2.	Normal Forms: First, Second	1	28/01/20		TLM1	
3.	Third Normal Forms	1	31/01/20		TLM1/ TLM2	
4.	BCNF, Inclusion Dependences	1	01/02/20		TLM1	
5.	Loss Less Join Decompositions	1	03/02/20		TLM1	
6.	Tutorial – V	1	04/02/20		TLM3	
7.	Normalization Using FD,MVD	1	07/02/20		TLM1	
8.	Normalization Using JD	1	08/02/20		TLM1	
9.	Alternative Approaches To Database Design	1	10/02/20		TLM1	
10.	Tutorial – VI	1	11/02/20		TLM3	
No. o	f classes required to complete UN	IT-III: 10	•	No. of class	sses taken:	

UNIT –IV: Transaction Processing Concepts & Concurrency Control techniques

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Transaction System	1	14/02/20		TLM1	
2.	Testing Of Serializability	1	15/02/20		TLM1	
3.	Serializability Of Schedules	1	17/02/20		TLM1	
4.	Conflict & View Serializable Schedule	1	18/02/20		TLM1	
5.	Recoverability, Log Based Recovery, Checkpoints,	1	22/02/20		TLM1	
6.	ARIES Algorithm, Deadlock Handling	1	24/02/20		TLM1/ TLM2	
7.	Tutorial –VII	1	25/02/20		TLM3	
8.	Concurrency Control	1	28/02/20		TLM1	
9.	Techniques For Concurrency Control	1	29/02/20		TLM1	
10.	Time Stamping Protocols For Concurrency Control	1	02/03/20		TLM1	
11.	Locking, Validation Based Protocol	1	03/03/20		TLM1	
12.	Multiple Granularity	1	06/03/20		TLM1	
13.	Recovery With Concurrent Transactions	1	07/03/20		TLM1/ TLM2	
14.	Tutorial-VIII		10/03/20		TLM3	
No. o	f classes required to complete UN	IT-IV: 14	1	No. of clas	sses taken:	

UNIT-V: Storage and Indexing

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	RAID Levels	1	13/03/20		TLM1	
2.	Page Formats	1	14/03/20		TLM1	
3.	Record Formats	1	16/03/20		TLM1	
4.	File Types And Organization, Tutorial – IX	1	17/03/20		TLM1/ TLM3	

5.	ISAM	1	20/03/20		TLM1/ TLM2	
6.	B-Tree	1	21/03/20		TLM1	
7.	B+-Tree	1	23/03/20		TLM1/ TLM2	
8.	Examples on trees	1	24/03/20		TLM1	
9.	Tutorial – X	1	27/03/20		TLM3	
No. of	classes required to complete UNI	T-V: 9		No. of clas	ses taken:	_

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
DO 2	natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
DO 5	the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
DO 12	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
	macpendent and me-rong rearring in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Programming Paradigms : To inculcate algorithmic thinking, formulation									
	techniques and visualization, leading to problem solving skills using different									
	programming paradigms.									
PSO 2	Data Engineering: To inculcate an ability to Analyse, Design and implement data									
	driven applications into the students.									
PSO 3	Software Engineering: Develop an ability to implement various processes /									
	methodologies /practices employed in design, validation, testing and maintenance									
	of software products.									

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor : G.V.Rajya Lakshmi

Course Name & Code

: DataBase Management Systems Lab(17CI64)

L-T-P Structure

: 0-0-2 : B.Tech., CSE., IV-Sem., A Credits: 1

Program/Sem/Sec

A.Y: 2019-20

PRE-REQUISITE

: C Language

COURSE EDUCATIONAL OBJECTIVES (CEOs): The major objective of this lab is to provide a strong formal foundation in database concepts, technology and practice to the participants to groom them into well-informed database application developers.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Design & implement a database schema for a given problem-domain.								
CO 2	Create database using SQL and implement various integrity constraints.								
CO 3	Apply PL/SQL Programming for problem solving.								
CO 4	Improve individual / team work skills, communication & report writing skills with								
	ethical values.								

COURSE ARTICULATION MATRIX(Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	-	-	3	-	-	-	-	-	-	2	1	3	-
CO2	2	2	-	-	3	-	-	-	-	-	-	2	1	3	-
CO3	2	2	2	-	3	-	-	-	-	-	-	2	3	3	-
CO4	-	-	-	-	-	-	-	2	2	2	-	-	-	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

PART-B

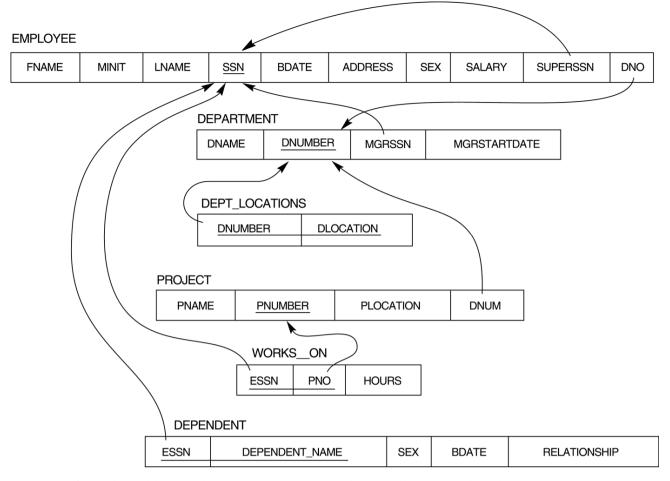
CYCLE-1

1) Create a table STUDENT with appropriate data types and perform the following queries.

Roll number, student name, date of birth, branch and year of study.

- 1. Insert 5 to 10 rows in a table?
- 2. List all the students of all branches
- 3. List student names whose name starts with 's'

¹⁻ Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).


- 4. List student names whose name contains 's' as third literal
- 5. List student names whose contains two 's' anywhere in the name
- 6. List students whose branch is NULL
- 7. List students of CSE & ECE who born after 1980
- 8. List all students in reverse order of their names
- 9. Delete students of any branch whose name starts with 's'
- 10. Update the branch of CSE students to ECE
- 11. Display student name padded with '*' after the name of all the students
- 2) Create the following tables based on the above Schema Diagram with appropriate data types and constraints and perform the following queries.

SAILORS (Saild, Salname, Rating, Age)

RESERVES (Sailid, boatid, Day)

BOATS (Boatid, Boat-name, Color)

- 1. Insert 5 to 10 rows in all tables?
- 2. Find the name of sailors who reserved boat number 3.
- 3. Find the name of sailors who reserved green boat.
- 4. Find the colors of boats reserved by "Ramesh".
- 5. Find the names of sailors who have reserved atleast one boat.
- 6. Find the all sailed of sailors who have a rating of 10 or have reserved boated 104.
- 7. Find the Sailid's of sailors with age over 20 who have not registered a red boat.
- 8. Find the names of sailors who have reserved a red or green boat.
- 9. Find sailors whose rating is better than some sailor called 'Salvador'.
- 10. Find the names of sailors who are older than the oldest sailor with a rating of 10.
- 3) Schema Diagram for the rest of the SQL and PLSQL Programs.

Create the following tables based on the above Schema Diagram with appropriate data types and constraints.

EMPLOYEE (Fname, Mname, Lname, SSN, Bdate, Address, Gender, Salary, SuperSSN, Dno)

DEPARTMENT(Dnumber, Dname, MgrSSN, Mgrstartdate)

DEPENDENT (ESSN, Dependent_Name, Gender, Bdate, Relationship)

- 1) Insert 5 to 10 rows into all the tables.
- 2) Display all employee's names along with their department names.
- 3) Display all employee's names along with their dependent details.
- 4) Display name and address of all employees who work for 'ECE' department.
- 5) List the names of all employees with two or more dependents.
- 6) List the names of employee who have no dependents.
- 7) List the names of employees who have at least one dependent.
- 8) List the names of the employees along with names of their supervisors using aliases.
- 9) Display name of the department and name of manager for all the departments.
- 10) Display the name of each employee who has a dependent with the same first name and gender as the employee.
- 11) List the names of managers who have at least one dependent.

- 12) Display the sum of all employees' salaries as well as maximum, minimum and average salary in the entire departments department wise if the department has more than two employees.
- 13) List the departments of each female employee along with her name.
- 14) List all employee names and also the name of the department they manage if they happen to manage a dept.
- 15) Display the name of the employee and his / her supervisor's name.
- 4) Create the following tables based on the above Schema Diagram with appropriate data types and constraints in addition to the tables in Experiment 2.

DEPT LOCATIONS (Dnumber, Dloaction)

PROJECT (Pname, Pnumber, Plocation, Dnum)

WORKS_ON(ESSN, Pno, Hours).

- 1) Insert 5 to 10 rows into all the tables.
- 2) Find the names of the employees who work on all the projects controlled by the department 'ECM'.
- 3) List the project number, name and no. Of employees who work on that project for all the projects.
- 4) List the names of all the projects controlled by the departments department wise.
- 5) Retrieve the names of employees who work on all projects that 'John' works on.
- 6) List the project numbers for projects that involve an employee either as worker or as a manager of the department that controls the project.
- 7) List the names of all employees in one department who work more than 10 hours on one specific project.
- 8) For each project, list the project name and total hours (by all employees) spent on that project.
- 9) Retrieve the names of all employees who work on every project.
- 10) Retrieve the names of all employees who do not work on any project.
- 11) Display the name and total no. of hours worked by an employee who is working on maximum no. of projects among all the employees.
- 12) Display the names of all employees and also no. of hours, project names that they work on if they happen to work on any project(use outer join).
- 13) List the employee name, project name on which they work and the department they belong to for all the employees using alias names for the resulting columns.
- 14) Retrieve the names of all employees who work on more than one project department wise.
- 15) List all the departments that contain at least one occurrence of 'C' in their names.
- 5) Create a view that has project name, controlling department name, number of employees and total hours worked on the project for each project with more than one employee working on it.
- 1) List the projects that are controlled by one department from this view.

- 2) List the managers of the controlling departments for all the projects.
- 3) Demonstrate one update operation on this view.
- 4) List the Location of the controlling departments for all the projects.
- 5) Retrieve the data from the view.

PL/SQL LAB CYCLE

CYCLE-II

- 6. Write a PL/SQL Block to find whether the number is Armstrong or not.
- 7. Write a PL/SQL program for generating Fibonacci series
- 8. Write an anonymous PL/SQL block that fetches and displays the data from employee table to the console.
- 9. Write a program that updates salaries of all employees with 10 % hike (use cursors).
- 10. Write a program to fetch salary and employee name from employee table for a given user input. When no data found raise an exception that prints the message "no data found".
- 11. Write a program to find the number of records of any given table using % ROWCOUNT.
- 12. Write a cursor to display the list of employees and total salary department wise.
- 13. Write a database trigger on employee table so that the trigger fires when all the DML statements are executed (print appropriate message).
- 14. Write a trigger in such a way that it should not allow insert or update or delete on Wednesday and Thursday and display the proper message.
- 15. Write a procedure to display the name and salary of employee when user inputs SSN using IN/OUT parameters.
- 16. Write a function to check the validity of the given employee number from the employee table (print the appropriate message using PL/SQL block).
- 17. Visit TPC and submit report.

COURSE DELIVERY PLAN (LESSON PLAN): Section-A

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	HOD Sign Weekly
1	Introduction to DBMS	2	25/11/19		TLM4	CO1	
2	CYCLE-I: EXP-1	2	02/12/19		TLM4	CO1,CO4	
3	EXP-2	2	09/12/19		TLM4	CO1,CO4	
4	EXP-3	2	16/12/19		TLM4	CO1,CO4	
5	EXP-4	2	23/12/19		TLM4	CO1,CO4	
6	EXP-5	2	30/12/19		TLM4	CO1,CO4	
7	CYCLE-II: EXP-6, EXP7	2	06/01/20		TLM4	CO1,CO4	

8	EXP-8, EXP9	2	27/01/20	TLM4	CO2,CO4	
9	EXP-10, EXP11	2	03/02/19	TLM4	CO2,CO4	
10	EXP-12	2	10/02/19	TLM4	CO2,CO4	
11	EXP-13	2	17/02/19	TLM4	CO2,CO4	
12	EXP-14	2	24/02/19	TLM4	CO3,CO4	
13	EXP-15	2	02/03/20	TLM4	CO3,CO4	
14	EXP-16, EXP17	2	09/03/20	TLM4	CO3,CO4	
15	Revision on all Experiments	2	16/03/20	TLM4	CO3,CO4	
16	Internal Exam		23/03/20			

Teaching Learning Methods									
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)						
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)						
TLM3	Tutorial	TLM6	Group Discussion/Project						

PART-C

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering						
	fundamentals, and an engineering specialization to the solution of complex engineering						
	problems.						
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex						
	engineering problems reaching substantiated conclusions using first principles of mathematics,						
	natural sciences, and engineering sciences.						
PO 3	Design/development of solutions: Design solutions for complex engineering problems and						
	design system components or processes that meet the specified needs with appropriate						
	consideration for the public health and safety, and the cultural, societal, and environmental						
	considerations.						
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research						
	methods including design of experiments, analysis and interpretation of data, and synthesis of						
	the information to provide valid conclusions.						
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern						
	engineering and IT tools including prediction and modelling to complex engineering activities						
	with an understanding of the limitations						
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess						
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to						
	the professional engineering practice						
PO 7	Environment and sustainability: Understand the impact of the professional engineering						
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need						
	for sustainable development.						
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and						
	norms of the engineering practice.						
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in						
	diverse teams, and in multidisciplinary settings.						
PO 10	Communication: Communicate effectively on complex engineering activities with the						
	engineering community and with society at large, such as, being able to comprehend and write						
	effective reports and design documentation, make effective presentations, and give and receive						

	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Programming Paradigms : To inculcate algorithmic thinking, formulation									
	techniques and visualization, leading to problem solving skills using different									
	programming paradigms.									
PSO 2	Data Engineering: To inculcate an ability to Analyse, Design and implement data									
	driven applications into the students.									
PSO 3	Software Engineering: Develop an ability to implement various processes /									
	methodologies /practices employed in design, validation, testing and maintenance									
	of software products.									

Course Instructor G.V.Rajya Lakshmi Course Coordinator G.V.Rajya Lakshmi Module Coordinator Dr.D.Veeraiah HOD Dr.D.Veeraiah

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor : S. Govindu

Course Name & Code : Database Management Systems-17CI09

L-T-P Structure : 2-2-0 Credits : 3

Program/Sem/Sec : B.Tech., CSE., IV-Sem., Sections- B A.Y : 2019-20

PRE-REQUISITE: Elementary set theory, concepts of relations and functions, propositional logic

data structures (trees, Graphs, dictionaries) & File Concepts.

COURSE EDUCATIONAL OBJECTIVES (**CEOs**): This course enables the students to know about Basic concepts of DBMS, Database Languages, Database Design, Normalization Process, Transaction Processing, and Indexing.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO1	Outline the components of DBMS & design database using ER model								
CO2	Construct database using SQL and extract data from database using Relational algebra & SQL queries.								
CO3	Apply the normalization process for effective database design								
CO4	Analyze components of transaction processing, Concurrency control mechanisms and recovery strategies of DBMS								
CO5	Evaluate different File organization & Indexing Techniques								

COURSE ARTICULATION MATRIX(Correlation between COs, POs & PSOs):

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	1	2	1	-	-	-	-	-	-	-	-	-	3	-
CO2	3	3	1	-	1	-	-	-	-	-	-	-	2	3	-
CO3	3	2	1	ı	1	-	-	1	-	-	1	-	2	3	-
CO4	2	1	2	1	-	-	-	-	-	-	-	-	1	3	-
CO5	2	1	2	1	-	-	-	-	-	-	-	-	1	3	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- **T1** Henry F. Korth, Abraham Silberschatz, S.Sudarshan, "Database System Concepts", McGraw Hill, 6 thedition, 2009.
- **T2** Ramez Elmasri, Shamkanth B.Navathe, "Fundamentals of Database Systems", Addison Wesley, 6 thedition, 2010.

REFERENCE BOOKS:

- **R1** Raghu Ramakrishnan, Johannese Gehrke, "Database Management System", McGraw Hill, 3 rd edition, 2000.
- R2 Date C J, "An Introduction to Database System", Pearson Education, 8th edition, 2003
- **R3** Sharad Maheshwari, Ruchin Jain, "DBMS: Complete Practical Approach", Firewall Media, New Delhi, 2005

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

COURSE DELIVERY PLAN (LESSON PLAN): Section-A

UNIT -I: Introduction & Data modeling using the Entity Relationship Model

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Lear ning Outc ome COs	Text Book followed	HOD Sign Weekly
1.	Introduction, An overview of database management system	1	25-11-2019		TLM1	CO1	T1,T2,R1	
2.	Database system Vs file system	1	26-11-2019		TLM1	CO1	T1,T2,R1	
3.	Database system concepts and architecture	1	28-11-2019		TLM1	CO1	T1,T2,R1	
4.	Data models schema and instances	1	30-11-2019		TLM1	CO1	T1,T2,R1	
5.	Data independence and data base language and interfaces	1	02-12-2019		TLM1	CO1	T1,T2,R1	
6.	Data definitions language, DML, Overall Database Structure	1	03-12-2019		TLM1	CO1	T1,T2,R1	
7.	Tutorial – I	1	05-12-2019		TLM3	CO1		
8.	ER model	1	07-12-2019		TLM1/	CO1	T1,T2,R1	

	concepts- notation for ER diagram			TLM2		
9.	Mapping constraints, keys	1	09-12-2019	TLM1	CO1	T1,T2,R1
10.	Concepts of Super Key, candidate key, primary key, Generalization, aggregation	1	10-12-2019	TLM1	CO1	T1,T2,R1
11.	Reduction of an ER diagrams to tables, Extended ER model, Relationships of higher degree	1	12-12-2019	TLM1/ TLM2	CO1	T1,T2,R1
12.	Tutorial – II	1	16-12-219	TLM3	CO1	
	f classes required nplete UNIT-I	12		No. of class	ses taker	1:

UNIT -II: Relational data Model and Language & Introduction to SQL

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
13.	Relational data model concepts	1	17-12-2019		TLM1	CO2	T1,T2,R1	
14.	Integrity constraints: entity integrity, referential integrity	1	19-12-2019		TLM1	CO2	T1,T2,R1	
15.	Keys constraints, Domain constraints	1	23-12-2019		TLM1	CO2	T1,T2,R1	
16.	Relational algebra	1	24-12-2019		TLM1	CO2	T1,T2,R1	
17.	Tutorial – III	1	26-12-2019		TLM3	CO2		
18.	Characteristics of SQL, Advantage of SQL	1	28-12-2019		TLM1	CO2	T1,T2,R1	
19.	SQL data types and literals, Types of SQL commands	1	30-12-2019		TLM1	CO2	T1,T2,R1	
20.	SQL operators and their procedure	1	31-12-2019		TLM1	CO2	T1,T2,R1	
21.	Tables, views and indexes,	1	02-01-2020		TLM1	CO2	T1,T2,R1	
22.	Queries and sub	1	04-01-2020		TLM1/	CO2	T1,T2,R1	

	queries, Aggregate functions			TLM2			
23.	Insert, update and delete operations	1	06-01-2020	TLM1	CO2	T1,T2,R1	
24.	Unions, Intersection, Minus, Cursors in SQL	1	07-01-2020	TLM1	CO2	T1,T2,R1	
25.	Tutorial – IV	1	09-01-2020	TLM3	CO2		
	classes required to ete UNIT-2	13		No. of clas	sses taken:		

UNIT -III: Normalization

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
26.	Functional Dependencies	1	27-01-2020		TLM1	CO3	T1,T2,R1	
27.	Normal Forms: First, Second	1	28-01-2020		TLM1	CO3	T1,T2,R1	
28.	Third Normal Forms	1	30-01-2020		TLM1/ TLM2	CO3	T1,T2,R1	
29.	BCNF, Inclusion Dependences	1	01-02-2020		TLM1	CO3	T1,T2,R1	
30.	Loss Less Join Decompositions	1	03-02-2020		TLM1	CO3	T1,T2,R1	
31.	Tutorial – V	1	04-02-2020		TLM3			
32.	Normalization Using FD,MVD	1	06-02-2020		TLM1	CO3	T1,T2,R1	
33.	Normalization Using JD	1	10-02-2020		TLM1	CO3	T1,T2,R1	
34.	Alternative Approaches To Database Design	1	11-02-2020		TLM1	CO3	T1,T2,R1	
35.	Tutorial – VI	1	13-02-2020		TLM3	CO3		
No. of classes required to complete UNIT-3 No. of classes taken:								

UNIT-IV: Transaction Processing Concepts & Concurrency Control techniques

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
36.	Transaction System	1	15-02-2020		TLM1	CO4	T1,T2,R1	
37.	Testing Of Serializability	1	17-02-2020		TLM1	CO4	T1,T2,R1	
38.	Serializability Of Schedules	1	18-02-2020		TLM1	CO4	T1,T2,R1	
39.	Conflict & View Serializable Schedule	1	20-02-2020		TLM1	CO4	T1,T2,R1	
40.	Recoverability, Log Based Recovery, Checkpoints,	1	22-02-2020		TLM1	CO4	T1,T2,R1	
41.	ARIES Algorithm, Deadlock Handling	1	24-02-2020		TLM1/ TLM2	CO4	T1,T2,R1	
42.	Tutorial –VII	1	25-02-2020		TLM3			
43.	Concurrency Control	1	27-02-2020		TLM1	CO4	T1,T2,R1	
44.	Techniques For Concurrency Control	1	29-02-2020		TLM1	CO4	T1,T2,R1	
45.	Time Stamping Protocols For Concurrency Control	1	02-03-2020		TLM1	CO4	T1,T2,R1	
46.	Locking, Validation Based Protocol	1	03-03-2020		TLM1	CO4	T1,T2,R1	
47.	Multiple Granularity	1	05-03-2020		TLM1	CO4	T1,T2,R1	
48.	Recovery With Concurrent Transactions	1	07-03-2020		TLM1/ TLM2	CO4	T1,T2,R1	
49.	Tutorial-VIII		09-03-2020		TLM3	CO4		
	classes required to ete UNIT-4	14			No. of cla	sses taken	•	

UNIT-V: Storage and Indexing

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
50.	RAID Levels	1	12-03-2020		TLM1	CO5	T1,T2,R1	
51.	Page Formats	1	16-03-2020		TLM1	CO5	T1,T2,R1	
52.	Record Formats	1	17-03-2020		TLM1	CO5	T1,T2,R1	
53.	File Types And Organization, Tutorial – IX	1	19-03-2020		TLM1/ TLM3	CO5	T1,T2,R1	
54.	ISAM	1	21-03-2020		TLM1/ TLM2	CO5	T1,T2,R1	
55.	B-Tree	1	23-03-2020		TLM1	CO5	T1,T2,R1	
56.	B+-Tree	1	24-03-2020		TLM1/ TLM2	CO5	T1,T2,R1	
57.	Tutorial – X	1	26-03-2020		тьмз	CO5		
	classes required to ete UNIT-5	08			No. of cla	sses taken:		

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
58.	CODD RULES	1	28-03-2020		TLM1	CO1- CO5	T1,T2,R1	

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD	
TLM2	PPT	TLM5	Programming	TLM8	Lab Demo	
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study	

ACADEMIC CALENDAR:

Description	From	To	Weeks
I Phase of Instructions-1	25/11/2019	11/01/2020	7W
Pongal Holidays	13-01-2020	18-01-2020	1W
I Mid Examinations	20/01/2020	25/01/2020	1W
II Phase of Instructions	27/01/2020	28/03/2020	9W
II Mid Examinations	30/03/2020	04/04/2020	1W
Preparation and Practicals	06/04/2020	14/04/2020	2W
Semester End Examinations	15/04/2020	30/04/2020	2W

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
101	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex
PO 2	
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and

	norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES

PSO 1	Programming Paradigms: To inculcate algorithmic thinking, formulation techniques and										
	visualization, leading to problem solving skills using different programming paradigms.										
PSO 2	Data Engineering: To inculcate an ability to Analyse, Design and implement data driven										
	applications into the students.										
PSO 3	Software Engineering: Develop an ability to implement various processes / methodologies										
	/practices employed in design, validation, testing and maintenance of software products.										

Course Instructor	Course Coordinator	Module Coordinator	HOD

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

Accredited by NAAC &

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE HANDOUT

Name of Course Instructor : S. Govindu

Course Name & Code : Database Management Systems Lab-17CI64

L-T-P Structure : 0-0-2 Credits : 1

Program/Sem/Sec : B.Tech., CSE., IV-Sem., Sections- B A.Y : 2019-20

COURSE EDUCATIONAL OBJECTIVES (CEOs): The major objective of this lab is to provide a strong formal foundation in database concepts, technology and practice to the participants to groom them into well-informed database application developers.

COURSE OUTCOMES(COs):At the end of the course, the student will be able to:

CO1	Design & implement a database schema for a given problem-domain.
CO2	Create database using SQL and implement various integrity constraints.
CO3	Apply PL/SQL Programming for problem solving.
CO4	Improve individual / team work skills, communication & report writing skills with ethical values.

COURSE ARTICULATION MATRIX(Correlation between COs&POs, PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	-	-	3	-	-	-	-	-	-	2	1	3	-
CO2	2	2	-	-	3	-	-	-	-	-	-	2	1	3	-
соз	2	2	2	-	3	-	-	-	-	-	-	2	3	3	-
CO4	-	-	-	-	-	-	-	2	2	2	1	1	-	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

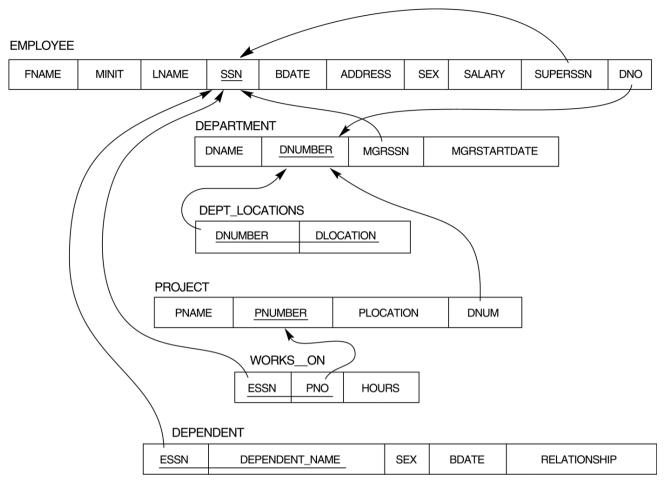
1- Slight(Low), 2 – Moderate(Medium), 3 - Substantial (High).

CYCLE-1

1) Create a table STUDENT with appropriate data types and perform the following queries.

Roll number, student name, date of birth, branch and year of study.

- 1. Insert 5 to 10 rows in a table?
- 2. List all the students of all branches
- 3. List student names whose name starts with 's'
- 4. List student names whose name contains 's' as third literal
- 5. List student names whose contains two 's' anywhere in the name
- 6. List students whose branch is NULL
- 7. List students of CSE & ECE who born after 1980
- 8. List all students in reverse order of their names
- 9. Delete students of any branch whose name starts with 's'
- 10. Update the branch of CSE students to ECE
- 11. Display student name padded with '*' after the name of all the students
- 2) Create the following tables based on the above Schema Diagram with appropriate data types and constraints and perform the following queries.


SAILORS (Saild, Salname, Rating, Age)

RESERVES (Sailid, boatid, Day)

BOATS (Boatid, Boat-name, Color)

- 1. Insert 5 to 10 rows in all tables?
- 2. Find the name of sailors who reserved boat number 3.
- 3. Find the name of sailors who reserved green boat.
- 4. Find the colors of boats reserved by "Ramesh".
- 5. Find the names of sailors who have reserved atleast one boat.
- 6. Find the all sailed of sailors who have a rating of 10 or have reserved boated 104.
- 7. Find the Sailid's of sailors with age over 20 who have not registered a red boat.
- 8. Find the names of sailors who have reserved a red or green boat.
- 9. Find sailors whose rating is better than some sailor called 'Salvador'.
- 10. Find the names of sailors who are older than the oldest sailor with a rating of 10.

3) Schema Diagram for the rest of the SQL and PLSQL Programs.

Create the following tables based on the above Schema Diagram with appropriate data types and constraints.

EMPLOYEE (Fname, Mname, Lname, SSN, Bdate, Address, Gender, Salary, SuperSSN, Dno)

DEPARTMENT(Dnumber, Dname, MgrSSN, Mgrstartdate)

DEPENDENT (ESSN, Dependent_Name, Gender, Bdate, Relationship)

- 1) Insert 5 to 10 rows into all the tables.
- 2) Display all employee's names along with their department names.
- 3) Display all employee's names along with their dependent details.
- 4) Display name and address of all employees who work for 'ECE' department.
- 5) List the names of all employees with two or more dependents.
- 6) List the names of employee who have no dependents.
- 7) List the names of employees who have at least one dependent.
- 8) List the names of the employees along with names of their supervisors using aliases.
- 9) Display name of the department and name of manager for all the departments.
- 10) Display the name of each employee who has a dependent with the same first name

and gender as the employee.

- 11) List the names of managers who have at least one dependent.
- 12) Display the sum of all employees' salaries as well as maximum, minimum and average salary in the entire departments department wise if the department has more than two employees.
- 13) List the departments of each female employee along with her name.
- 14) List all employee names and also the name of the department they manage if they happen to manage a dept.
- 15) Display the name of the employee and his / her supervisor's name.
- 4) Create the following tables based on the above Schema Diagram with appropriate data types and constraints in addition to the tables in Experiment 2.

DEPT_LOCATIONS (Dnumber, Dloaction)

PROJECT (Pname, Pnumber, Plocation, Dnum)

WORKS ON(ESSN, Pno, Hours).

- 1) Insert 5 to 10 rows into all the tables.
- 2) Find the names of the employees who work on all the projects controlled by the department 'ECM'.
- 3) List the project number, name and no. Of employees who work on that project for all the projects.
- 4) List the names of all the projects controlled by the departments department wise.
- 5) Retrieve the names of employees who work on all projects that 'John' works on.
- 6) List the project numbers for projects that involve an employee either as worker or as a manager of the department that controls the project.
- 7) List the names of all employees in one department who work more than 10 hours on one specific project.
- 8) For each project, list the project name and total hours (by all employees) spent on that project.
- 9) Retrieve the names of all employees who work on every project.
- 10) Retrieve the names of all employees who do not work on any project.
- 11) Display the name and total no. of hours worked by an employee who is working on maximum no. of projects among all the employees.
- 12) Display the names of all employees and also no. of hours, project names that they work on if they happen to work on any project(use outer join).
- 13) List the employee name, project name on which they work and the department they belong to for all the employees using alias names for the resulting columns.
- 14) Retrieve the names of all employees who work on more than one project department wise.
- 15) List all the departments that contain at least one occurrence of 'C' in their names.
- 5) Create a view that has project name, controlling department name, number of employees and total hours worked on the project for each project with more than one employee working on it.
- 1) List the projects that are controlled by one department from this view.

- 2) List the managers of the controlling departments for all the projects.
- 3) Demonstrate one update operation on this view.
- 4) List the Location of the controlling departments for all the projects.
- 5) Retrieve the data from the view.

PL/SQL LAB CYCLE

CYCLE-II

- 6. Write a PL/SQL Block to find whether the number is Armstrong or not.
- 7. Write a PL/SQL program for generating Fibonacci series
- 8. Write an anonymous PL/SQL block that fetches and displays the data from employee table to the console.
- 9. Write a program that updates salaries of all employees with 10 % hike (use cursors).
- 10. Write a program to fetch salary and employee name from employee table for a given user input. When no data found raise an exception that prints the message "no data found".
- 11. Write a program to find the number of records of any given table using % ROWCOUNT.
- 12. Write a cursor to display the list of employees and total salary department wise.
- 13. Write a database trigger on employee table so that the trigger fires when all the DML statements are executed (print appropriate message).
- 14. Write a trigger in such a way that it should not allow insert or update or delete on Wednesday and Thursday and display the proper message.
- 15. Write a procedure to display the name and salary of employee when user inputs SSN using IN/OUT parameters.
- 16. Write a function to check the validity of the given employee number from the employee table (print the appropriate message using PL/SQL block).
- 17. Visit TPC and submit report.

COURSE DELIVERY PLAN (LESSON PLAN): Section-A

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	HOD Sign Weekly
1	Introduction to DBMS	2	27-11-2019		TLM8	CO1	
2	CYCLE-I: EXP-1	2	04-12-2019		TLM8	CO1,CO4	
3	EXP-2	2	18-12-2019		TLM8	CO1,CO4	
4	EXP-3	2	01-01-2020		TLM8	CO1,CO4	
5	EXP-4	2	08-01-2020		TLM8	CO1,CO4	
6	EXP-5	2	22-01-2020		TLM8	CO1,CO4	
7	CYCLE-II : EXP-6, EXP7	2	29-01-2020		TLM8	CO1,CO4	
8	EXP-8, EXP9	2	05-02-2020		TLM8	CO2,CO4	

9	EXP-10, EXP11	2	12-02-2020	TLM8	CO2,CO4	
10	EXP-12	2	19-02-2020	TLM8	CO2,CO4	
11	EXP-13	2	26-02-2020	TLM8	CO2,CO4	
12	EXP-14	2	04-03-2020	TLM8	CO3,CO4	
13	EXP-15	2	11-03-2020	TLM8	CO3,CO4	
14	EXP-16, EXP17	2	18-03-2020	TLM8	CO3,CO4	
15	Internal Exam					

Teachin	Teaching Learning Methods									
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD					
TLM2	PPT	TLM5	Programming	TLM8	Lab Demo					
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study					

PROGRAM OUTCOMES

Engineering Graduates will be able to:

- 1. **Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- 2. **Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4. **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- 6. **The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. Environment and sustainability: Understand the impact of the professional engineering solutions in

- societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. **Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. **Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES

- **1. Programming Paradigms**: To inculcate algorithmic thinking, formulation techniques and visualization, leading to problem solving skills using different programming paradigms.
- **2. Data Engineering:** To inculcate an ability to Analyse, Design and implement data driven applications into the students.
- **3. Software Engineering:** Develop an ability to implement various processes / methodologies /practices employed in design, validation, testing and maintenance of software products.

Course Instructor	Course Coordinator	Module Coordinator	HOD

STERRIE STERRIES

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor : G BALU NARASIMHARAO Course Name & Code : Linux Programming & 17CS01

L-T-P Structure : 3-0-0 Credits : 3

Program/Sem/Sec: B.Tech., CSE., IV-Sem., Sections- B A.Y: 2019-20

PRE-REQUISITE: Knowledge in Operating Systems

COURSE EDUCATIONAL OBJECTIVES (**CEOs**):Introduce the student to Linux kernel programming techniques. Review basic concepts covered in the core Operating Systems course prerequisite as they are realized in the Linux platform. Discuss the Process, Inter-Process Communication Techniques and Network Implementation in Linux.

COURSE OUTCOMES (COs): At the end of the course, students are able to

	2 00 1 00 Mills (00s). The tile one of the course, stadents are use to
CO 1	Explore LINUX Ecosystem.
CO 2	Implement Shell scripting in LINUX Kernel.
CO 3	Design AWK scripts for text processing and Apply Regular Expressions for Pattern Matching.
CO 4	Design Scripts for Process Creation & Network Management.
CO5	Analyze multi-processing in Linux kernel.

COURSE ARTICULATION MATRIX(Correlation between COs, POs & PSOs):

occupation in the continuous services cost, i os & i sos).															
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3		1	1	-	-	-	-	1	-	-	1	3	1	-
CO2	2	2	3	1	ı	1	1	-	1	-	1	1	3	1	1
CO3	3	2	3	1	-	-	-	-	-	-	-	1	3	1	-
CO4	2	2	3	1	-	-	-	-	-	-	-	1	3	1	-
CO5	2	2	1	1	-	-	-	-	1	-	-	1	3	1	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- T1 Sumitabha Das., "Your Unix The Ultimate Guide", TMH Publications, 2001.
- **T2** M.G. Venkatesh Murthy, "Introduction to UNIX & SHELL programming", Pearson Education, First Edition, New Delhi, 2009.

REFERENCE BOOKS:

- **R1** B.A. Forouzan & R.F. Giberg, "Unix and shell Programming", Thomson, First Edition, New Delhi, 2003.
- **R2** E. Foster Johnson & others, "Beginning shell scripting", John Wiley & sons, First Edition, New Delhi, 2008.
- R3 Sumitabha Das, "Unix concepts and applications", TMH Publications, 4th Edition,.
- **R4** Gaham Glass & K. Ables, Unix for programmers and users, pearson education, 3rd edition,.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction to Linux

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Operating systems Concepts	1	25-11-2019			
2.	Introduction to LINUX	1	26-11-2019			
3.	Features of Linux kernel and shell	1	28-11-2019			
4.	Linux KERNEL, Terminal, Shell	1	02-12-2019			
5.	Linux Commands	1	03-12-2019			
6.	Linux Commands	1	05-12-2019			
7.	Linux Commands	2	09-12-2019 10-12-2019			
No. o	f classes required to complete UN	No. of clas	ses taken:			

UNIT-II: Introduction to Shell and Shell programming

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Shell	1	12-12-2019		TLM1 TLM2	
2.	Shell commands	2	16-12-2019 17-12-2019		TLM1 TLM2	
3.	Shell programming (VI editor)	3	19-12-2019 23-12-2019 24-12-2019		TLM1 TLM2	
4.	Shell Meta characters, Variables, Commands	3	26-12-2019 30-12-2019 31-12-2019		TLM1 TLM2	
5.	Control structures, shell script examples	3	2-1-2020 6-1-2020 7-1-2020		TLM1 TLM2	
No. o	f classes required to complete UN	IT-II:12		No. of clas	ses taken:	

UNIT-III: Filters, regular expressions and Programming with AWK

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Filters and commands: pr, cmp, comm, ulink, diff, head, tail	1	09-01-2020 27-01-2020		TLM1 TLM2	·
2.	Introduction to Filters and commands: find, cut, paste, sort, uniq, tr, w, finger	1	28-01-2020		TLM1 TLM2	
3.	Regular expression: grep, egrep, fgrep, sed	2	30-01-2020 03-02-2020		TLM1 TLM2	
4.	Line addressing, context addressing	2	04-02-2020 06-02-2020		TLM1 TLM2	
5.	Text substitution	1	10-02-2020		TLM1 TLM2	
6.	Programming with AWK: Awk statements, variables and expressions	2	11-02-2020 13-02-2020		TLM1 TLM2	
7.	Comparision and logical operators, Begin and end sections	1	17-02-2020		TLM1 TLM2	
8.	Decision and looping statements	1	18-02-2020 20-02-2020		TLM1 TLM2	

UNIT-IV: Linux internals and networking

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Linux process concept	1	24-02-2020		TLM1 TLM2	
2.	Process creation mechanism, process attributes	1	25-02-2020		TLM1 TLM2	
3.	Linux Internal: Kernal structure, system calls	1	27-02-2020		TLM1 TLM2	
4.	Signals, Memory Management	1	02-03-2020		TLM1 TLM2	
5.	Network Implementation: TCP- Sockets, connect, Listen	1	03-03-2020		TLM1 TLM2	
6.	Read, write, accept, fork	1	05-03-2020		TLM1 TLM2	
7.	UDP-sockets, sendto, recvfrom functions	2	09-03-2020 10-03-2020		TLM1 TLM2	
No. of	classes required to complete UN	IT-IV:8		No. of clas	ses taken:	

UNIT-V:Multi-Processing

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Intel multi processor specification	1	12-03-2020		TLM1 TLM2	
2.	Problems with multi- processor systems	2	16-03-2020 17-03-2020		TLM1 TLM2	
3.	Changes to the kernel	2	19-03-2020 23-03-2020		TLM1 TLM2	
4.	compiling LINUX SMP	2	24-03-2020 26-03-2020		TLM1 TLM2	
No. of cla	asses required to complete U	NIT-V:7		No. of class	sses taken:	
	II MID EXAM	INATIONS	30-3-2020 T	O 4-04-202	0	

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
70.	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
DO (with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
107	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Programming Paradigms: To inculcate algorithmic thinking, formulation techniques and visualization, leading to problem solving skills using different programming paradigms. 2. Data Engineering: To inculcate an ability to Analyze, Design and implement data driven applications into the students. 3. Software Engineering: Develop an ability to implement various processes / methodologies /practices employed in design, validation, testing and maintenance of software products.
PSO 2	Data Engineering: To inculcate an ability to Analyze, Design and implement data driven applications into the students.
PSO 3	Software Engineering: Develop an ability to implement various processes / methodologies /practices employed in design, validation, testing and maintenance of software products.

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: K.SUNDEEP SARADHI

Course Name & Code : OOPs through JAVA PROGRAMMING LAB (17CI65)

L-T-P Structure : 2-0-0 Credits : 2

Program/Sem/Sec: B.Tech., CSE, IV-Sem., Section – B A.Y: 2019 - 2020

PRE-REQUISITE: C PROGRAMMING

COURSE OBJECTIVE:

Concentrates on the methodological and technical aspects of software design and programming based on OOP. Acquire the basic knowledge and skills necessary to implement object oriented programming techniques in software development through java. Know about the importance of GUI based applications and the development of applications through java.

COURSE OUTCOMES (COs)

At the end of the course, the student will be able to:

CO1	Implement and Test the concepts of OOP in program design with a few example exercises.
CO2	Implement and Test the performance of Exception handling, Multithreading concepts with a few examples.
CO3	Implement and Test the performance of GUI based applications using AWT, Swings.
CO4	Improve individual / team work skills, communication & report writing skills with ethical values.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
ſ	CO1	2	3	3	1	1	-	-	-	-	-	-	1	3	-	-
ſ	CO2	2	3	3	1	1	-	-	-	-	-	-	1	3	-	-
	CO3	2	3	3	1	1	-	-	-	1	1	-	1	3	3	1
	CO4	-	-	-	-	-	-	-	2	2	2	-	-	-	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low),

2 – Moderate (Medium),

3 - Substantial (High).

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

S.No.	Programs to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Java programming	2	29.11.2019		TLM8	
2.	Introduction to Java Compiler	2	06.12.2019		TLM8	
3.	Programs on Basic control structures & Loops	2	13.12.2019		TLM4	
4.	Programs on Basic control structures & Loops	2	20.12.2019		TLM4	
5.	Programs on recursion	2	27.12.2019		TLM4	
6.	Programs on Arrays	2	03.01.2020		TLM4	
7.	Programs on Constructors & Method Overloading	2	10.01.2020		TLM4	
8.	Programs on String & String Buffer classes	2	31.01.2020		TLM4	
9.	Programs on Inheritance, super and final keyword	2	07.02.2020		TLM4	
10.	Programs on Run-Time Polymorphism, Packages and Interfaces	2	14.02.2020		TLM4	
11.	Programs on Exception Handling & Multithreading	2	28.02.2020		TLM4	
12.	Programs on Applets & Event Handling	2	06.03.2020		TLM4	
13.	Programs on Applets & Event Handling	2	13.03.2020		TLM4	
14.	Programs on AWT Components & Layout Managers	2	20.03.2020		TLM4	
15.	Programs on Swings	2	27.03.2020		TLM4	

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

	Programming Paradigms:
PSO 1	To inculcate algorithmic thinking, formulation techniques and visualization, leading to problem solving skills using different programming paradigms.
	Data Engineering:
PSO 2	To inculcate an ability to Analyse, Design and implement data driven applications into the students.
	Software Engineering:
PSO 3	Develop an ability to implement various processes / methodologies /practices employed in design, validation, testing and maintenance of software products

Course Instructor	Course Coordinator	Module Coordinator	HOD
K.SUNDEEP SARADHI	A.S.R.C.MURTHY	Dr.D.VEERAIAH	Dr.VEERAIAH

ANNERTS TREES

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: K.SUNDEEP SARADHI

Course Name & Code : OOPs through JAVA (17CI07)

L-T-P Structure : 3-0-0 Credits : 3

Program/Sem/Sec: B.Tech., CSE, IV-Sem., Section – B A.Y: 2019 - 2020

PRE-REQUISITE: Knowledge of Procedural Programming Language

COURSE EDUCATIONAL OBJECTIVES (CEOs):

This course concentrates on the methodological and technical aspects of software design and programming based on OOP and Acquire the basic knowledge and skills necessary to implement object-oriented programming techniques in software development through JAVA and to know about the importance of GUI based applications and the development of those Applications through JAVA and getting sufficient knowledge to enter the job market related to web development.

COURSE OUTCOMES (COs):

At the end of the course, students are able to

CO1	Identify Object Oriented concepts through constructs of JAVA.
CO2	Analyze the role of Inheritance, Polymorphism and implement Packages, Interfaces in program design using JAVA.
CO3	Explore Exception handling and Multi-threading concepts in program design using JAVA.
CO4	Develop GUI based applications using Applet class and explore the concept of Event Handling using JAVA.
CO5	Design some examples of GUI based applications using AWT controls and Swings.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	-	-	-	-	-	-	-	-	1	3	-	1
CO2	3	3	2	-	1	-	-	-	-	-	-	1	3	-	1
CO3	3	2	3	-	1	-	ı	-	1	-	-	1	3	-	1
CO4	3	2	3	-	1	-	ı	-	1	-	-	1	3	-	1
CO5	3	2	2	-	1	-	_	_	-	-	-	1	3	3	1

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low),

2 – Moderate (Medium),

3 - Substantial (High).

TEXT BOOKS:

T1 Herbert Schildt, "Java: The complete Reference", TMH Publications, 7th edition, 2006.

REFERENCE BOOKS:

- **R1** Dr.R.Nageswara Rao, "Core JAVA: An Integrated Approach", Dreamtech Press, 1st Edition, 2008.
- **R2** E.Balaguruswamy, "Programming with JAVA", TMH Publications, 2nd Edition, 2000.
- **R3** Patrick Niemeyer & Jonathan Knudsen, "Learning Java", O'REILLY Publications, 3rd Edition, 2005.
- **R4** Benjamin J Evans & David Flanagan, "Java-in a Nutshell A desktop quick reference", O'REILLY Publications, 6th Edition, 2014.
- **R5** David Flanagan, "Java Examples in a nutshell A Tutorial companion to java in a nutshell", O'REILLY Publications, 3rd Edition, 2004.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction to Java Language and Classes

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Java Programming	1	25.11.2019		TLM1/ TLM2	
2.	Java Basic Terminology (JDK, JRE, JVM)	1	26.11.2019		TLM1/ TLM2	
3.	Drawbacks of POP, Object Oriented paradigm	1	27.11.2019		TLM1/ TLM2	
4.	OOP Concept	1	02.12.2019		TLM1/ TLM2	
5.	Java Buzzwords, Byte Code, Simple types	1	03.12.2019		TLM1	
6.	Arrays, Type Conversion and Casting	1	04.12.2019		TLM1	
7.	Simple Java Programs , Class Fundamentals	1	09.12.2019		TLM1/ TLM2	
8.	Declaring Objects, Access Control and recursion, Constructors	1	10.12.2019		TLM1/ TLM2	
9.	Garbage Collection, Programs on String and String Buffer classes and Wrapper classes	1	11.12.2019		TLM1/ TLM2	
10.	Tutorial – 1 / Assignment - 1	1	16.12.2019		TLM 3	
No. o	f classes required to complete UNIT-	I: 10		No. of class	sses taken:	

UNIT-II: Inheritance & Polymorphism, Packages and Interfaces

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Inheritance Basics, Super Keyword, Multilevel Hierarchy,	1	17.12.2019		TLM1/ TLM2	
2.	Method Overloading & Method Overriding	1	18.12.2019		TLM1/ TLM2	
3.	Dynamic method dispatch, Abstract class, Object class and final keyword.	1	23.12.2019		TLM1/ TLM2	
4.	Package definition, Accessing package, understanding CLASSPATH	1	24.12.2019		TLM1/ TLM2	

5.	Importing Packages, java.util package	1	30.12.2019	TLM1/ TLM2	
6.	Defining, Implementing and Applying Interfaces	1	31.12.2019	TLM1/ TLM2	
7.	Variables in interface and extending interfaces	1	06.01.2020	TLM1/ TLM2	
8.	Differences between classes and interfaces	1	07.01.2020	TLM1/ TLM2	
9.	Tutorial – 2 / Assignment - 2	1	08.01.2020	TLM3	
No. o	f classes required to complete UNIT-	II: 9		No. of classes taken:	

UNIT-III: Exception Handling, Multithreading

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Exception Handling Fundamentals, Exception types	1	27.01.2020		TLM1/ TLM2	
2.	Usage of try & catch, throws and finally	1	28.01.2020		TLM1/ TLM2	
3.	Java Built-in Exceptions	1	29.01.2020		TLM1/ TLM2	
4.	Differences between multi-threading and muti-tasking.	1	03.02.2020		TLM1/ TLM2	
5.	Java thread model Creating thread	1	04.02.2020		TLM1/ TLM2	
6.	Multiple threads	1	05.02.2020		TLM1/ TLM2	
7.	Synchronizing threads	1	10.02.2020		TLM1/ TLM2	
8.	Tutorial – 3 / Assignment - 3	1	11.02.2020		TLM3	
No. of classes required to complete UNIT-III: 8 No. of classes taken:						

UNIT-IV: Applet class and Event Handling

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Concepts of Applets, Differences between Applets and Applications	1	12.02.2020		TLM1/ TLM2	
2.	Applet Architecture, skeleton and creation.	1	17.02.2020		TLM1/ TLM2	
3.	Passing parameters to applets and working with graphics class.	1	18.02.2020		TLM1/ TLM2	
4.	Event handling mechanisms, Events and Event sources.	1	19.02.2020		TLM1/ TLM2	
5.	Event class, Listener interface, Delegation event model.	1	20.02.2020		TLM1/ TLM2	
6.	Keyboard and Mouse Events, Adapter class, Inner class.	1	24.02.2020		TLM1/ TLM2	
7.	Tutorial – 4 / Assignment - 4	1	25.02.2020		TLM3	
No. o	of classes required to complete UNIT-1	[V: 7		No. of class	sses taken:	

UNIT-V: AWT Controls and Introduction to Swings

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Label, button, Scrollbars, Text Components	1	26.02.2020		TLM1/ TLM2	
2.	Check Box, Check Box groups, choices, controls, lists	1	02.03.2020		TLM1/ TLM2	
3.	Scrollbar, Text field, Layout Managers – border, grid, flow	1	03.03.2020		TLM1/ TLM2	

4.	Introduction to swing, Key features, Limitations of AWT	1	04.03.2020	TLM1/ TLM2
5.	Components and Containers, Swing packages.	1	09.03.2020	TLM1/ TLM2
6.	Creating Swing applet.	1	11.03.2020	TLM1/ TLM2
7.	JApplet class, JComponents – Labels, Text fields, buttons	1	16.03.2020	TLM1/ TLM2
8.	Jbutton class, Tabbed Panes	1	17.03.2020	TLM1/ TLM2
9.	Scroll Panes, Tables	1	18.03.2020	TLM1/ TLM2
10.	Tutorial – 5 / Assignment - 5	1	23.03.2020	тьмз
No. of	classes required to complete UNIT-V	7: 10		No. of classes taken:

1. Discussion of Previous Question Papers	1	24.03.2020	TLM1/ TLM 2	
---	---	------------	----------------	--

Teaching I	Learning Methods		
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

PART-C EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
	Problem analysis: Identify, formulate, review research literature, and analyze complex
PO 2	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
	Design/development of solutions: Design solutions for complex engineering problems and
PO 3	design system components or processes that meet the specified needs with appropriate
103	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
	Conduct investigations of complex problems: Use research-based knowledge and research
PO 4	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
PO 5	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
PO 6	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
	Environment and sustainability: Understand the impact of the professional engineering
PO 7	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
PU	norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in
109	diverse teams, and in multidisciplinary settings.
	Communication: Communicate effectively on complex engineering activities with the
PO 10	engineering community and with society at large, such as, being able to comprehend and write
PO 10	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
	Project management and finance: Demonstrate knowledge and understanding of the
PO 11	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
DO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
PO 12	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

	Programming Paradigms:
PSO 1	To inculcate algorithmic thinking, formulation techniques and visualization, leading to problem solving skills using different programming paradigms.
	Data Engineering:
PSO 2	To inculcate an ability to Analyse, Design and implement data driven applications into the students.
	Software Engineering:
PSO 3	Develop an ability to implement various processes / methodologies /practices employed in design, validation, testing and maintenance of software products

Course Instructor	Course Coordinator	Module Coordinator	HOD
K.SUNDEEP SARADHI	A.S.R.C.MURTHY	Dr.D.VEERAIAH	Dr.VEERAIAH

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: A.Sree Rama Chandra Murthy

Course Name & Code : OOPs through JAVA PROGRAMMING LAB (17CI65)

L-T-P Structure : 2-0-0 Credits : 2

Program/Sem/Sec : B.Tech., CSE, IV-Sem., Section – A A.Y: 2019 - 2020

PRE-REQUISITE: C PROGRAMMING

COURSE OBJECTIVE:

Concentrates on the methodological and technical aspects of software design and programming based on OOP. Acquire the basic knowledge and skills necessary to implement object oriented programming techniques in software development through java. Know about the importance of GUI based applications and the development of applications through java.

COURSE OUTCOMES (COs)

At the end of the course, the student will be able to:

CO1	Implement and Test the concepts of OOP in program design with a few example exercises.
CO2	Implement and Test the performance of Exception handling, Multithreading concepts with a few examples.
CO3	Implement and Test the performance of GUI based applications using AWT, Swings.
CO4	Improve individual / team work skills, communication & report writing skills with ethical values.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	3	3	1	1	-	-	-	-	-	-	1	3	-	-
CO2	2	3	3	1	1	-	-	-	-	-	-	1	3	-	-
CO3	2	3	3	1	1	-	-	-	-	-	-	1	3	3	1
CO4	_	-	-	-	-	-	-	2	2	2	-	_	_	_	_

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low),

2 – Moderate (Medium),

3 - Substantial (High).

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

S.No.	Programs to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Java programming	2	28.11.2019		TLM8	
2.	Introduction to Java Compiler	2	05.12.2019		TLM8	
3.	Programs on Basic control structures & Loops	2	12.12.2019		TLM4	
4.	Programs on Basic control structures & Loops	2	19.12.2019		TLM4	
5.	Programs on recursion	2	26.12.2019		TLM4	
6.	Programs on Arrays	2	02.01.2020		TLM4	
7.	Programs on Constructors & Method Overloading	2	19.01.2020		TLM4	
8.	Programs on String & String Buffer classes	2	30.01.2020		TLM4	
9.	Programs on Inheritance, super and final keyword	2	06.02.2020		TLM4	
10.	Programs on Run-Time Polymorphism, Packages and Interfaces	2	13.02.2020		TLM4	
11.	Programs on Exception Handling & Multithreading	2	27.02.2020		TLM4	
12.	Programs on Applets & Event Handling	2	05.03.2020		TLM4	
13.	Programs on Applets & Event Handling	2	12.03.2020		TLM4	
14.	Programs on AWT Components & Layout Managers	2	19.03.2020		TLM4	
15.	Programs on Swings	2	26.03.2020		TLM4	

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

	Programming Paradigms:
PSO 1	To inculcate algorithmic thinking, formulation techniques and visualization, leading to problem solving skills using different programming paradigms.
	Data Engineering:
PSO 2	To inculcate an ability to Analyse, Design and implement data driven applications into the students.
	Software Engineering:
PSO 3	Develop an ability to implement various processes / methodologies /practices employed in design, validation, testing and maintenance of software products

Course Instructor	Course Coordinator	Module Coordinator	HOD
A.S.R.C.MURTHY	A.S.R.C.MURTHY	Dr.D.VEERAIAH	Dr.VEERAIAH

SANT TO SANT T

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: A.Sree Rama Chandra Murthy
Course Name & Code: OOPs through JAVA (17CI07)

L-T-P Structure : 3-0-0 Credits : 3

Program/Sem/Sec : B.Tech., CSE, IV-Sem., Section – A A.Y : 2019 - 2020

PRE-REQUISITE: Knowledge of Procedural Programming Language

COURSE EDUCATIONAL OBJECTIVES (CEOs):

This course concentrates on the methodological and technical aspects of software design and programming based on OOP and Acquire the basic knowledge and skills necessary to implement object-oriented programming techniques in software development through JAVA and to know about the importance of GUI based applications and the development of those Applications through JAVA and getting sufficient knowledge to enter the job market related to web development.

COURSE OUTCOMES (COs):

At the end of the course, students are able to

CO1	Identify Object Oriented concepts through constructs of JAVA.
CO2	Analyze the role of Inheritance, Polymorphism and implement Packages, Interfaces in program design using JAVA.
CO3	Explore Exception handling and Multi-threading concepts in program design using JAVA.
CO4	Develop GUI based applications using Applet class and explore the concept of Event Handling using JAVA.
CO5	Design some examples of GUI based applications using AWT controls and Swings.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	1	2	ı	ı	ı	ı	ı	1	-	ı	1	3	ı	1
CO2	3	3	2	ı	1	ı	ı	1	ı	-	ı	1	3	-	1
CO3	3	2	3	1	1	-	-	-	ı	-	ı	1	3	-	1
CO4	3	2	3	1	1	-	-	-	ı	-	ı	1	3	-	1
CO5	3	2	2	-	1	-	-	-	-	-	-	1	3	3	1

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low),

2 – Moderate (Medium),

3 - Substantial (High).

TEXT BOOKS:

T1 Herbert Schildt, "Java: The complete Reference", TMH Publications, 7th edition, 2006.

REFERENCE BOOKS:

- **R1** Dr.R.Nageswara Rao, "Core JAVA: An Integrated Approach", Dreamtech Press, 1st Edition, 2008.
- **R2** E.Balaguruswamy, "Programming with JAVA", TMH Publications, 2nd Edition, 2000.
- **R3** Patrick Niemeyer & Jonathan Knudsen, "Learning Java", O'REILLY Publications, 3rd Edition, 2005.
- **R4** Benjamin J Evans & David Flanagan, "Java-in a Nutshell A desktop quick reference", O'REILLY Publications, 6th Edition, 2014.
- **R5** David Flanagan, "Java Examples in a nutshell A Tutorial companion to java in a nutshell", O'REILLY Publications, 3rd Edition, 2004.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction to Java Language and Classes

C1111	-1. Introduction to Java Language a				775 1.1	TIOD
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Java Programming	1	26.11.2019		TLM1/ TLM2	
2.	Java Basic Terminology (JDK, JRE, JVM)	1	28.11.2019		TLM1/ TLM2	
3.	Drawbacks of POP, Object Oriented paradigm	1	29.11.2019		TLM1/ TLM2	
4.	OOP Concept	1	03.12.2019		TLM1/ TLM2	
5.	Java Buzzwords, Byte Code, Simple types	1	05.12.2019		TLM1	
6.	Arrays, Type Conversion and Casting	1	06.12.2019		TLM1	
7.	Simple Java Programs , Class Fundamentals	1	10.12.2019		TLM1/ TLM2	
8.	Declaring Objects, Access Control and recursion, Constructors	1	12.12.2019		TLM1/ TLM2	
9.	Garbage Collection, Programs on String and String Buffer classes and Wrapper classes	1	13.12.2019		TLM1/ TLM2	
10.	Tutorial – 1 / Assignment - 1	1	17.12.2019		TLM 3	
No. o	f classes required to complete UNIT-	i: 10		No. of clas	ses taken:	

UNIT-II: Inheritance & Polymorphism, Packages and Interfaces

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Inheritance Basics, Super Keyword, Multilevel Hierarchy,	1	19.12.2019		TLM1/ TLM2	
2.	Method Overloading & Method Overriding	1	20.12.2019		TLM1/ TLM2	
3.	Dynamic method dispatch, Abstract class, Object class and final keyword.	1	24.12.2019		TLM1/ TLM2	
4.	Package definition, Accessing package, understanding CLASSPATH	1	26.12.2019		TLM1/ TLM2	

5.	Importing Packages, java.util package	1	27.12.2019	TLM1/ TLM2	
6.	Defining, Implementing and Applying Interfaces	1	31.12.2019	TLM1/ TLM2	
7.	Variables in interface and extending interfaces	1	02.01.2020	TLM1/ TLM2	
8.	Differences between classes and interfaces	1	03.01.2020	TLM1/ TLM2	
9.	Tutorial – 2 / Assignment - 2	1	08.01.2020	TLM3	
No. o	f classes required to complete UNIT-	II: 9	_	No. of classes taken:	

UNIT-III: Exception Handling, Multithreading

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Exception Handling Fundamentals, Exception types	1	09.01.2020		TLM1/ TLM2	
2.	Usage of try & catch, throws and finally	1	10.01.2020		TLM1/ TLM2	
3.	Java Built-in Exceptions	1	28.01.2020		TLM1/ TLM2	
4.	Differences between multi-threading and muti-tasking.	1	30.01.2020		TLM1/ TLM2	
5.	Java thread model Creating thread	1	31.01.2020		TLM1/ TLM2	
6.	Multiple threads	1	04.02.2020		TLM1/ TLM2	
7.	Synchronizing threads	1	06.02.2020		TLM1/ TLM2	
8.	Tutorial – 3 / Assignment - 3	1	07.02.2020		TLM3	
No. o	f classes required to complete UNIT-	III: 8		No. of clas	ses taken:	

UNIT-IV: Applet class and Event Handling

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Concepts of Applets, Differences between Applets and Applications	1	11.02.2020		TLM1/ TLM2	
2.	Applet Architecture, skeleton and creation.	1	13.02.2020		TLM1/ TLM2	
3.	Passing parameters to applets and working with graphics class.	1	14.02.2020		TLM1/ TLM2	
4.	Event handling mechanisms, Events and Event sources.	1	18.02.2020		TLM1/ TLM2	
5.	Event class, Listener interface, Delegation event model.	1	20.02.2020		TLM1/ TLM2	
6.	Keyboard and Mouse Events, Adapter class, Inner class.	1	21.02.2020		TLM1/ TLM2	
7.	Tutorial – 4 / Assignment - 4	1	25.02.2020		TLM3	
No. o	of classes required to complete UNIT-1	V: 7		No. of class	ses taken:	

UNIT-V: AWT Controls and Introduction to Swings

erar v. riva Controls and Introduction to Swings						
S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign
		Required	Completion	Completion	Methods	Weekly
1.	Label, button, Scrollbars, Text	1	27.02.2020		TLM1/	
1.	Components	_	27.02.2020		TLM2	
2.	Check Box, Check Box groups,	1	28.02.2020		TLM1/	
choic	choices, controls, lists	1	20.02.2020		TLM2	
2	Scrollbar, Text field, Layout	1	02.02.2020		TLM1/	
3.	Managers – border, grid, flow	1	03.03.2020		TLM2	

4.	Introduction to swing, Key features, Limitations of AWT	1	05.03.2020	TLM1/ TLM2	
5.	Components and Containers, Swing packages.	1	06.03.2020	TLM1/ TLM2	
6.	Creating Swing applet.	1	10.03.2020	TLM1/ TLM2	
7.	JApplet class, JComponents – Labels, Text fields, buttons	1	12.03.2020	TLM1/ TLM2	
8.	Jbutton class, Tabbed Panes	1	13.03.2020	TLM1/ TLM2	
9.	Scroll Panes, Tables	1	17.03.2020	TLM1/ TLM2	
10.	Tutorial – 5 / Assignment - 5	1	19.03.2020	TLM3	
No. of	classes required to complete UNIT-V	7: 10		No. of classes taken:	

1.	Discussion of Previous Question Papers	1	23.03.2020	TLM1/ TLM 2	
2.	Revision / Doubts Clarification	1	26.03.2020	тьмз	

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

	Engineering knowledge: Apply the knowledge of mathematics, science, engineering							
PO 1	fundamentals, and an engineering specialization to the solution of complex engineering							
POI	problems.							
	Problem analysis: Identify, formulate, review research literature, and analyze complex							
PO 2	engineering problems reaching substantiated conclusions using first principles of mathematics,							
102	natural sciences, and engineering sciences.							
	Design/development of solutions : Design solutions for complex engineering problems and							
	design system components or processes that meet the specified needs with appropriate							
PO 3	consideration for the public health and safety, and the cultural, societal, and environmental							
	considerations.							
	Conduct investigations of complex problems: Use research-based knowledge and research							
PO 4	methods including design of experiments, analysis and interpretation of data, and synthesis of							
	the information to provide valid conclusions.							
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern							
PO 5 engineering and IT tools including prediction and modelling to complex engineering								
	with an understanding of the limitations							
	The engineer and society: Apply reasoning informed by the contextual knowledge to assess							
PO 6	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to							
	the professional engineering practice							
	Environment and sustainability: Understand the impact of the professional engineering							
PO 7	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need							
	for sustainable development.							
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and							
100	norms of the engineering practice.							
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in							
	diverse teams, and in multidisciplinary settings.							
	Communication: Communicate effectively on complex engineering activities with the							
PO 10	engineering community and with society at large, such as, being able to comprehend and write							
	effective reports and design documentation, make effective presentations, and give and receive							
	clear instructions.							
PO 11	Project management and finance : Demonstrate knowledge and understanding of the							
POII	engineering and management principles and apply these to one's own work, as a member and							
	leader in a team, to manage projects and in multidisciplinary environments.							
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.							
<u> </u>	macpendent and me-long tearning in the broadest context of technological change.							

PROGRAMME SPECIFIC OUTCOMES (PSOs):

	Programming Paradigms:		
PSO 1	To inculcate algorithmic thinking, formulation techniques and visualization, leading to problem solving skills using different programming paradigms.		
Data Engineering:			
PSO 2	To inculcate an ability to Analyse, Design and implement data driven applications into the students.		
	Software Engineering:		
PSO 3	Develop an ability to implement various processes / methodologies /practices employed in design, validation, testing and maintenance of software products		

Course Instructor	Course Coordinator	Module Coordinator	HOD
A.S.R.C.MURTHY	A.S.R.C.MURTHY	Dr.D.VEERAIAH	Dr.VEERAIAH

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING <u>COURSE HANDOUT</u>

PART-A

Name of Course Instructor : G. Vijaya Lakshmi.

Course Name & Code : Linear Algebra & Numerical Applications, 17FE11 L-T-P Structure : 3-2-0 Credits : 4

Program/Sem/Sec : B.Tech., CSE., IV-Sem., Sections- A A.Y : 2019-2020

PRE-REQUISITE: Basics of Matrix Algebra

COURSE EDUCATIONAL OBJECTIVES (**CEOs**): The objective of this course is to introduce the Matrix Algebra. The students will also gain the knowledge of numerical techniques for solving the equations and fitting of various curves.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO1	Distinguish among the pros and cons between the Row operation methods and Iterative methods in solving system of linear equations.
CO2	Compute the Eigen values and Eigen vectors and powers, Inverse of a square matrix through Cayley – Hamilton theorem
CO3	Reducing the given Matrix into Diagonal form using various transformations and Transforming the Quadratic form into canonical form and identity its nature.
CO4	Application of numerical techniques fir Algebraic and Transcendental equations.
CO5	Use numerical methods for the solution of the liner system of equations and estimate the unknown dependent variables using curve fitting methods.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

CO No.	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	1
CO2	3	2	-	1	-	-	-	-	-	-	-	1
CO3	3	2	-	1	-	-	-	-	-	-	-	1
CO4	3	2	-	-	-	-	-	-	-	-	-	1
CO5	3	2	-	-	-	-	-	-	-	-	-	1

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- **T1** Dr. B.S. Grewal, "Higher Engineering Mathematics", 42ndEdition, Khanna Publishers, New Delhi, 2012.
- T2 Dr. B. V. Ramana, "Higher Engineering Mathematics", 1stEdition, TMH, New Delhi, 2010.

BOS APPROVED REFERENCE BOOKS:

- **R1** Michael D. Greenberg , "Advanced Engineering Mathematics", 2nd Edition, TMH, New Delhi, 2011.
- **R2** Erwin Kreyszig, "Advanced Engineering Mathematics", 8thEdition, John Wiley & Sons, New Delhi, 2011.
- **R3** W.E. Boyce, R.C.Diprima, "Elementary Differential Equations", 7th Edition, John Wiley and sons, New Delhi, 2001.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: System of Linear Equations

JI NI I -1 ;	System of Linear Equations			T		****
S. No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD
5. 110.	1 opics to be covered	Required	Completion	Completion	Methods	Sign Weekly
1.	Introduction to Course & Co's	1	25/11/19	Completion	Wethous	· · · comy
2.	Introduction to Unit-I	1	26/11/19		TLM1	
3.	Matrices - Rank	1	27/11/19		TLM1	
4.	Echelon form	1	29/11/19		TLM1	
5.	Tutorial-1	1	30/11/19		TLM3	
6.	Echelon form	1	2/12/19		TLM1	
7.	Normal form	1	3/12/19		TLM1	
8.	Normal form through PAQ	1	4/12/19		TLM1	
9.	Normal form through PAQ	1	6/12/19		TLM1	
10.	Tutorial-2	1	7/12/19		TLM3	
11.	Solution of Linear Systems	1	9/12/19		TLM1	
12.	Non Homogeneous system of equations	2	10/12/19 11/12/19		TLM1	
13.	Homogeneous system of equations	2	13/12/19 16/12/19		TLM1	
14.	Assignment/ Quiz Unit-I	1	17/12/19		TLM6	
No. of	classes required to complete Uni	t-I:	16	No. of class	ses taken:	

UNIT-II: Eigen Values and Eigen Vectors

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit II	1	18/12/19		TLM1	
2.	Eigen values – Eigen Vectors	1	20/12/19		TLM1	
3.	Properties	2	21/12/19 23/12/19		TLM1	
4.	Eigen values – Eigen Vectors	2	24/12/19 27/12/19		TLM1	
5.	Tutorial-3	1	28/12/19		TLM3	
6.	Cayley Hamilton Theorem	2	30/12/19 31/12/19		TLM1	

7.	Inverse and Powers of a matrix by using Cayley Hamilton Theorem.	1	3/1/20		TLM1	
8.	Tutorial-4	1	4/1/20		TLM3	
9.	Inverse and Powers of a matrix by using Cayley Hamilton Theorem.	1	6/1/20		TLM1	
10.	Assignment/ Quiz Unit- II	1	7/1/20		TLM6	
11.	Revision	1	8/1/20			
12.	Revision	1	10/1/20			
No. of	classes required to complete Uni	t-II:	15	No. of clas	ses taken:	

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit III	1	28/1/20		TLM1	
2.	Linear transformation of Matrices	1	29/1/20		TLM1	
3.	Orthogonal transformation of Matrices	1	31/1/20		TLM1	
4.	Tutorial-5	1	1/2/20		TLM3	
5.	Similarity of Matrices	1	3/2/20		TLM1	
6.	Diagonalization of a Matrix	1	4/2/20		TLM1	
7.	Orthogonal reduction of real symmetric matrices	1	5/2/20		TLM1	
8.	Reduction of quadratic form to canonical form	1	7/2/20		TLM1	
9.	Reduction of quadratic form to canonical form-Rank- Positive, Negative	1	10/2/20		TLM1	
10.	Definite-Semi definite-Index, Signature	1	11/2/20		TLM1	
11.	Definite-Semi definite-Index, Signature	1	12/2/20		TLM1	
12.	Assignment/Quiz Unit-III	1	14/2/20		TLM6	
13.	Tutorial-6	1	15/2/20		TLM3	
No. of	classes required to complete Uni	t-III:	13	No. of clas	ses taken:	

UNIT-IV: Solution of Algebraic and Transcendental equations & Interpolation and finite Differences

S. N o.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit IV	1	17/2/20		TLM1	
2.	False Position method	1	18/2/20		TLM1	
3.	Newton- Raphson Method in one variable	1	19/2/20		TLM1	

4	m	1	22/2/20	TEL 3.40	
4.	Tutorial-7		22/2/20	TLM3	
5.	Introduction – Finite differences	1	24/2/20	TLM1	
6.	Forward Differences- Backward	1	25/2/20	TLM1	
0.	differences –Central differences	1	23/2/20	1 Livii	
7.	Forward Differences- Backward	1	26/2/20	TLM1	
/.	differences –Central differences	1	20/2/20	1121111	
8.	Symbolic relations and separation	1	28/2/20	TLM1	
0.	of symbols	1	20/2/20	1 Livii	
9.	Tutorial-8	1	29/2/20	TLM3	
				121/13	
10.	Newton's formulae for	2	2/3/20	TLM1	
10.	interpolation	2	3/3/20	1 LIVII	
11.	Lagrange's Interpolation	2	4/3/20	TLM1	
11.	Lagrange's interpolation	2	6/3/20		
12.	Assignment/Quiz Unit-IV	1	7/3/20	TLM6	
12.	Assignment/Quiz Unit-1V		1/3/20	1 LIVIO	
No. of	f classes required to complete Unit	t-IV:	14	No. of classes taken:	

UNIT-V: Numerical Solution of Linear System of Equations& Curve Fitting

UNIT-V: Numerical Solution of Linear System of Equations& Curve Fitting								
S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
1.	Introduction to UNIT V	1	9/3/20					
2.	Gauss –Seidal method	2	11/3/20 13/3/20					
3.	Gauss Jacobi Method	2	16/3/20 17/3/20					
4.	Determination of EIGEN values by iteration.		18/3/20					
5.	Fitting of a Straight line	1	20/3/20					
6.	Tutorial-9	1	21/3/20					
7.	Fitting of a second degree polynomial	1	23/3/20					
8.	Fitting of exponential curves	1	24/3/20					
9.	Fitting of a power curve	1	25/3/20					
10.	Assignment/Quiz UNIT-V	1	27/3/20					
11.	Tutorial-10	1	28/3/20					
No. of	f classes required to complete UN	IT-V:	13	No. of class	ses taken:			

Contents beyond the Syllabus

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Solving System of Equations using other methods	1	16/3/20			
No. of	No. of classes required to complete UNIT-V: No. of classes taken:					

Teaching l	Learning Methods		
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.									
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.									
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.									
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.									
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations									
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice									
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.									
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.									
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.									
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.									
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.									
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.									

Course Instructor Course Coordinator Module Coordinator HOD (G.Vijaya Lakshmi) (Dr. K. R. Kavitha) (Dr. A. Rami Reddy) (Dr. A. Rami Reddy)

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING <u>COURSE HANDOUT</u>

PART-A

Name of Course Instructor : K. N. V. Lakshmi.

Course Name & Code : Linear Algebra & Numerical Applications, 17FE11 L-T-P Structure : 3-2-0 Credits : 4

Program/Sem/Sec : B.Tech., CSE., IV-Sem., Sections- B A.Y : 2019-2020

PRE-REQUISITE: Basics of Matrix Algebra

COURSE EDUCATIONAL OBJECTIVES (**CEOs**): The objective of this course is to introduce the Matrix Algebra. The students will also gain the knowledge of numerical techniques for solving the equations and fitting of various curves.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO1	Distinguish among the pros and cons between the Row operation methods and Iterative methods in solving system of linear equations.
CO2	Compute the Eigen values and Eigen vectors and powers, Inverse of a square matrix through Cayley – Hamilton theorem
CO3	Reducing the given Matrix into Diagonal form using various transformations and Transforming the Quadratic form into canonical form and identity its nature.
CO4	Application of numerical techniques fir Algebraic and Transcendental equations.
CO5	Use numerical methods for the solution of the liner system of equations and estimate the unknown dependent variables using curve fitting methods.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

CO NO.	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12
CO1	3	2	-	1	-	-	-	-	-	-	-	1
CO2	3	2	1	1	1	•	•	-	-	•	•	1
CO3	3	2	-	1	•	•	•	-	-	•	•	1
CO4	3	2	-	-	-	-	-	-	-	-	-	1
CO5	3	2	-	-	-	-	•	-	-	-	-	1

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- **T1** Dr. B.S. Grewal, "Higher Engineering Mathematics", 42ndEdition, Khanna Publishers, New Delhi, 2012.
- T2 Dr. B. V. Ramana, "Higher Engineering Mathematics", 1stEdition, TMH, New Delhi, 2010.

BOS APPROVED REFERENCE BOOKS:

- **R1** Michael D. Greenberg , "Advanced Engineering Mathematics", 2nd Edition, TMH, New Delhi, 2011.
- **R2** Erwin Kreyszig, "Advanced Engineering Mathematics", 8thEdition, John Wiley & Sons, New Delhi, 2011.
- **R3** W.E. Boyce, R.C.Diprima, "Elementary Differential Equations", 7th Edition, John Wiley and sons, New Delhi, 2001.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: System of Linear Equations

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Course & Co's	1	25/11/19	_		-
2.	Introduction to Unit-I	1	26/11/19		TLM1	
3.	Matrices - Rank	1	27/11/19		TLM1	
4.	Echelon form	1	28/11/19		TLM1	
5.	Tutorial-1	1	30/11/19		TLM3	
6.	Echelon form	1	2/12/19		TLM1	
7.	Normal form	1	3/12/19		TLM1	
8.	Normal form through PAQ	1	4/12/19		TLM1	
9.	Normal form through PAQ	1	5/12/19		TLM1	
10.	Tutorial-2	1	7/12/19		TLM3	
11.	Solution of Linear Systems	1	9/12/19		TLM1	
12.	Non Homogeneous system of equations	2	10/12/19 11/12/19		TLM1	
13.	Homogeneous system of equations	2	12/12/19 16/12/19		TLM1	
14.	Assignment/ Quiz Unit-I	1	17/12/19		TLM6	
No. of	classes required to complete Uni	it-I:	16	No. of class	sses taken:	

UNIT-II: Eigen Values and Eigen Vectors

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit II	1	18/12/19		TLM1	
2.	Eigen values – Eigen Vectors	1	19/12/19		TLM1	
3.	Properties	2	21/12/19 23/12/19		TLM1	
4.	Eigen values – Eigen Vectors	2	24/12/19 26/12/19		TLM1	
5.	Tutorial-3	1	28/12/19		TLM3	

6.	Cayley Hamilton Theorem	2	30/12/19 31/12/19		TLM1			
7.	Inverse and Powers of a matrix by using Cayley Hamilton Theorem.	1	2/1/20		TLM1			
8.	Tutorial-4	1	4/1/20		TLM3			
9.	Inverse and Powers of a matrix by using Cayley Hamilton Theorem.	1	6/1/20		TLM1			
10.	Assignment/ Quiz Unit- II	1	7/1/20		TLM6			
11.	Revision	1	8/1/20					
12.	Revision	1	9/1/20					
No. of	No. of classes required to complete Unit-II: 15 No. of classes taken:							

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit III	1	28/1/20		TLM1	
2.	Linear transformation of Matrices	1	29/1/20		TLM1	
3.	Orthogonal transformation of Matrices	1	30/1/20		TLM1	
4.	Tutorial-5	1	1/2/20		TLM3	
5.	Similarity of Matrices	1	3/2/20		TLM1	
6.	Diagonalization of a Matrix	1	4/2/20		TLM1	
7.	Orthogonal reduction of real symmetric matrices	1	5/2/20		TLM1	
8.	Reduction of quadratic form to canonical form	1	6/2/20		TLM1	
9.	Reduction of quadratic form to canonical form-Rank- Positive, Negative	1	10/2/20		TLM1	
10.	Definite-Semi definite-Index, Signature	1	11/2/20		TLM1	
11.	Definite-Semi definite-Index, Signature	1	12/2/20		TLM1	
12.	Assignment/Quiz Unit-III	1	13/2/20		TLM6	
13.	Tutorial-6	1	15/2/20		TLM3	
No. of	classes required to complete Uni	t-III:	13	No. of class	ses taken:	

UNIT-IV: Solution of Algebraic and Transcendental equations & Interpolation and finite Differences

S. N o.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit IV	1	17/2/20		TLM1	
2.	Algebraic and Transcendental Equation	1	18/2/20		TLM1	

3.	False Position method	1	19/2/20	TL	LM1		
4.	Newton- Raphson Method in one variable	1	20/2/20	TL	LM1		
5.	Tutorial-7	1	22/2/20	TL	LM3		
6.	Introduction – Finite differences	1	24/2/20	TL	LM1		
7.	Forward Differences- Backward differences –Central differences	1	25/2/20	TL	LM1		
8.	Forward Differences- Backward differences –Central differences	1	26/2/20	TL	LM1		
9.	Symbolic relations and separation of symbols	1	27/2/20	TL	LM1		
10.	Tutorial-8	1	29/2/20	TL	LM3		
11.	Newton's formulae for interpolation	2	2/3/20 3/3/20	TL	LM1		
12.	Lagrange's Interpolation	2	4/3/20 5/3/20	TL	LM1		
13.	Assignment/Quiz Unit-IV	1	7/3/20	TL	LM6		
No. of	No. of classes required to complete Unit-IV: 15 No. of classes taken:						

UNIT-V: Numerical Solution of Linear System of Equations& Curve Fitting

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to UNIT V	1	9/3/20			
2.	Gauss –Seidal method	2	11/3/20 12/3/20			
3.	Gauss Jacobi Method	2	16/3/20 17/3/20			
4.	Determination of EIGEN values by iteration.		18/3/20			
5.	Fitting of a Straight line	1	19/3/20			
6.	Tutorial-9	1	21/3/20			
7.	Fitting of a second degree polynomial	1	23/3/20			
8.	Fitting of exponential curves	1	24/3/20			
9.	Fitting of a power curve	1	25/3/20			
10.	Assignment/Quiz UNIT-V	1	26/3/20			
11.	Tutorial-10	1	28/3/20			
No. of	f classes required to complete UN	IT-V:	13	No. of class	sses taken:	

Contents beyond the Syllabus

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Solving System of Equations using other methods	1	16/3/20			
No. of	No. of classes required to complete UNIT-V:				ses taken:	

Teaching Learning Methods				
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)	
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)	
TLM3	Tutorial	TLM6	Group Discussion/Project	

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.					
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.					
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.					
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.					
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations					
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice					
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.					
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.					
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.					
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.					
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.					
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.					

Course Instructor Course Coordinator Module Coordinator HOD (K. N. V. Lakshmi) (Dr. K. R. Kavitha) (Dr. A. Rami Reddy) (Dr. A. Rami Reddy)

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor : G BALU NARASIMHARAO Course Name & Code : Linux Programming Lab&17CI61

L-T-P Structure : 2-0-0 Credits : 2

Program/Sem/Sec : B.Tech., CSE., IV-Sem., Sections- B A.Y : 2019-20

PRE-REQUISITE: Knowledge in Operating Systems

COURSE EDUCATIONAL OBJECTIVES (**CEOs**):Introduce the student to Linux kernel programming techniques. Review basic concepts covered in the core Operating Systems course prerequisite as they are realized in the Linux platform. Discuss the Process, Inter-Process Communication Techniques and Network Implementation in Linux.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Explore LINUX Ecosystem.
CO 2	Implement Shell scripting in LINUX Kernel.
CO 3	Design AWK scripts for text processing and Apply Regular Expressions for Pattern Matching.
CO 4	Design Scripts for Process Creation & Network Management.

COURSE ARTICULATION MATRIX(Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	-	-	-	-	-	-	-	2	3	-	-
CO2	3	2	3	1	-	-	-	-	-	-	-	2	3	-	-
CO3	3	2	3	1	-	-	-	-	-	-	-	2	3	-	-
CO4	-	-	-	-	-	-	-	2	2	2	-	-	-	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- T1 Sumitabha Das., "Your Unix The Ultimate Guide", TMH Publications, 2001.
- **T2** M.G. Venkatesh Murthy, "Introduction to UNIX & SHELL programming", Pearson Education, First Edition, New Delhi, 2009.

REFERENCE BOOKS:

- **R1** B.A. Forouzan & R.F. Giberg, "Unix and shell Programming", Thomson, First Edition, New Delhi, 2003.
- **R2** E. Foster Johnson & others, "Beginning shell scripting", John Wiley & sons, First Edition, New Delhi, 2008.
- R3 Sumitabha Das, "Unix concepts and applications", TMH Publications, 4th Edition,.
- **R4** Gaham Glass & K. Ables, Unix for programmers and users, pearson education, 3rd edition,.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction to Linux

S.No.	Experiments to be covered	No. of sessions Required (1 session 2 hrs)	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Week1 Session-1 a)Log into the system b) Use vi editor to create a file called myfile.txt which contains some text. c) Correct typing errors during creation. d)Save the file e)logout of the system Session-2 a)Log into the system b)open the file created in session 1 c)Add some text d)Change some text e)Delete some text f)Save the Changes g)Logout of the system	1	28-11-2019		TLM4	
2.	a. log in the system b Use the appropriate commandsto determine your login shell c. use the / etc/ passwd file to Verify the result of step b. d. use the who command redirect the result to a file called myfile.txt. Use the more command to see the contents of myfile.txt. e) Use the date and who commandsin sequence? (in one line) suchthat the output of date willdisplay on the screen and theoutput of who will be redirected toa file called myfile1.txt. Use the	1	05-12-2019		TLM4	
3.	Week3 Log into the system Use the cat command to create a file containing the following data.Call it mytable.txt use tabs to separate the fields	1	12-12-2019		TLM4	

	T	1		-		
	1425 ravi 15.65 4320 ramu 26.27 6830 sita 36.15 1450 raju 21.86 a. use the cat command to display the file, mytable.txt b. use the vi command to correct any errors in the file, mytable.txt c. use the sort command to sort the file mytable.txt accordingto the first field. Call the sortedfile mytable.txt (same name) d. print the file mytable.txt e. use the cut & paste commands to swap fields 2 and 3 my table. Call it mytable.txt (same name) f. print the new file, mytable.txt g. logout of the system					
4.	Week4 a) Write a shell script that takes acommand –line argument and reports on whether it is directory, a file, or something else. b) Write a shell script that acceptsone or more file name as arguments and converts all of them to uppercase, provided theyexist in the current directory. c) Write a shell script that determines the period for which aspecified user is working on thesystem.	1	19-12-2019 & 26-12-2019		TLM4	
5.	Week5 Write a shell script that computes the total and average marks of a student according to the following If average marks ≥69 then result is "Distinction" If average marks ≥59 and ≤ 70 then result is "First Class" If average marks ≥49 and ≤ 60 then result is "Second Class" If average marks ≤ 50 then result is "Pass" Note that any subject marks ≤ 40 then result is "Fail" Accept student name and six subject marks through the key board	1	2-01-2020		TLM4	
6.	Week6 a) Write an interactive filehandling shell program. Let it offer the user the choice of copying, removing, renaming, orlinking files. Once the user hasmade a choice, have the programask the user for the necessaryinformation, such as the filename, new name and so on.	1				

	b) Write shell script that takes a login name as command – line argument and reports when that person logs in c) Write a shell script which receives two file names as arguments. It should check whether the two file contents are same or not. If they are same then second file should be deleted.		09-01-2020		
7.	Week7 a)Write a shell script that acceptsa file name starting and endingline numbers as arguments anddisplays all the lines between thegiven line numbers. b)Write a shell script that deletes all lines containing a specified word in one or more files suppliedas arguments to it.	1	30-1-2020 & 06-02-2020	TLM4	
8.	Week8 a) Write a shell script that displays a list of all the files in thecurrent directory to which theuser has read, write and execute permissions. b) Develop an interactive script that ask for a word and a file name and then tells how many times that word occurred in the file.	1	13-2-2020	TLM4	
9.	Week9 a) Write a shell script to perform the following string operations: i)To extract a sub-string from a given string. ii)To find the length of a given string. b) Write a awk script to find the number of characters, words and lines in a file.	2	20-2-2020 27-2-2020	TLM4	
10.	Week10 Write a C program that takes one or more file or directory names as Command line input and reportsthe following information on thefile: i) File type ii) Number of links iii) Read, write and execute permissions iv) Time of last access (Note: Use stat/fstat system calls)	1	05-3-2020	TLM4	
11.	Week11 Write C programs that simulate the following unix commands: a) mv b) cp c) ls (Use system calls)	1	12-3-2020	TLM4	

12.	Week12 Write a program for bubble sorting using fork system call in linux	1	19-3-2020		TLM4	
13.	INTERNAL LAB EXAM	-	26-03-2020			
	II MID EXAMINATIONS 30-3-2020 TO 4-04-2020					

Teaching Learning Methods				
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)	
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)	
TLM3	Tutorial	TLM6	Group Discussion/Project	

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering			
	fundamentals, and an engineering specialization to the solution of complex engineering			
DO 4	problems.			
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex			
	engineering problems reaching substantiated conclusions using first principles of mathematics,			
DO 2	natural sciences, and engineering sciences.			
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate			
	consideration for the public health and safety, and the cultural, societal, and environmental			
	considerations.			
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research			
	methods including design of experiments, analysis and interpretation of data, and synthesis of			
	the information to provide valid conclusions.			
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern			
	engineering and IT tools including prediction and modelling to complex engineering activities			
	with an understanding of the limitations			
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess			
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to			
	the professional engineering practice			
PO 7	Environment and sustainability: Understand the impact of the professional engineering			
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.			
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and			
100	norms of the engineering practice.			
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in			
	diverse teams, and in multidisciplinary settings.			
PO 10	Communication: Communicate effectively on complex engineering activities with the			
	engineering community and with society at large, such as, being able to comprehend and write			
	effective reports and design documentation, make effective presentations, and give and receive			
	clear instructions.			
PO 11	Project management and finance: Demonstrate knowledge and understanding of the			
	engineering and management principles and apply these to one's own work, as a member and			
DO 12	leader in a team, to manage projects and in multidisciplinary environments.			
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in			
	independent and life-long learning in the broadest context of technological change.			

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Programming Paradigms: To inculcate algorithmic thinking, formulation techniques and visualization, leading to problem solving skills using different programming paradigms. 2. Data Engineering: To inculcate an ability to Analyze, Design and implement data driven applications into the students. 3. Software Engineering: Develop an ability to implement various processes / methodologies /practices employed in design, validation, testing and maintenance of software products.
PSO 2	Data Engineering: To inculcate an ability to Analyze, Design and implement data driven applications into the students.
PSO 3	Software Engineering: Develop an ability to implement various processes / methodologies /practices employed in design, validation, testing and maintenance of software products.

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor : M.SRI BALA

Course Name & Code : Linux Programming & 17CS01

L-T-P Structure : 3-0-0 Credits : 3 Program/Sem/Sec : B.Tech., CSE., IV-Sem., Sections- A A.Y : 2019-20

PRE-REQUISITE: Knowledge in Operating Systems

COURSE EDUCATIONAL OBJECTIVES (**CEOs**):Introduce the student to Linux kernel programming techniques. Review basic concepts covered in the core Operating Systems course prerequisite as they are realized in the Linux platform. Discuss the Process, Inter-Process Communication Techniques and Network Implementation in Linux.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Explore LINUX Ecosystem.
CO 2	Implement Shell scripting in LINUX Kernel.
CO 3	Design AWK scripts for text processing and Apply Regular Expressions for Pattern Matching.
CO 4	Design Scripts for Process Creation & Network Management.
CO5	Analyze multi-processing in Linux kernel.

COURSE ARTICULATION MATRIX(Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3		1	1	-	-	-	-	-	-	-	1	3	-	-
CO2	2	2	3	1	-	-	-	-	-	-	-	1	3	-	-
CO3	3	2	3	1	-	-	-	-	-	-	-	1	3	-	-
CO4	2	2	3	-	-	-	-	-	-	-	-	1	3	-	-
CO5	2	2	1	1	-	-	-	-	-	-	-	1	3	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- T1 Sumitable Das., "Your Unix The Ultimate Guide", TMH Publications, 2001.
- T2 M.G. Venkatesh Murthy, "Introduction to UNIX & SHELL programming", Pearson

REFERENCE BOOKS:

- **R1** B.A. Forouzan & R.F. Giberg, "Unix and shell Programming", Thomson, First Edition, New Delhi, 2003.
- **R2** E. Foster Johnson & others, "Beginning shell scripting", John Wiley & sons, First Edition, New Delhi, 2008.
- R3 Sumitabha Das, "Unix concepts and applications", TMH Publications, 4th Edition,.
- **R4** Gaham Glass & K. Ables, Unix for programmers and users, pearson education, 3rdedition,.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction to Linux

	· · · · · · · · · · · · · · · · · · ·	No of	T4-4	A -41	Tanahina	IIOD
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Operating systems	1	25-11-2019	_		-
2.	Introduction to Operating systems	1	29-11-2019			
3.	Features of Linux kernel and shell	1	30-11-2019			
4.	Linux file systems	2	07-12-2019 09-12-2019			
5.	Linux file systems	2	13-12-2019 14-12-2019			
6.	Linux Commands	1	16-12-2019			
7.	Linux Commands	2	20-12-2019 21-12-2019			
No. of classes required to complete UNIT-I: No. of classes taken:						

UNIT-II: Introduction to Shell and Shell programming

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Shell	2	23-12-2019 27-12-2019		TLM1 TLM2	
2.	Shell commands	2	28-12-2019 30-12-2019		TLM1 TLM2	
3.	Shell programming (VI editor)	2	03-01-2020 04-01-2020		TLM1 TLM2	
4.	Shell programming	1	06-01-2020		TLM1 TLM2	
5.	Shell programming	2	10-01-2020 11-01-2020		TLM1 TLM2	
No. of classes required to complete UNIT-II: No. of classes taken:						
	I MID EXAMINATIONS FROM 20-10-2020 TO 25-10-2020					

UNIT-III: Filters, regular expressions and Programming with AWK

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Filters and commands	2	27-01-2020 31-01-2020		TLM1 TLM2	
2.	Introduction to Filters and	2	1-02-20200		TLM1	

	commands		3-02-2020	TLM2
3.	Filters and their usage	1	03-02-2020	TLM1 TLM2
4.	Filters and their usage	2	07-02-2020 08-02-2020	TLM1 TLM2
5.	Regular expression	1	10-02-2020	TLM1 TLM2
6.	Regular expression	1	14-02-2020	TLM1 TLM2
7.	Introduction to AWK	1	15-02-2020	TLM1 TLM2
8.	AWK scripting	1	17-02-2020	TLM1 TLM2
9.	AWK scripting	1	22-02-2020	TLM1 TLM2
10.	AWK scripting	1	24-02-2020	TLM1 TLM2
No. of classes required to complete UNIT-III:				No. of classes taken:

UNIT-IV: Linux internals and networking

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Linux process and process attributes	2	28-02-2020 29-02-2020		TLM1 TLM2	
2.	Linux kernel and system calls	1	02-03-2020		TLM1 TLM2	
3.	System callas and signals	1	06-03-2020		TLM1 TLM2	
4.	Linux Memory Management	1	07-03-2020		TLM1 TLM2	
5.	Linux networking	1	09-03-2020		TLM1 TLM2	
6.	Network Transport protocols	2	13-03-2020 14-03-2020		TLM1 TLM2	
7.	Network internals	1	16-03-2020		TLM1 TLM2	
No. o	f classes required to complete UN		No. of class	ses taken:		

UNIT-V:Multi-Processing

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to multi- processing	1	20-03-2020	-	TLM1 TLM2	
2.	Problems with multi- processor systems	1	21-03-2020		TLM1 TLM2	
3.	Changes to the kernel	1	23-03-2020		TLM1 TLM2	
4.	compiling LINUX SMP	1	27-03-2020		TLM1 TLM2	
5.	Revision	1	28-03-2020		TLM1 TLM2	
No. of classes required to complete UNIT-V: No. of classes taken:						
II MID EXAMINATIONS 30-3-2020 TO 4-04-2020						

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
PO 2	problems. Problems analyzing Identify formulate review research literature and analyze complex.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
DO 5	the information to provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
100	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and
DO 0	norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
1010	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Programming Paradigms: To inculcate algorithmic thinking, formulation techniques and visualization, leading to problem solving skills using different programming paradigms. 2. Data Engineering: To inculcate an ability to Analyze, Design and implement data driven applications into the students. 3. Software Engineering: Develop an ability to implement various processes / methodologies /practices employed in design, validation, testing and maintenance of software
	products.
PSO 2	Data Engineering: To inculcate an ability to Analyze, Design and implement data driven applications into the students.
PSO 3	Software Engineering: Develop an ability to implement various processes / methodologies /practices employed in design, validation, testing and maintenance of software products.

Course Instructor (Name)

Course Coordinator (Name)

Module Coordinator (Name)

HOD (Name)

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

.....

COURSE HANDOUT

PART-A

Name of Course Instructor : M.SRI BALA

Course Name & Code : Linux Programming Lab&17CI61

L-T-P Structure : 3-0-0 Credits : 3 Program/Sem/Sec : B.Tech., CSE., IV-Sem., Sections- A A.Y : 2019-20

PRE-REQUISITE: Knowledge in Operating Systems

COURSE EDUCATIONAL OBJECTIVES (**CEOs**):Introduce the student to Linux kernel programming techniques. Review basic concepts covered in the core Operating Systems course prerequisite as they are realized in the Linux platform. Discuss the Process, Inter-Process Communication Techniques and Network Implementation in Linux.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Explore LINUX Ecosystem.
CO 2	Implement Shell scripting in LINUX Kernel.
CO 3	Design AWK scripts for text processing and Apply Regular Expressions for Pattern Matching.
CO 4	Design Scripts for Process Creation & Network Management.

COURSE ARTICULATION MATRIX(Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	1	-	-	-	-	-	-	-	2	3	-	1
CO2	3	2	3	1	-	-	-	-	-	-	-	2	3	-	1
CO3	3	2	3	1	-	-	-	-	-	-	-	2	3	-	-
CO4	-	-	-	-	-	-	-	2	2	2	-	-	-	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- T1 Sumitabha Das., "Your Unix The Ultimate Guide", TMH Publications, 2001.
- **T2** M.G. Venkatesh Murthy, "Introduction to UNIX & SHELL programming", Pearson Education, First Edition, New Delhi, 2009.

REFERENCE BOOKS:

R1 B.A. Forouzan & R.F. Giberg, "Unix and shell Programming", Thomson, First Edition,

- New Delhi, 2003.
- **R2** E. Foster Johnson & others, "Beginning shell scripting", John Wiley & sons, First Edition, New Delhi, 2008.
- R3 Sumitabha Das, "Unix concepts and applications", TMH Publications, 4th Edition,.
- **R4** Gaham Glass & K. Ables, Unix for programmers and users, pearson education, 3rdedition,.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction to Linux

S.No.	Experiments to be covered	No. of sessions Required (1 session 2 hrs)	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Week1 Session-1 a)Log into the system b) Use vi editor to create a file called myfile.txt which contains some text. c) Correct typing errors during creation. d)Save the file e)logout of the system Session-2 a)Log into the system b)open the file created in session 1 c)Add some text d)Change some text e)Delete some text f)Save the Changes g)Logout of the system	1	27-11-2019		TLM4	
2.	Week2 a. log in the system b. Use the appropriate commands to determine your login shell c. use the / etc/ passwd file to Verify the result of step b. d. use the who command redirect the result to a file called myfile.txt. Use the more command to see the contents of myfile.txt. e. Use the date and who commands in sequence? (in one line) such that the output of date will display on the screen and the output of who will be redirected to a file called myfile1.txt. Use the	1	04-12-2019		TLM4	
3.	Week3 Log into the system Use the cat command to create a file containing the following data. Call it mytable.txt use tabs to separate the fields	1	11-12-2019		TLM4	

	1425 ravi 15.65 4320 ramu 26.27 6830 sita 36.15 1450 raju 21.86 a. use the cat command to display the file, mytable.txt b. use the vi command to correct any errors in the file, mytable.txt c. use the sort command to sort the file mytable.txt according to the first field. Call the sorted file mytable.txt (same name) d. print the file mytable.txt e. use the cut & paste commands to swap fields 2 and 3 my table. Call it mytable.txt (same name) f. print the new file, mytable.txt g. logout of the system				
4.	Week4 a) Write a shell script that takes a command –line argument and reports on whether it is directory, a file, or something else. b) Write a shell script that accepts one or more file name as arguments and converts all of them to uppercase, provided they exist in the current directory. c) Write a shell script that determines the period for which a specified user is working on the system.	1	18-12-2019	TLM4	
5.	Week5 Write a shell script that computes the total and average marks of a student according to the following If average marks ≥69 then result is "Distinction" If average marks ≥59 and ≤ 70 then result is "First Class" If average marks ≥49 and ≤ 60 then result is "Second Class" If average marks ≤ 50 then result is "Pass" Note that any subject marks ≤ 40 then result is "Fail" Accept student name and six subject marks through the key board	1	8-01-2020	TLM4	
6.	Week6 a) Write an interactive filehandling shell program. Let it offer the user the choice of copying, removing, renaming, or linking files. Once the user has made a choice, have the program	1	29-01-2020 5-02-2020		

	ask the user for the necessary information, such as the file name, new name and so on. b) Write shell script that takes a login name as command – line argument and reports when that person logs in c) Write a shell script which receives two file names as arguments. It should check whether the two file contents are same or not. If they are same then second file should be deleted.				
7.	Week7 a) Write a shell script that accepts a file name starting and ending line numbers as arguments and displays all the lines between the given line numbers. b) Write a shell script that deletes all lines containing a specified word in one or more files supplied as arguments to it.	1	12-2-2020	TLM4	
8.	Week8 a) Write a shell script that displays a list of all the files in the current directory to which the user has read, write and execute permissions. b) Develop an interactive script that ask for a word and a file name and then tells how many times that word occurred in the file.	1	19-2-2020	TLM4	
9.	Week9 a) Write a shell script to perform the following string operations: i)To extract a sub-string from a given string. ii)To find the length of a given string. b) Write a awk script to find the number of characters, words and lines in a file.	2	26-2-2020 5-3-2020	TLM4	
10.	Week10 Write a C program that takes one or more file or directory names as command line input and reports the following information on the file: i) File type ii) Number of links iii) Read, write and execute permissions iv) Time of last access (Note: Use stat/fstat system calls)	1	4-3-2020	TLM4	
11.	Week11	1	11-3-2020	TLM4	

	Write C programs that simulate the following unix commands: a) mv b) cp c) ls (Use system calls)					
12.	Week12 Write a program for bubble sorting using fork system call in linux	1	18-3-2020		TLM4	
	Internal lab examination on 26-04-2020					
	II MID EXAMINATIONS 30-3-2020 TO 4-04-2020					

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
DO 4	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
103	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
DO (with an understanding of the limitations
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering
10,	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in
70.10	diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Programming Paradigms: To inculcate algorithmic thinking, formulation techniques and visualization, leading to problem solving skills using different programming paradigms. 2. Data Engineering: To inculcate an ability to Analyze, Design and implement data driven applications into the students. 3. Software Engineering: Develop an ability to implement various processes / methodologies /practices employed in design, validation, testing and maintenance of software products.
PSO 2	Data Engineering: To inculcate an ability to Analyze, Design and implement data driven applications into the students. Software Engineering: Develop an ability to implement various processes / methodologies /practices employed in design, validation, testing and maintenance of software products.

Course Instructor (Name)

Course Coordinator (Name)

Module Coordinator (Name)

HOD (Name)

SON COLLEGE OF STATE OF STATE

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING COURSE HANDOUT PART-A

Name of Course Instructor : T.Chandrasekhar Yadav

Course Name & Code : Professional Ethics & Human Values

L-T-P Structure : 3-0-0 Credits : 0

Program/Sem/Sec : B.Tech., CSE., IV-Sem., Sections- A A.Y : 2019-20

PRE-REQUISITE: ETHICS & VALUES

COURSE EDUCATIONAL OBJECTIVES (CEOs):

❖ To create an awareness on engineering ethics and human values.

- ❖ To adumbrate the inevitability of different intellectual property rights like patents, copyrights, trademarks, and trade secret.
- ❖ To give an impetus on achieving higher positions in profession, with ethical and human values as a base and support for the growth.
- ❖ To explicate the professional and societal responsibilities of the engineers.
- ❖ To make the student realize the sensitiveness associated with experimentation process

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Acquires the basic concepts of human values & also gain the connotations of ethical theories
CO 2	To explicate the professional and societal responsibilities of the engineers.
CO 3	To make the student realize the sensitiveness associated with experimentation process
CO 4	To adumbrate the inevitability of different intellectual property rights like patents, copyrights, trademarks, and trade secret.
CO 5	To give an impetus on achieving higher positions in profession, with ethical and human values as a base and support for the growth.

COURSE ARTICULATION MATRIX (Correlation between COs& POs, PSOs):

CO's /				R17-P	Professional	l Ethics	& Hum	an Valu	es-S355			
PO's	1	2	3	4	5	6	7	8	9	10	11	12
CO1								3				
CO2			1					3				
CO3		1	2					3	2			
CO4				1		2		3	1			
CO5						1	2	3				1
3 = I	High (10	00%)		2:	= Moderate	e (70%))	1	= Sligh	t (Low)	(40%)	

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

BOS APPROVED TEXT BOOKS:

- **T1** R.S.Nagarajan, a Textbook on "Professional Ethics and Human Values", New Age Publishers 2006.
- **T2** Mike Martin and Roland Schinzinger, "Ethics in engineering", McGraw Hill, New York 1996.

BOS APPROVED REFERENCE BOOKS:

- **R1** Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.
- **R2** Charles D. Fleddermann, "Engineering Ethics", Pearson Education/ Prentice Hall, New Jersey,2004 (Indian Reprint now available)

¹⁻ Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Engineering Ethics

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Course and COs	1	27-11-19		TLM1	
2.	Introduction to Unit-I	1	28-11-19		TLM1	
3.	UNIT-I Introduction about engineering ethics	1	30-11-19		TLM1	
4.	Senses of engineering ethics, Variety of moral issues	1	04-12-19		TLM1	
5.	Moral dilemmas moral autonomy	1	05-12-19		TLM1	
6.	Kohlberg's theory	1	07-12-19		TLM1	
7.	Gilligan theory, Consensus and controversy	2	11-12-19& 12-12-19		TLM1	
8.	Models of professional roles about right action, self interest	1	18-12-19		TLM1	
9.	Customs and religion, uses of ethical theories	1	19-12-19		TLM1	
10.	Uses of ethical theories	1	21-12-19		TLM1	
11.	Assignment-1				TLM3	
No. o	No. of classes required to complete UNIT-I: 10 No. of classes taken:					

UNIT-II: Human Values

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction about values	1	26-12-19		TLM1	
2.	Morals ethics and values, Integrity	1	28-12-19		TLM1	
3.	Work ethic, Service learning, Civic virtue	1	02-01-20		TLM1	
4.	Respect for others, living peacefully, Caring, sharing,		04.04.20		TLM1	
5.	Honesty, courage, Valuing time, cooperation	1	04-01-20		TLM1	
6.	Commitment, Empathy, self confidence	1	08-01-20		TLM1	
7.	Character, spirituality	1	09-01-20		TLM1	
8.	Assignment-2				TLM3	
No. o	No. of classes required to complete UNIT-II: 6 No. of classes taken:					
	IST MID EXAMS: 20-01-20 to 25-01-20					

UNIT-III: Engineering as Social Experimentation

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Engineering as experimentation introduction	1	29-01-20		TLM1	
2.	Engineering Projects VS. Standard Experiments	1	30-01-20		TLM1	
3.	Engineers as responsible experimenters	1	01-02-20		TLM1	
4.	Codes of ethics, Industrial Standards	1	05-02-20		TLM1	
5.	A balanced outlook on law	1	06-02-20		TLM1	
6.	The challenger case study	1	08-02-20		TLM2	
7.	Assignment-3				TLM3	
No. o	No. of classes required to complete UNIT-III: 6 No. of classes taken:					

UNIT-IV: Safety, Responsibilities and Rights

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction about Safety, and rights	1	12-02-20		TLM1	
2.	Assessment of safety and risk	1	13-02-20		TLM1	
3.	Risk benefit analysis and reducing risk ,Three Mile Island and Chernobyl case study	1	15-02-20		TLM2	
4.	Collegiality and loyalty, Respect for authority,	1	19-02-20		TLM1	
5.	Collective bargaining- Confidentiality	1	20-02-20		TLM1	
6.	Conflicts of interest, Occupational crime	1	22-02-20		TLM1	
7.	Professional Rights, Employee rights	1	26-02-20		TLM1	
8.	Intellectual Property Rights (IPR)	1	27-02-20		TLM1	
9.	Assignment-4				TLM3	
No. o	No. of classes required to complete UNIT-IV: 8				sses taken:	

UNIT-V: Global Issues

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	MNC's, Morality in MNC's	1	29-02-20		TLM1	
2.	Environmental Ethics	1	04-03-20		TLM1	
3.	Computer ethics.	1	05-03-20		TLM1	
4.	Weapons development	1	07-03-20		TLM1	
5.	Engineers as managers, consulting engineers	2	11-02-20& 12-03-20		TLM1	

6.	Engineers as expert witnesses	1	18-03-20	TLM1	
7.	Engineers as Advisors & Policy Makers	2	19-03-20& 21-03-20	TLM1	
8.	Moral leadership	1	26-03-20	TLM1	
	Assignment-5			TLM-3	
9.	Sample code of Ethics	1	28-03-20	TLM1	
No. of classes required to complete UNIT-V:11				No. of classes taken:	

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial/ Assignment	TLM6	Group Discussion/Project		

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering			
	fundamentals, and an engineering specialization to the solution of complex engineering			
	problems.			
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex			
	engineering problems reaching substantiated conclusions using first principles of mathematics,			
	natural sciences, and engineering sciences.			
PO 3	Design/development of solutions: Design solutions for complex engineering problems and			
	design system components or processes that meet the specified needs with appropriate			
	consideration for the public health and safety, and the cultural, societal, and environmental			
DO 4	considerations.			
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research			
	methods including design of experiments, analysis and interpretation of data, and synthesis of			
PO 5	the information to provide valid conclusions.			
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities			
	with an understanding of the limitations			
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess			
100	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to			
	the professional engineering practice			
PO 7	Environment and sustainability: Understand the impact of the professional engineering			
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need			
	for sustainable development.			
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and			
	norms of the engineering practice.			
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in			
	diverse teams, and in multidisciplinary settings.			
PO 10	Communication : Communicate effectively on complex engineering activities with the			
	engineering community and with society at large, such as, being able to comprehend and write			
	effective reports and design documentation, make effective presentations, and give and receive			
DO 11	clear instructions.			
PO 11	Project management and finance : Demonstrate knowledge and understanding of the			
	engineering and management principles and apply these to one's own work, as a member and			
DO 12	leader in a team, to manage projects and in multidisciplinary environments.			
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life long learning in the broadest context of technological change.			
	independent and life-long learning in the broadest context of technological change.			

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Programming paradigms: To inculcate algorithmic thinking, formulation techniques and				
	visualization, leading to problem solving skills using different programming paradigms.				
PSO 2	Data Engineering: To inculcate an ability to analyze, design and implement data driven				
	applications into the students.				
PSO 3	Software Engineering: Develop an ability to implement various				
	processes/methodologies/practices employed in design, validation, testing and maintenance of				
	software products				

SONY COLLEGE OF PLANAN SON

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE ENGINEERING COURSE HANDOUT PART-A

Name of Course Instructor : T.Chandrasekhar Yadav

Course Name & Code : Professional Ethics & Human Values

L-T-P Structure : 3-0-0 Credits : 0

Program/Sem/Sec : B.Tech., CSE., IV-Sem., Sections- B A.Y : 2019-20

PRE-REQUISITE: ETHICS & VALUES

COURSE EDUCATIONAL OBJECTIVES (CEOs):

❖ To create an awareness on engineering ethics and human values.

- ❖ To adumbrate the inevitability of different intellectual property rights like patents, copyrights, trademarks, and trade secret.
- ❖ To give an impetus on achieving higher positions in profession, with ethical and human values as a base and support for the growth.
- ❖ To explicate the professional and societal responsibilities of the engineers.
- ❖ To make the student realize the sensitiveness associated with experimentation process

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Acquires the basic concepts of human values & also gain the connotations of ethical theories
CO 2	To explicate the professional and societal responsibilities of the engineers.
CO 3	To make the student realize the sensitiveness associated with experimentation process
CO 4	To adumbrate the inevitability of different intellectual property rights like patents, copyrights, trademarks, and trade secret.
CO 5	To give an impetus on achieving higher positions in profession, with ethical and human values as a base and support for the growth.

COURSE ARTICULATION MATRIX (Correlation between COs& POs, PSOs):

CO's /				R17-P	rofessiona	l Ethics	& Hum	an Valu	es-S355			
PO's	1	2	3	4	5	6	7	8	9	10	11	12
CO1								3				
CO2			1					3				
CO3		1	2					3	2			
CO4				1		2		3	1			
CO5						1	2	3				1
3 = H	ligh (100)%)		2=	Moderate	(70%)		1=	= Slight (Low) (4	0%)	

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

BOS APPROVED TEXT BOOKS:

- **T1** R.S.Nagarajan, a Textbook on "Professional Ethics and Human Values", New Age Publishers 2006.
- **T2** Mike Martin and Roland Schinzinger, "Ethics in engineering", McGraw Hill, New York 1996.

BOS APPROVED REFERENCE BOOKS:

- **R1** Govindarajan M, Natarajan S, Senthil Kumar V. S, "Engineering Ethics", Prentice Hall of India, New Delhi, 2004.
- **R2** Charles D. Fleddermann, "Engineering Ethics", Pearson Education/ Prentice Hall, New Jersey,2004 (Indian Reprint now available)

¹⁻ Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Engineering Ethics

	· Engineering Ethics	1	1	1	5011-1. Engineering Etines						
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly					
1.	Introduction to Course and COs	1	28-11-19		TLM1						
2.	Introduction to Unit-I	1	29-11-19		TLM1						
3.	UNIT-I Introduction about engineering ethics	1	30-11-19		TLM1						
4.	Senses of engineering ethics, Variety of moral issues	1	05-12-19		TLM1						
5.	Moral dilemmas moral autonomy	1	06-12-19		TLM1						
6.	Kohlberg's theory	1	07-12-19		TLM1						
7.	Gilligan theory, Consensus and controversy	2	12-12-19& 13-12-19		TLM1						
8.	Models of professional roles about right action, self interest	1	19-12-19		TLM1						
9.	Customs and religion, uses of ethical theories	1	20-12-19		TLM1						
10.	Uses of ethical theories	1	21-12-19		TLM1						
11.	Assignment-1				TLM3						
No. o	f classes required to complete UN	IT-I: 11		No. of class	sses taken:						

UNIT-II: Human Values

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction about values	1	26-12-19		TLM1	
2.	Morals ethics and values, Integrity	1	27-12-19		TLM1	
3.	Work ethic, Service learning, Civic virtue	1	28-12-19		TLM1	
4.	Respect for others, living peacefully, Caring, sharing,	1	02-01-20		TLM1	
5.	Honesty, courage, Valuing time, cooperation	1	04-01-20		TLM1	
6.	Commitment, Empathy, self confidence	1	10-01-20		TLM1	
7.	Character, spirituality	1	11-01-20		TLM1	
8.	Assignment-2				TLM3	
No. of classes required to complete UNIT-II: 7 No. of classes taken:						
	IST MID EXAMS: 20-01-20 to 25-01-20					

UNIT-III: Engineering as Social Experimentation

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Engineering as experimentation introduction	1	30-01-20		TLM1	
2.	Engineering Projects VS. Standard Experiments	1	31-01-20		TLM1	
3.	Engineers as responsible experimenters	1	01-02-20		TLM1	
4.	Codes of ethics, Industrial Standards	1	07-02-20		TLM1	
5.	A balanced outlook on law	1	08-02-20		TLM1	
6.	The challenger case study	1	13-02-20		TLM2	
7.	Assignment-3				TLM3	
No. o	No. of classes required to complete UNIT-III: 6				sses taken:	

UNIT-IV: Safety, Responsibilities and Rights

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction about Safety, and rights	1	14-02-20		TLM1	·
2.	Assessment of safety and risk	1	15-02-20		TLM1	
3.	Risk benefit analysis and reducing risk ,Three Mile Island and Chernobyl case study	1	20-02-20		TLM2	
4.	Collegiality and loyalty, Respect for authority,	1	21-02-20		TLM1	
5.	Collective bargaining- Confidentiality	1	22-02-20		TLM1	
6.	Conflicts of interest, Occupational crime	1	27-02-20		TLM1	
7.	Professional Rights, Employee rights	1	28-02-20		TLM1	
8.	Intellectual Property Rights (IPR)	1	29-02-20		TLM1	
9.	Assignment-4				TLM3	
No. o	f classes required to complete UNI	T-IV: 8		No. of class	sses taken:	

UNIT-V: Global Issues

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	MNC's, Morality in MNC's	1	05-03-20		TLM1	
2.	Environmental Ethics	1	06-03-20		TLM1	
3.	Computer ethics.	1	07-03-20		TLM1	
4.	Weapons development	1	12-03-20		TLM1	

5.	Engineers as managers, consulting engineers	1	13-02-20	TLM1
6.	Engineers as expert witnesses	1	19-03-20	TLM1
7.	Engineers as Advisors & Policy Makers	2	20-03-20& 21-03-20	TLM1
8.	Moral leadership	1	26-03-20	TLM1
	Assignment-5			TLM-3
9.	Sample code of Ethics	2	27-03-20& 28-03-20	TLM1
No. of classes required to complete UNIT-V:11				No. of classes taken:

Teaching Learning Methods				
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)	
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)	
TLM3	Tutorial/ Assignment	TLM6	Group Discussion/Project	

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
DO 2	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and
103	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modeling to complex engineering activities
D O (with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
PO 7	the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering
107	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
DO 11	clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
PO 12	leader in a team, to manage projects and in multidisciplinary environments. Life-long learning : Recognize the need for, and have the preparation and ability to engage in
1012	independent and life-long learning in the broadest context of technological change.
	independent and me-tong tearning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Programming paradigms: To inculcate algorithmic thinking, formulation techniques and				
	visualization, leading to problem solving skills using different programming paradigms.				
PSO 2	Data Engineering: To inculcate an ability to analyze, design and implement data driven				
	applications into the students.				
PSO 3	Software Engineering: Develop an ability to implement various				
	processes/methodologies/practices employed in design, validation, testing and maintenance of				
	software products				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor : Dr.Ch.V.Narayana

Course Name & Code : Software Engineering - 17CI10

L-T-P Structure : 3-0-0 Credits : 3

Program/Sem/Sec : B.Tech., CSE., IV-Sem., Sections-A A.Y : 2019-20

PRE-REQUISITE: Programming, Database Management Systems.

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course provides the knowledge on importance of software engineering and software development process concepts and learn about different software development process models and how to choose an appropriate model for a project in specific domain.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Outline the fundamentals of software engineering concepts and software process
	standards.
CO 2	Demonstrate appropriate process model and software engineering practices
CO 3	Analyze requirements of software system and explore all requirements gathering approaches.
CO 4	Create an architectural design using design engineering process.
CO5	Apply software strategies and software testing tactics for testing real time projects effectively.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1	1	-	-	-	-	-	-	-	-	2	-	-	-	3
CO2	1	1	3	-	-	-	-	-	-	1	2	-	-	-	3
CO3	1	2	-	-	-	-	-	-	-	1	2	-	-	-	3
CO4	1	-	3	2	-	-	1	-	-	1	-	-	-	-	3
CO5	1	-	-	2	-	-	-	-	-	-	-	-	-	-	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation - .

1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

T1 Roger S.Pressman, Software engineering- A practitioner's Approach, TMH International Edition, 6th edition, 2005.

REFERENCE BOOKS:

- R1 Ian Sommerville, Software engineering, Pearson education, 8th edition, 2008.
- **R2** Ali Behforooz and Frederick J Hudson, "Software Engineering Fundamentals", Oxford University Press, New Delhi, 1996.
- **R3** Stephan Schach, Software Engineering, TMH Publications, 2007.
- **R4** Pfleeger and Lawrence Software Engineering: Theory and Practice, Pearson education, 2001, 1995, PHI, 2nd edition.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction to Software Engineering

J1 111-1	NII-I: Introduction to Software Engineering							
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
1.	Introduction to Software Engineering	1	27-11-19		TLM1	•		
2.	Evolving role of Software	1	28-11-19		TLM1			
3.	Software Definition and Characteristics	1	30-11-19		TLM1			
4.	Changing nature of Software	1	04-12-19		TLM1			
5.	Software Myths	1	05-12-19		TLM1			
6.	Software Engineering – A layered technology	1	07-12-19		TLM2			
7.	Process Framework – Generic Framework Activities, Umbrella Activities	2	11-12-19& 12-12-19		TLM1			
8.	CMMI Model	1	18-12-19		TLM1			
9.	Process Patterns, Process Assessment an Approaches	1	19-12-19		TLM2			
10.	TSP, PSP, Process Technology	1	21-12-19		TLM1			
11.	Product and Process, review on 1st unit	1	26-12-19		TLM1			
No. o	No. of classes required to complete UNIT-I:12 No. of classes taken:							

UNIT-II: : Process Models

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to UNIT-II, Prescriptive Models, Waterfall Model	1	28-12-19		TLM1	
2.	Incremental Model	1	02-01-20		TLM1	
3.	RAD Model	1	04-01-20		TLM1	
4.	Evolutionary Process Models	1	08-01-20		TLM1	
5.	Specialized Process Models	1	09-01-20		TLM1	
6.	Unified Process, Software Engineering Practices	1	11-01-20		TLM1	
7.	Software Engineering Practices	1	29-01-20		TLM1	
8.	Assignment/Quiz	1	30-01-20		TLM1	
No. o	No. of classes required to complete UNIT-II:08 No.					

UNIT-III: Requirements Engineering

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to UNIT-III	1	01-02-20		TLM1	•
2.	Requirements Engineering: Description	1	05-02-20		TLM1	
3.	RE Tasks, Initiating the RE Process	1	06-02-20		TLM1	
4.	Eliciting Requirements, Developing Use-Cases	1	08-02-20		TLM1	
5.	Building the Analysis Models	1	12-02-20		TLM1	
6.	Negotiating and Validating Requirements	1	13-02-20		TLM2	
7.	Building the Analysis Model: Requirements Analysis	1	15-02-20		TLM2	
8.	Analysis Modeling Approaches and Data Modeling	1	19-02-20		TLM2	
9.	Object Oriented Analysis, Creating a Behavioral Model	1	20-02-20		TLM2	
10.	Scenario Based Modeling, Flow Oriented Modeling, unit Review	1	22-02-20		TLM2	
No. o	f classes required to complete UN		No. of clas	ses taken:		

UNIT-IV: Design Engineering

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Design Engineering: Design within context of Software Engineering	1	26-02-20		TLM1	
2.	Design Process and Design Quality	1	27-02-20		TLM1	
3.	Design Concepts, Design Model	1	29-02-20		TLM1	
4.	Pattern Based Software Design	1	04-03-20		TLM1	
5.	Software Architecture and Data Design	1	05-03-20		TLM1	
6.	Architectural Styles and Patterns , Architectural Design	1	07-03-20		TLM1	
7.	Assignment/Quiz	1			TLM3	
No. of classes required to complete UNIT-IV:7 No. of classes taken:						

UNIT-V: Testing Strategies

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	A Strategic Approach to Software Testing, Strategic Issues	1	11-03-20		TLM1	
2.	Test Strategies for Conventional Software	1	12-03-20		TLM1	
3.	Test Strategies for Object Oriented Software	1	14-03-20		TLM1	
4.	Validation Testing, System Testing, The art of Debugging	1	18-03-20		TLM1	
5.	Software Testing Fundamentals, White Box Testing	1	19-03-20		TLM1	
6.	White Box Testing- Basis Path Testing	1	21-03-20		TLM1	
7.	Control Structure and Black Box Testing	1	25-03-20		TLM2	
8.	Black Box Testing and OO Testing	1	26-03-20		TLM2	

9	•	Black Box Testing and OO Testing, Review on 5th unit	1	28-03-20		TLM2	
No	o. of classe	s required to complete UN	IT-V: 9		No. of class	sses taken:	

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

	-
	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
PO 1	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
	Problem analysis: Identify, formulate, review research literature, and analyze complex
PO 2	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
	Design/development of solutions: Design solutions for complex engineering problems and
PO 3	design system components or processes that meet the specified needs with appropriate
103	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.

	Conduct investigations of complex problems: Use research-based knowledge and research
PO 4	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
PO 5	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
PO 6	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
	Environment and sustainability: Understand the impact of the professional engineering
PO 7	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and
100	norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in
10)	diverse teams, and in multidisciplinary settings.
	Communication : Communicate effectively on complex engineering activities with the
PO 10	engineering community and with society at large, such as, being able to comprehend and write
1010	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
	Project management and finance: Demonstrate knowledge and understanding of the
PO 11	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in
1012	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Programming Paradigms: To inculcate algorithmic thinking, formulation techniques and
PSO 1	visualization, leading to problem solving skills using different programming paradigms.
PSO 2	Data Engineering: To inculcate an ability to Analyze, Design and implement data driven
PSU 2	applications into the students.
PSO 3	Software Engineering: Develop an ability to implement various processes / methodologies
PSO 3	/practices employed in design, validation, testing and maintenance of software products.

Course InstructorCourse CoordinatorModule CoordinatorHODDr.Ch.V.NarayanaDr.Ch.V.NarayanaDr.Ch.V.NarayanaDr.D.Veeraiah

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

AND Y COLLOR OF THE PARTY OF TH

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor : **G.V.Suresh**

Course Name & Code : Software Engineering - 17CI10

L-T-P Structure : 3-0-0 Credits : 3

Program/Sem/Sec : B.Tech., IV-Sem., CSE-B A.Y : 2019-20

PRE-REQUISITE: C Programming, Database Management Systems..

COURSE OBJECTIVE: This course provides the knowledge on importance of software engineering and software development process concepts and learn about different software development process models and how to choose an appropriate model for a project in specific domain.

COURSE OUTCOMES (CO)

CO1: Outline the fundamentals of software engineering concepts and software process standards

CO2: Demonstrate appropriate process model and software engineering practices

CO3: Analyze requirements of software system and explore all requirements gathering approaches

CO4: Creating an architectural design using design engineering process

CO5: Apply software strategies and software testing tactics for testing real time projects effectively

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Outline the fundamentals of software engineering concepts and software process standards									
CO 2	Demonstrate appropriate process model and software engineering practices.									
CO 3	Analyze requirements of software system and explore all requirements gathering approaches									
CO 4	Creating an architectural design using design engineering process									
CO 5	Apply software strategies and software testing tactics for testing real time projects effectively									

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1				-	-	ı	ı	ı	2			-	3
CO2	1	1	3			-	-	ı	ı	1	2			-	3
CO3	1	2				-	-	1	1	1	2	2	3	-	3
CO4	1		3	2		-	1	ı	1	1	1	2	3	-	3
CO5	1			2											3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

T1 Roger S.Pressman, Software engineering- A practitioner's Approach, TMH International Edition, 6th edition, 2005

BOS APPROVED REFERENCE BOOKS:

- R1 Ian Sommerville, Software engineering, Pearson education, 8th edition, 2008.
- **R2** Ali Behforooz and Frederick J Hudson, "Software Engineering Fundamentals", Oxford University Press, New Delhi, 1996.
- R3 Stephan Schach, Software Engineering, TMH Publications, 2007.
- **R4** Pfleeger and Lawrence Software Engineering: Theory and Practice, Pearson education, 2001, 1995, PHI, 2nd edition.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN): Section-B

UNIT-I: Introduction to Software Engineering

	UNIT-1: Introduction to Software Engineering										
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly			
1.	Introduction to Software Engineering	1	25/11/19		TLM1	CO1	T1				
2.	Evolving role of Software	1	29/11/19		TLM1	CO1	T1				
3.	Software Definition and Characteristics	1	30/11/19		TLM1	CO1	T1				
4.	Changing nature of Software	1	02/12/19		TLM1	CO1	T1				
5.	Software Myths	1	06/12/19		TLM1	CO1	T1				
6.	Software Engineering – A layered technology	1	07/12/19		TLM2	CO1	T1				
7.	Process Framework – Generic Framework Activities	1	09/12/19		TLM2	CO1	R1				
8.	Umbrella Activities	1	13/12/19		TLM2	CO1	T1				
9.	CMMI Model	1	14/12/19		TLM1	CO1	T1				
10.	Process Patterns	1	16/12/19		TLM1	CO1	T1				
11.	Process Assessment an Approaches	1	20/12/19		TLM1	CO1	T1				
12.	Software Process Models	1	21/12/19		TLM1	CO1	Т1				
13.	Process Technology & Product and Process	1	23/12/19 27/12/19		TLM1	CO1	T1				
14.	Assignment/Quiz-1	1	28/12/19		TLM6	CO1					
	classes required to te UNIT-I	15	No. of classes tal	ken:							

UNIT-II: Process Models

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Introduction to UNIT-II	1	30/12/19		TLM1	CO2	T1	
2.	Process Models: Prescriptive Models	1	03/01/20		TLM1	CO2	Т1	
3.	Waterfall Model	1	04/01/20		TLM1	CO2	T1	
4.	Incremental Model	1	06/01/20		TLM1	CO2	T1	
5.	RAD Model	1	10/01/20		TLM1	CO2	T1	
6.	Evolutionary Process Models	1	11/01/20		TLM2	CO2	Т1	
7.	Specialized Process Models	1	20/01/20		TLM2	CO2	T1	

8.	Unified Process	1	27/01/20		TLM2	CO2	T1	
9.	Software Engineering Practices	1	31/01/20 01/02/20		TLM2	CO2	T1	
10.	Assignment/Quiz-2	1	03/02/20		TLM6	CO2		
No. of classes required to complete UNIT-II		11	No. of classes ta	ıken:				

UNIT-III: Requirements Engineering

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Introduction to UNIT-	1	03/02/20		TLM1	CO3	T1	
2.	Requirements Engineering: Description	1	07/02/20		TLM1	CO3	Т1	
3.	RE Tasks, Initiating the RE Process	1	08/02/20		TLM1	CO3	T1	
4.	Eliciting Requirements	1	10/02/20		TLM1	CO3	T1	
5.	Developing Use-Cases	1	14/02/20		TLM2	CO3	T1	
6.	Building the Analysis Models	1	15/02/20		TLM2	CO3	Т1	
7.	Negotiating and Validating Requirements	1	17/02/20		TLM2	CO3	Т1	
8.	Building the Analysis Model: Requirements Analysis	1	21/02/20		TLM1	CO3	T1	
9.	Analysis Modeling Approaches and Data Modeling	1	22/02/20		TLM1	CO3	T1	
10.	Object Oriented Analysis, Creating a Behavioral Model	1	24/02/20		TLM1	CO3	T1	
11.	Scenario Based Modeling, Flow Oriented Modeling	1	28/02/20		TLM1	CO3	Т1	
12.	Assignment/Quiz-3	1	29/02/20		TLM3	CO3	T1	
	No. of classes required to complete UNIT-III No. of classes taken:							

UNIT-IV: Design Engineering

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Design Engineering: Design within context of Software Engineering	1	02/03/20		TLM1	CO4	Т1	
2.	Design Process and Design Quality	1	02/03/20		TLM1	CO4	Т1	
3.	Design Concepts, Design Model	1	06/03/20		TLM1	CO4	T1	
4.	Pattern Based Software Design	1	07/03/20		TLM1	CO4	T1	
5.	Software Architecture and Data Design	1	07/03/20		TLM2	CO4	Т1	
6.	Architectural Styles and Patterns, Architectural Design	1	09/03/20		TLM1	CO4	Т1	
7.	Assignment/Quiz-4	1	09/03/20		TLM3	CO4		
No. of cl UNIT-IV	asses required to complete	7	No. of classes t	aken:				

UNIT-V: Testing Strategies

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	A Strategic Approach to Software Testing, Strategic Issues	1	13/03/20	-	TLM2	CO5	Т1	•
2.	Test Strategies for Conventional Software	1	13/03/20		TLM2	CO5	T1	
3.	Test Strategies for Object Oriented Software	1	14/03/20		TLM2	CO5	T1	
4.	Validation Testing, System Testing	1	14/03/20		TLM2	CO5	T1	
5.	The art of Debugging	1	16/03/20		TLM2	CO5	T1	
6.	Software Testing Fundamentals	1	20/03/20		TLM2	CO5	T1	
7.	White Box Testing & Basis Path Testing	1	21/03/20		TLM2	CO5	T1	
8.	Control Structure and Black Box Testing	1	23/03/20		TLM2	CO5	T1	
9.	Black Box Testing and OO Testing	1	23/03/20		TLM2	CO5	T1	
10.	Assignment-5/Quiz	1	27/03/20		TLM6	CO5		
No. of cl UNIT-V	lasses required to complete	11	No. of classes t	aken:				

Contents beyond the Syllabus

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Code-Reading Tools	2	28/03/20			CO3		
2.	Documentation and Visualization	1	28/03/20			CO5		

Teachin	Teaching Learning Methods									
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD					
TLM2	PPT	TLM5	Programming	TLM8	Lab Demo					
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study					

ACADEMIC CALENDAR:

Description	From	То	Weeks
I Phase of Instructions-1	25-11-2019	11-01-2020	7W
I Mid Examinations	13-01-2020	18-01-2020	1W
II Phase of Instructions	20-01-2020	25-03-2020	9W
II Mid Examinations	30-03-2020	04-04-2020	1W

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Assignment/Quiz – 1	1	A1=5
Assignment/Quiz – 2	2	A2=5
I-Mid Examination	1,2	B1=20
Assignment/Quiz – 3	3	A3=5
Assignment/Quiz – 4	4	A4=5
Assignment/Quiz – 5	5	A5=5
II-Mid Examination	3,4,5	B2=20

Evaluation of Assignment/Quiz Marks: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=5
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=20
Cumulative Internal Examination : A+B	1,2,3,4,5	A+B=25
Semester End Examinations	1,2,3,4,5	C=75
Total Marks: A+B+C	1,2,3,4,5	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering					
	fundamentals, and an engineering specialization to the solution of complex engineering					
	problems.					
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of					
	mathematics, natural sciences, and engineering sciences.					
PO 3	Design/development of solutions: Design solutions for complex engineering problems					
	and design system components or processes that meet the specified needs with					
	appropriate consideration for the public health and safety, and the cultural, societal, and					
	environmental considerations.					
PO 4	Conduct investigations of complex problems: Use research-based knowledge and					
	research methods including design of experiments, analysis and interpretation of data, and					
	synthesis of the information to provide valid conclusions.					
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and					
	modern engineering and IT tools including prediction and modelling to complex					
	engineering activities with an understanding of the limitations					
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to					
	assess societal, health, safety, legal and cultural issues and the consequent responsibilities					
	relevant to the professional engineering practice					
PO 7	Environment and sustainability: Understand the impact of the professional					
	engineering solutions in societal and environmental contexts, and demonstrate the					
	knowledge of, and need for sustainable development.					
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities					
	and norms of the engineering practice.					
PO 9	Individual and team work: Function effectively as an individual, and as a member or					
	leader in diverse teams, and in multidisciplinary settings.					
PO 10	Communication: Communicate effectively on complex engineering activities with the					
	engineering community and with society at large, such as, being able to					
	comprehend and write effective reports and design documentation, make					
	effective presentations, and give and receive clear instructions.					
PO 11	Project management and finance: Demonstrate knowledge and understanding of the					
	engineering and management principles and apply these to one's own work, as a member					
DO ::-	and leader in a team, to manage projects and in multidisciplinary environments.					
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to					
	engage in independent and life-long learning in the broadest context of technological					
	change.					

PROGRAMME SPECIFIC OUTCOMES (PSOs):

110011	THE MINIE OF EOIL TO GO TOOMES (1 000).						
PSO	Programming Paradigms: To inculcate algorithmic thinking, formulation techniques and						
1	visualization, leading to problem solving skills using different programming paradigms.						
PSO	Data Engineering: To inculcate ability to analyze, design and implement data driven						
2	applications into the students.						
PSO	Software Engineering: Develop an ability to implement various processes /						
3	methodologies /practices employed in design, validation, testing and maintenance of						
	software products.						

Course Instructor Course Coordinator Module Coordinator HOD
Dr.Ch.V.Narayana Dr.Ch.V.Narayana Dr.D.Veeraiah