

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with'A' Grade & NBA (Under Tier - I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

hodcse@lbrce.ac.in, cseoffice@lbrce.ac.in, Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE HANDOUT

PROGRAM : B.Tech.V-Sem.(A)

ACADEMICYEAR : 2023-24

COURSENAME&CODE : ComputerNetworks-20CS12

L-T-PSTRUCTURE : 3-0-0

COURSE CREDITS : 3

COURSEINSTRUCTOR : Mr. R.Ashok

COURSECOORDINATOR: Mr. R.Ashok

PRE-REQUISITE:BasicComputerFundamentalsandConcepts

COURSEOBJECTIVE: The Objective of the course is to provide a foundation to understand computer networks using layered architectures. It also helps students to understand the various network models, addressing concept, routing protocols and design aspects of computer networks.

COURSEOUTCOMES (CO): After the completion of this course, student will be able to:

CO1: Demonstrate the modern network architectures from a design perspective (Understand-L2)

CO2: Apply various Data Link layer design issues and error detection & correction techniques to solve collisions problems. (Apply-L3)

CO3: Demonstrate the network Layer functionalities (Understand-L2)

CO4: Outline the functions of transport layer protocols (Understand-L2)

CO5: Examined ifferent application layer protocols. (Understand-L2)

COURSEARTICULATIONMATRIX (Correlation between Cos &POs, PSOs):

COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PS O1	PS O2	PS O3
CO1	2	2	2											1	
CO2	1	2	2									1		1	
соз	1	3	3									1		1	
CO4	2	3	3	1								1	1		
CO5	2	2	2									1	1		

Note: Enter Correlation Levels **1** or **2** or **3**. If there is no correlation, **put '-'1-** Slight(Low), **2** - Moderate(Medium), **3** - Substantial (High).

TEXT BOOKS:

- 1. Behrouz A. Forouzan, , "Data Communication and Networking", McGraw-Hill, 4th Edition, 2011.
- 2. Andrew S. Tanenbaum, "Computer Networks", Pearson New International Edition, 8th Edition, 2013.

REFERENCE BOOKS:

- 1. William Stallings, "Data and Computer Communication", Pearson Prentice Hall India, 8th Edition.
- 2. Douglas Comer, Internetworking with TCP/IP, Prentice Hall of India, Volume 1, 6th Edition, 2009.
- 3. Richard Stevens, "TCP/IP Illustrated", Addison-Wesley, Volume 1, 2001.
- 4. http://www.cse.iitk.ac.in/users/dheeraj/cs425/
- 5. http://www.tcpipguide.com/free/t_OSIReferenceModelLayers.htm

COURSE DELIVERY PLAN (LESSON PLAN)

UNIT-I

S.No.	Topicstobecovered	No .of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Introductionto computernetworks	1	03-7-23		TLM2	CO1	T1,T2	
2.	Data Communication Components	1	05-7-23		TLM2	CO1	T1	
3.	Representation of data and its flow Networks	1	07-7-23		TLM2	CO1	T1	
4.	Various Connection Topology	1	08-7-23		TLM2	CO1	T1,R3	
5.	Protocols And Standards	1	10-7-23		TLM2	CO1	T1,R3	
6.	OSI Model	1	12-7-23		TLM2	CO1	T1,R1	
7.	TCP/IP Model	1	14-7-23		TLM2	CO1	T1,R2	
8.	TransmissionMedia	2	15-7-23 17-7-23		TLM2	CO1	T1,T2	
9.	LAN: Wired LAN, Wireless LANs	1	19-7-23		TLM2	CO1	T1	
10.	Connecting LAN and Virtual LAN.	2	21-7-23 22-7-23		TLM2	CO1	T1	
	classes required bleteUNIT-I	12			No. of classes taken:			

UNIT-II

S.No.	Topicstobecovered	No.of ClassesR equired	Tentative Date of Completion	Actual Dateof Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
11.	DATA LINKLAYER AND MEDIUM ACCESS SUBLAYER	1	24-7-23		TLM2	CO2	T1,R1	·
12.	Error Detection and Error Correction-	1	26-7-23		TLM2	CO2	T1,R1	
13.	Block coding, Hamming Distance, CRC	1	28-7-23		TLM2	CO2	T1,R2	
14.	Flow Control and Error& control protocols	2	31-7-23 02-8-23		TLM2	CO2	T1,R3	
15.	Stop and Wait, Go back N & ARQ	1	04-8-23		TLM2	CO2	T1,R2	
16.	Selective Repeat ARQ	1	05-8-23		TLM2	CO2	T1,R2	
17.	Sliding Window & Piggybacking	2	07-8-23 09-8-23		TLM2	CO2	T1,R3	
18.	RandomAccess,Multiple accessprotocols-Pure	1	11-8-23		TLM2	CO2	T1,R3	
	ALOHA,SlottedALOHA							
19.	CSMA/CD,CDMA/CA	2	12-8-23 14-8-23		TLM2	CO2	T1,R3	
	No. of classes required to complete UNIT-II No. of classes taken:							

UNIT-III:

S.No	Topicstobecovered	No. of Classes Required	Tentative Dateof Completion	Actual Dateof Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
20.	Network Layer	1	16-08-23		TLM2	CO3	T1,R3	
21.	Switching	1	18-08-23		TLM2	CO3	T1	
22.	Logical addressing— IPV4,IPV6	2	19-08-23 21-08-23		TLM2	CO3	T1	
23.	Address mapping—ARP	1	23-08-23		TLM2	CO3	T1	

24.	RARP,BOOTPand DHCP—Delivery	2	25-08-23 26-08-23	TLM2	CO3	T1,R2	
25.	Forwarding	1	04-09-23	TLM2	CO3	T1	
26.	Unicast Routing protocols.	3	08-09-23 09-09-23 11-09-23	TLM2	CO3	T1	
	No. of classes required tocompleteUNIT-III			No.ofclass	estaken:		

UNIT-IV:

	UNII-IV.	1			1	ı		
S.No.	Topicstobecovered	No. ofClass es Required	Tentative Dateof Completion	Actual Dateof Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
27.	Transport Layer	1	13-09-23		TLM2	CO4	T1,R1	
28.	ProcesstoProcessCommu nication	2	15-09-23 16-09-22		TLM2	CO4	T1	
29.	User Datagram Protocol	1	20-09-23		TLM2	CO4	T1	
	(UDP)							
30.	Transmission Control Protocol (TCP)	2	22-09-23 23-09-23		TLM2	CO4	T1	
31.	SCTP CongestionControl	1	25-09-23		TLM2	CO4	T1	
32.	Quality of Service	1	27-09-23		TLM2	CO4	T1	
33.	QoS improving techniques: Leaky Bucket and Token Bucket algorithm.	2	29-09-23 30-09-23		TLM2	CO4	Т1	
	classes required	10			No.ofclass	estaken:		

UNIT-V:

S.No.	Topicstobecovered	No. of Classes Required	Tentative Dateof Completion	Actual Dateof Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
34.	ApplicationLayer	1	03-10-23		TLM2	CO5	T1,R3	
35.	Domain Name Space(DNS),DDNS	2	06-10-23 07-10-23		TLM2	CO5	T1,R3	
36.	TELNET,EMAIL	2	09-10-23 11-10-23		TLM2	CO5	T1,R4	

37.	File Transfer Protocol (FTP)	1	13-10-23	TLM2	CO5	T1,R3	
38.	WWW,HTTP	2	14-10-23 16-10-23	TLM2	CO5	T1,R3	
39.	SNMP,Bluetooth, Firewalls	3	18-10-23 20-10-23 21-10-23	TLM2	CO5	T1,R3	
40.	Revision	2	25-10-23 27-10-23				
	No. of classes required tocompleteUNIT-V			No.ofclass	estaken:		

Teachir	TeachingLearningMethods								
TLM1	ChalkandTalk	TLM4	ProblemSolving	TLM7	SeminarsorGD				
TLM2	PPT	TLM5	Programming	TLM8	LabDemo				
TLM3	Tutorial	TLM6	AssignmentorQuiz	TLM9	CaseStudy				

EVALUATION PROCESS:

EvaluationTask	Marks
Assignment-I(Units-I,II&UNIT-III(HalfoftheSyllabus))	A1=5
I-DescriptiveExamination(Units-I,II&UNIT-III(HalfoftheSyllabus))	M1=15
I-QuizExamination(Units-I,II&UNIT-III(HalfoftheSyllabus))	Q1=10
Assignment-II(Unit-III(RemainingHalfoftheSyllabus),IV&V)	A2=5
II-DescriptiveExamination(UNIT-III(RemainingHalfoftheSyllabus),IV&V)	M2=15
II-QuizExamination(UNIT-III(RemainingHalfoftheSyllabus),IV&V)	Q2=10
MidMarks=80%ofMax((M1+Q1+A1),(M2+Q2+A2))+20%ofMin((M1+Q1+A1),(M2+Q2+A2))	M=30
CumulativeInternalExamination(CIE):M	<mark>30</mark>
SemesterEndExamination(SEE)	<mark>70</mark>
TotalMarks=CIE+SEE	100

PROGRAM OUTCOMES (Pos)

PO1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and anengineeringspecializationtothesolutionofcomplexengineeringproblems.
P02	Problem analysis: Identify, formulate, review research literature, and analyze complex Engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
P03	Design. development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
P04	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
P05	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
P06	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legaland culturalissues and the consequent responsibilities relevant to the professional engineering practice.
P07	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
P08	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
P09	Individual and teamwork: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reportsanddesigndocumentation,makeeffectivepresentations,andgiveand Receive clear instructions.
P011	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
P012	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

Title	CourseInstructor	CourseCoordinator	ModuleCoordinator	HeadoftheDepartment
Name oftheFaculty	Mr. R.Ashok	Dr.KNagaPrasanthi	Dr.D.V.Subbaiah	Dr.DVeeraiah
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

hodcse@lbrce.ac.in, cselbreddy@gmail.com, Phone: 08659-222 933, Fax: 08659-222931

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor : Dr. P. Bhagath

Course Name & Code : Machine Learning & 20AD04

L-T-P Structure : 3-0-0 Credits: 3
Program/Sem/Sec : B.Tech/ V/ B A.Y.: 2023-24

PREREQUISITES : Probability and Statistics

COURSE EDUCATIONAL OBJECTIVES (CEOs): The Objective of the course is to introduce the concepts of data warehouse and data mining, which gives a complete description about the principles, used, architectures, applications, design and implementation of data mining and data warehousing concepts.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Identify the characteristics of machine learning. (Understand- L2)
CO2	Summarize the Model building and evaluation approaches (Understand- L2)
со3	Apply Bayesian learning and regression algorithms for real-world Problems. (Apply- L3)
CO4	Apply supervised learning algorithms to solve the real-world Problems. (Apply-L3)
CO5	Apply unsupervised learning algorithms for the real-world data. (Apply- L3)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	2	2	1	-	-	-	-	-	-	-	-	1	1	-	3
CO2	3	2	-	2	-	-	-	-	-	-	-	-	2	-	-
CO3	2	3	2	2	-	-	1	-	1	-	1	2	-	2	2
CO4	2	2	-	2	-	-	1	-	i	-	1	1	2	-	ı
CO5	2	2	2	2	-	-	1	-	1	-	1	2	2	2	1
			1 - 1	Low			2 -N	1ediun	1			3 - Hig	h		

TEXTBOOKS:

- **T1** Subramanian Chandramouli, Saikat Dutt, Amit Kumar Das, "Machine Learning", Pearson Education India ,1 st edition, 2015.
- T2 Tom M. Mitchell, "Machine Learning', MGH, 1997.

REFERENCE BOOKS:

- **R1** Shai Shalev-Shwartz, ShaiBen David, "Understanding Machine Learning: From Theory to Algorithms", Cambridge.
- **R2** Peter Harington, "Machine Learning in Action", Cengage, 1st edition, 2012.
- **R3** Peter Flach, "Machine Learning: The art and science of algorithms that make sense of data", Cambridge university press, 2012.
- **R4** Jason Brownlee, "Machine Learning Mastery with Python Understand Your Data, Create Accurate Models and Work Projects End-To-End", Edition: v1.4, 2011.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction to Machine Learning and Preparing to Model

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to course outcomes	1	11. 07. 23		TLM1,2	
2.	Introduction to Machine Learning	1	12. 07. 23		TLM1,2	
3.	Types of Machine Learning	1	13. 07. 23		TLM1,2	
4.	Applications of Machine Learning	1	14. 07. 23		TLM1,2	
5.	Machine learning Activities	1	18. 07. 23		TLM1,2	
6.	Basic types of data in ML	1	19. 07. 23		TLM1,2	
7.	Exploring structure of data	1	20. 07. 23		TLM1,2	
8.	Data quality and Remediation	1	21. 07. 23		TLM1,2	
9.	Data Pre-processing	1	25. 07. 23		TLM1,2	
No. of c	lasses required to complete UNIT-I:		No. of classes	taken:		

UNIT-II: Modeling & Evaluation, Basics of Feature Engineering

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction	1	26. 07. 23		TLM1,2	
2.	Selecting a Model	1	27. 07. 23		TLM1,2	
3.	Training a Model	1	28. 07. 23		TLM1,2	
4.	Model Representation and Interpretability	1	01. 08.23		TLM1,2	
5.	Evaluating performance of a model	1	02. 08.23		TLM1,2	
6.	Introduction to Feature Engineering	1	03. 08.23		TLM1,2	
7.	Feature transformation	1	04. 08.23		TLM1,2	
8.	Principal Component Analysis	1	08.08.23		TLM1,2	
9.	Singular Value Decomposition	1	09.08.23		TLM1,2	
10.	Linear Discriminant Analysis (LDA)	1	10.08.2023		TLM1,2	
11.	Feature Subset Selection	1	11.08.2023		TLM1,2	
No. of cla	sses required to complete U	NIT-II: 11		No. of classes	taken:	

UNIT-III: Regression

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completi on	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to regression analysis	1	16.08.2023		TLM1,2	
2.	Simple linear regression	1	17.08.2023		TLM1,2	
3.	Multiple linear regression	1	18.08.2023		TLM1,2	
4.	Assumptions in Regression Analysis	1	22.08.2023		TLM1,2	
5.	Main Problems in Regression Analysis	1	23.08.2023		TLM1,2	
6.	Improving Accuracy of the linear regression model	1	24.08.2023		TLM1,2	
7.	Polynomial Regression Model	1	25.08.2023		TLM1,2	
8.	Logistic Regression	1	05.09.2023		TLM1,2	
9.	Regularization	1	06.09.2023		TLM1,2	
10.	Regularized Linear Regression	1	07.09.2023		TLM1,2	
11.	Regularized Logistic Regression	1	08.09.2023		TLM1,2	
	No. of classes required to	complete UNIT-III:	11	No. of clas	ses taken:	

UNIT-IV: Supervised Learning

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completio n	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Supervised learning	1	12.09.2023		TLM1,2	
2.	Classification Model and Classification Learning Steps	2	13.09.2023 14.09.2023		TLM1,2	
3.	k-Nearest Neighbor (kNN)	2	15.09.2023 19.09.2023		TLM1,2	
4.	Support vector Machines (SVM)	2	20.09.2023 21.09.2023		TLM1,2	
5.	Random Forest model	2	22.09.2023 26.09.2023		TLM1,2	
No. of cl	No. of classes required to complete UNIT-IV: 09				s taken:	

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completio n	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Ensemble learning	1	27.09.2023		TLM1,2	
2.	Bagging	1	28.09.2023		TLM1,2	
3.	Boosting	1	29.09.2023		TLM1,2	
4.	Stacking and its impact on bias and variance	1	03.10.2023		TLM1,2	
5.	AdaBoost	1	04.10.2023		TLM1,2	
6.	Gradient Boosting Machines	1	05.10.2023		TLM1,2	
7.	XGBoost	1	06.10.2023		TLM1,2	
8.	Introduction to Reinforcement learning	1	09.10.2023		TLM1,2	
9.	Q Learning	1	10.10.2023		TLM1,2	
No. of clas	sses required to complete UN	No. of classe	s taken:			

CONTENT BEYOND THE SYLLABUS

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Applications of Regularization	1	11.10.2023		TLM1,2	
2.	Image processing applications	1	12.10.2023		TLM1,2	

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4 Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C EVALUATION PROCESS (R20 Regulation):	
Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30
Cumulative Internal Examination (CIE): M	30

Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice.
PO 7	Environment and sustainability : Understand the impact of professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and teamwork : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
P011	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
P012	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of Organization
PSO 2	The ability to design and develop computer programs in networking, web applications and IoT as per the society needs
PSO 3	To inculcate an ability to analyze, design and implement database applications

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Dr P Bhagath	Dr K Devipriya	Dr K Naga Prasanthi	Dr D Veeraiah
Signature				

AFPLAVAR DUTCH

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' GRADE & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Mr. N V NAIK

Course Name & Code : THEORY OF COMPUTATION & 20CS13

L-T-P Structure : 3-0-0 Credits: 3
Program/Sem/Sec : B.Tech/V/A A.Y.: 2023-24

PREREQUISITE: Discrete Mathematical Structures

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The objective of the course is to provide a formal connection between algorithmic problem solving and the theory of automata and languages, and develop them into a mathematical view towards algorithmic design and in general computation itself.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Construct finite automata for regular languages and prove it's equivalence (Apply-L3)
CO2	Construct regular expression for regular languages and prove the equivalence of regular expression and Finite Automata (Apply-L3)
CO3	Design Pushdown automata for the context free languages. (Understand-L2)
CO4	Design Turing Machine to model computational problems (Apply-L3)
CO5	Distinguish decidable and undecidable problems with the help of Turing machine
COS	(Understand-L2)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	3	2											1		
CO2	3	2											1		
CO3	3	2													
CO4	3	2													
CO5	1	2													
		1	- Low			2	-Medi	um			3	- High			

TEXTBOOKS:

John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, "Introduction to Automata Theory, Languages, and Computation", Pearson Education Asia, 1997

REFERENCE BOOKS:

R1	Harry R. Lewis and Christos H. Papadimitriou, "Elements of the Theory of Computation", Pearson Education Asia, 2000
R2	Dexter C. Kozen, "Automata and Computability", Springer,2011.
R3	Michael Sipser, "Introduction to the Theory of Computation", PWS Publishing, 2005.
R4	John Martin, Introduction to Languages and The Theory of Computation, Tata McGraw Hill,2 nd Edition,2003

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: FINITE AUTOMATA

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction- Course Objective & Outcomes	1	04-07-2023	-	TLM1	•
2.	Basic Concepts of Finite Automata	1	06-07-2023		TLM1	
3.	Finite automata Classification	1	07-07-2023		TLM1	
4.	DFA Construction	2	10-07-2023 11-07-2023		TLM1	
5.	NFA Construction	1	13-07-2023		TLM1	
6.	Equivalence of NFA & DFA	1	14-07-2023		TLM1	
7.	NFA with epsilon to NFA without epsilon	1	17-07-2023		TLM1	
8.	Minimization of Finite Automata	2	18-07-2023 20-07-2023		TLM1	
9.	Finite Automata with output	1	21-07-2023		TLM1	
10.	Construction of Moore and Melay Machine	2	24-07-2023 25-07-2023		TLM1	
11.	Equivalence of Moore and Melay	2	27-07-2023 28-07-2023		TLM1	
No. of classes required to complete UNIT-I: 15 No. of classes taken:						

UNIT-II: Regular Expression and Regular Languages

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
12.	Introduction to Regular Expressions	1	31-07-2023		TLM1	
13.	Construction of RE	1	01-08-2023		TLM1	
14.	RE to Finite Automata	1	03-08-2023		TLM1	
15.	FA to Regular expressions	1	04-08-2023		TLM1	
16.	Regular grammar, Construction	1	07-08-2023		TLM1	
17.	Parse Trees	1	08-08-2023		TLM1	
18.	Equivalence of grammar to Finite Automata	1	10-08-2023		TLM1	
19.	Pumping Lemma for regular languages	1	11-08-2023		TLM1	
20.	Closure Properties for Regular Language	1	14-08-2023		TLM1	
No. of	classes required to complete UN	No. of class	sses take	n:		

UNIT-III: CONTEXT FREE GRAMMER AND PUSH DOWN AUTOMATA

S.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign	
No.	ropies to be covered	Required	Completion	Completion	Methods	Weekly	
21.	Context Free Grammer	1	17-08-2023		TLM1		
22.	Ambiguity of CFG	1	18-08-2023		TLM1		
23.	Simplification of CFG	1	21-08-2023		TLM1		
24.	CNF	1	22-08-2023		TLM1		
25.	GNF	2	24-08-2023 25-08-2023		TLM1		
26.	PDA Definition	1	04-09-2023		TLM1		
27.	Deterministic PDA and Non Deterministic PDA	1	05-09-2023		TLM1		
28.	Construction of PDA	1	07-09-2023		TLM1		
29.	CFG to PDA	1	08-09-2023		TLM1		
30.	PDA to CFG	1	11-09-2023		TLM1		
31.	Pumping lemma for CFL's	1	12-09-2023		TLM1		
32.	Closure properties of CFL's	1	14-09-2023		TLM1		
	No. of classes required to complete UNIT-III: 13 No. of classes taken:						

UNIT-IV: Turing Machine

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
33.	Introduction, Basic Model of TM	1	15-09-2023		TLM1	
34.	Languages, closure properties	1	18-09-2023		TLM1	
35.	TM Construction	3	21-09-2023 22-09-2023 25-09-2023		TLM1	
36.	Variants of TM	2	26-09-2023 29-09-2023		TLM1	
37.	NDTM equivalence with DTM	2	03-10-2023 05-10-2023		TLM1	
38.	Unrestricted Grammar and its equivalence TM	1	06-10-2023		TLM1	
39.	TM as enumerators	2	09-10-2023 10-10-2023			
No.	No. of classes required to complete UNIT-IV: 12				ses taken	:

UNIT-V: Undecidability

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
40.	Introduction	1	12-10-2023		TLM1	
41.	Church Turing Thesis	1	13-10-2023		TLM1	
42.	Universal Turing Machine	1	16-10-2023		TLM1	
43.	The universal and diagonalization Languages	1	17-10-2023		TLM1	
44.	Reduction between Languages	1	19-10-2023		TLM1	
45.	Rice Theorem	1	20-10-2023		TLM1	
46.	PCP Problem	1	26-10-2023		TLM1	
47.	Undecidable problems about Languages	1	27-10-2023		TLM1	
No. o	f classes required to complete	08	No. of clas	ses taker	1:	

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Phases of Compiler	1	28-10-2023		TLM1	

Teaching	Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)						
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)						
TLM3	Tutorial	TLM6	Group Discussion/Project						

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30
Cumulative Internal Examination (CIE): M	30
Semester End Examination (SEE)	70
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.								
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.								
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.								
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.								
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.								
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.								
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.								
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.								
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.								
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.								
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.								
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change								

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To inculcate algorithmic thinking, formulation techniques and visualization, leading to problem solving skills using different programming paradigms.
PSO 2	To inculcate an ability to analyze, design and implement data driven applications into the students
PSO 3	Develop an ability to implement various processes/methodologies/practices employed in design, validation, testing and maintenance of software products.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Mr. N V NAIK	Dr. D.Veeraiah	Dr. S.Jayaprada	Dr. D.Veeraiah
Signature				

SELION TOTAL PARTY OF THE PARTY

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with'A' Grade & NBA (Under Tier - I), ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

hodcse@lbrce.ac.in, cseoffice@lbrce.ac.in, Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Ms Ch. Nagamani Course Name & Code : PAI & 20CS16

L-T-P Structure :3-0-0 Credits: 3
Program/Sem/Sec :BTECH/V/A A.Y.: 2023-24

PREREQUISITE: Basic Engineering and Mathematics knowledge

COURSE EDUCATIONAL OBJECTIVES (CEOs):

COURSE OUTCOMES (COs): At the end of the course, student will be able to

	,
CO1	Understand the fundamentals of Artificial Intelligence types of AI agents and their
	structures to solve engineering problems. (Understand - L2)
CO2	Identify different search algorithms to find and optimise the solution for the given
CUZ	problem. (Understand-L2)
CO2	Apply different gaming algorithms and identify the importance of knowledge
CO3	representations in Artificial Intelligence. (Apply-L3)
CO4	Make use of predicate logic and rule-based system to represent the knowledge in AI
LU4	domain. (Understand-L2)
CO5	Interpret the forms of learning in the AI domain as well as present efficient technologies to
	remove uncertainty in knowledge domain. (Understand -L2)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	-	1	-	-	1	-	-	-	1	-	2	-
CO2	2	3	1	1	ı	-	-	ı	ı	-	ı	-	ı	2	-
CO3	2	3	1	1	1	-	-	1	1	-	1	1	1	2	-
CO4	3	2	2	ı	1	-	-	1	1	-	1	-	1	2	1
CO5	3	2	1	-	-	-	-	-	-	-	-	-	-	2	-
1 - Low			2 -Medium				3 - High								

TEXTBOOKS:

T1	Stuart J. Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach", Pearson
11	Education Asia, third edition, 2009.can also second edition, 2003.
T2	Elaine Rich, Kevin Knight Artificial Intelligence, TMH, second edition, 2007.

REFERENCE BOOKS:

R1	Nils J.Nilsson "Artificial Intelligence - A New Synthesis", "Morgan Kaufmann, 1988									
R2	David poole, Alan Mackworth, "Artificial Intelligence: Foundations for computational									
	agents",Cambridge Univ.press,2010.									
R3	Ronald Brachman, "Knowledge representation and Reasoning", Morgan Kaufmann, 2004.									
R4	Frank van Harmelen, Vladimir Lifschitz, Bruce Porter (Eds), "Handbook of Knowledge									
	representation",Elsevier,2008.									
R5	Ivan Bratko," Prolog Programming for Artificial Intelligence",4th Ed., Addition-Wesley,2011.									

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
1.	AI Introduction	1	05-7-2023		TLM1		
2.	Applications of AI	1	06-7-2023		TLM1		
3.	History of AI	1	10-7-2023		TLM1		
4.	Types of AI	1	12-7-2023		TLM1		
5.	Agents and rationality	1	13-7-2023		TLM2		
6.	Structure of the agents	1	15-7-2023		TLM2		
7.	Agent environment and nature of the environment	1	17-7-2023		TLM2		
8.	Types of agents-Simple reflex agents and model-based agents	1	19-7-2023		TLM2		
9.	Types of agents-Goal based agents and Utility-based agents	1	20-7-2023		TLM2		
10.	Types of agents-Learning agents	1	22-7-2023		TLM2		
11.	Problems, search spaces	1	24-7-2023		TLM2		
12.	Defining the problem as state space search	1	26-7-2023		TLM2		
13.	Production system	1	27-7-2023		TLM2		
14.	Problem characteristics	1	02-8-2023		TLM2		
15.	Issues in the design of search programs.	1	03-7-2023		TLM2		
No. of classes required to complete UNIT-I: 15 No. of classes taken:							

UNIT-II:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
16.	Problem solving agents and search algorithm terminologies	1	05-8-2023		TLM2	
17.	Properties of search algorithms and types of search algorithms	1	07-8-2023		TLM2	
18.	Uninformed search algorithms: Breadth-first Search	1	09-8-2023		TLM2	
19.	Depth-first Search and Depth-limited Search	1	10-8-2023		TLM2	
20.	Iterative deepening depth-first search.	1	12-8-2023		TLM2	
21.	Uniform cost search, Bidirectional search.	1	14-8-2023		TLM2	
22.	Informed/Heuristic Search algorithms: Greedy best-first search algorithm	1	16-8-2023		TLM2	
23.	A* Search algorithm	1	17-7-2023		TLM2	
24.	Hill climbing algorithm	1	19-8-2023		TLM2	
25.	Constraint satisfaction problem	1	21-8-2023		TLM2	
26.	Means-Ends Analysis	1	23-8-2023		TLM2	
No.	of classes required to complete	1	No. of clas	ses takei	1:	

UNIT-III:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
27.	Adversarial search/Game playing: Introduction	1	24-8-2023		TLM2	
28.	Minmax Algorithm	1	26-8-2023		TLM2	
29.	Alpha-Beta Pruning	1	04-9-2023		TLM2	
30.	Knowledge representation: Representations and mappings	2	07-9-2023 09-9-2023		TLM2	
31.	Approaches of Knowledge representation	2	11-9-2023 13-9-2023		TLM2	
32.	Issues in Knowledge Representation	2	14-9-2023 16-9-2023		TLM2	
No. of classes required to complete UNIT-III: 09 No. of classes taken:						

UNIT-IV:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
33.	Knowledge Representation Using predicate logic: Representing simple facts in logic.	1	20-9-2023	-	TLM2			
34.	Representing instance and Isa relationships	2	21-9-2023 23-9-2023		TLM2			
35.	Computable functions and predicates	1	25-9-2023		TLM2			
36.	Resolution	1	27-9-2023		TLM2			
37.	Natural deduction	1	30-9-2023		TLM2			
38.	Representing knowledge using Rules: Procedural verses declarative knowledge	1	4-10-2023		TLM2			
39.	Logic programming	1	5-10-2023		TLM2			
40.	Forward verses backward reasoning	1	7-10-2023		TLM2			
41.	Matching	1	9-10-2023		TLM2			
42.	Control knowledge	1	11-10-2023		TLM2			
No.	No. of classes required to complete UNIT-IV: 11 No. of classes taken:							

UNIT-V:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
43.	Uncertain knowledge and Reasoning: Probability and Bayes theorem	1	12-10-2023		TLM2	
44.	Certainty factors and rule-based systems	2	14-10-2023 16-10-2023		TLM2	
45.	Bayesian networks	1	18-10-2023		TLM2	
46.	Dempster – Shafer Theory	1	19-10-2023		TLM2	
47.	Fuzzy logic	1	21-10-2023		TLM2	
48.	Learning: Overview of different forms of learning	1	25-10-2023		TLM2	
49.	Learning Decision Trees	1	27-10-2023		TLM2	
50.	50. Neural networks		28-10-2023		TLM2	
No. o	f classes required to complete	09	No. of clas	ses taker	1:	

Teaching	Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)						
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)						
TLM3	Tutorial	TLM6	Group Discussion/Project						

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30
Cumulative Internal Examination (CIE): M	<mark>30</mark>
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
PO 1	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
	Problem analysis: Identify, formulate, review research literature, and analyze complex
PO 2	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
	Design/development of solutions: Design solutions for complex engineering problems and
PO 3	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
DO 4	Conduct investigations of complex problems: Use research-based knowledge and research
PO 4	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
DO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
PO 5	engineering and IT tools including prediction and modeling to complex engineering activities
	with an understanding of the limitations.
DO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
PO 6	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice.
DO 7	Environment and sustainability : Understand the impact of the professional engineering
PO 7	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development
	for sustainable development.
PO 8	Ethios: Apply othical principles and commit to professional othics and responsibilities and
108	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
	norms of the engineering practice.

PO 9	Individual and teamwork: Function effectively as an individual, and as a member or leader
109	in diverse teams, and in multidisciplinary settings.
DO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write
PO 10	effective reports and design documentation, make effective presentations, and give and receive clear instructions.
	Project management and finance: Demonstrate knowledge and understanding of the
PO 11	engineering and management principles and apply these to one's own work, as a member
	and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for and have the preparation and ability to engage in
FU 12	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization.
PSO 2	The ability to design and develop computer programs in networking, web applications
	and IoT as per the society needs.
PSO 3	To inculcate an ability to analyze, design and implement database applications.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Ms. Ch Nagamani	Mr G.V.Suresh	Dr.D.V Subbaiah	Dr.D Veeraiah
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC and NBA (CSE, IT, ECE, EEE & ME) under Tier - I

(Autonomous)

DEPARTMENT OF MECHANICAL ENGINEERING COURSE HANDOUT

Part-A

PROGRAM: B.Tech., VI-Sem., CSE., A-SECTION

ACADEMIC YEAR : 2023-24

COURSE NAME & CODE: RENEWABLE ENERGY SOURCES- 20ME81

L-T-P STRUCTURE : 4-0-0

COURSE CREDITS : 3

COURSE INSTRUCTOR: MALLIKARJUNA RAO DANDU

COURSE COORDINATOR: Dr V Dhana Raju

PRE-REQUISITES: Nil

COURSE EDUCATIONAL OBJECTIVES (CEOs): To provide the insights on different non-conventional energy sources, potential, salient features and utilization of solar, wind, geothermal, ocean thermal energy, bio energy and direct energy conversion systems.

COURSE OUTCOMES (COs)

After completion of the course, the student will be able to

CO1: Compute the performance of solar energy harnessing devices and its energy scenario. (Applying-L3)

CO2: Apply the principles of energy conversion for wind and geothermal power generating plants. (Applying - L3)

CO3: Compare the power generating capacities of tidal energy, wave energy and ocean thermal energy plants. (**Understanding - L2**)

CO4: Illustrate the various biomass power generation system technologies.

(Understanding - L2)

CO5: Comprehend the direct energy power generation systems. **(Understanding - L2)**

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

COs	PO1	PO2	РО3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	-	-	-	3	3	-	-	-	-	2	2	-	-
CO2	2	1	-	-	-	3	3	-	-	-	-	2	2	-	-
CO3	1	1	-	-	-	3	3	-	-	-	-	2	2	-	-
CO4	1	1	-	-	-	3	3	-	-	-	-	2	2	-	-
CO5	1	1	-	-	-	3	3	-	-	-	-	2	2	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), **2 -** Moderate (Medium), **3 -** Substantial (High).

BOS APPROVED TEXT BOOKS:

- **T1** G.D.Rai, Non-Conventional Energy Sources, 5th Edition 2011, Khanna Publishers, New Delhi, India.
- **T2** Kreith, F and Kreider, J. F., Principles of Solar Engineering, McGraw-Hill, 1978.

BOS APPROVED REFERENCE BOOKS:

- **R1** John Twidell&Tony Weir, Renewable Energy Resources 2nd Edition, Taylor & Francis
- **R2** G.N.Tiwari, Solar Energy Fundamentals, Design, Modelling and Applications –Narosa Publication Ltd.,2000.
- **R3** Ashok V Desai, Non-Conventional Energy- Wiley Eastern, 2000.

Part-B

COURSE DELIVERY PLAN (LESSON PLAN): Section-A

UNIT-I: GLOBAL AND NATIONAL ENERGY SCENARIO & SOLAR ENERGY HARNESSING DEVICES

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Course Outcomes & Blooms Taxonomy Levels	1	10-07-2023		TLM1/ TLM2	CO1	T1	
2.	Over view of conventional & renewable energy sources	1	12-07-2023		TLM1/ TLM2	CO1	Т1	
3.	Need & Development of renewable energy sources	1	13-07-2023		TLM1/ TLM2	CO1	Т1	
4.	Types of renewable energy systems.	1	15-07-2023		TLM1/ TLM2	CO1	T1	
5.	Energy available from Sun	1	17-07-2023		TLM1/ TLM2	CO1	T1	
6.	Solar radiation data,	1	19-07-2023		TLM1/ TLM2	CO1	T1	
7.	Flat plate and Concentrating collectors	1	20-07-2023		TLM1/ TLM2	CO1	Т1	
8.	Mathematical analysis of Flat plate collectors	1	22-07-2023		TLM1/ TLM2	CO1	T1	
9.	collector efficiency	1	24-07-2023		TLM1/ TLM2	CO1	T1	
10.	Solar water Heating, Space Heating	1	25-07-2023		TLM1/ TLM2	CO1	Т1	
11.	Active and Passive heating	1	27-07-2023		TLM1/ TLM2	CO1	T1	
12.	solar stills and ponds	1	31-07-2023		TLM1/ TLM2	CO1	T1	
13.	basic principle of power generation in photovoltaic cell	1	02-08-2023		TLM1/ TLM2	CO1	T1	
14.	Problems	1	03-08-2023		TLM1/ TLM2	CO1	T1	
15.	Quiz/Assignment	1	05-08-2023					
	f classes required nplete UNIT-I	14			N	lo. of class	ses taken:	

UNIT-II: WIND ENERGY & GEOTHERMAL ENERGY

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
16.	Wind – characteristics – wind energy conversion systems	1	07-08-2023		TLM1/ TLM2	CO2	Т1	

17.	Types of wind energy	1	07-08-2023	TLM1/ TLM2	CO2	Т1	
18.	Betz model & Interference factor	1	09-08-2023	TLM1/ TLM2	CO2	T1	
19.	Power Coefficient Torque Coefficient and thrust coefficient	1	09-08-2023				
20.	site selection requirements.	1	10-08-2023	TLM1/ TLM2	CO2	T1	
21.	GEOTHERMAL ENERGY: Structure of Earth, Geothermal sources	1	10-08-2023	TLM1/ TLM2	CO2	Т1	
22.	Hot springs, Hot Rocks& Hot Aquifers	1	14-08-2023	TLM1/ TLM2	CO2	Т1	
23.	Interconnection of geothermal fossil systems	1	16-08-2023	TLM1/ TLM2	CO2	Т1	
24.	Problems	1	17-08-2023	TLM1/ TLM2	CO1	Т1	
25.	Quiz/Assignment		19-08-2023				
	No. of classes required to complete UNIT-II		9	N	o. of class	es taken:	

UNIT-III: TIDAL ENERGY, WAVE ENERGY and OCEAN THERMAL ENERGY

S.N o.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text	HOD Sign Weekly
26.	Tidal Energy -Introduction, Origin of Tides	1	21-08-2023		TLM1/ TLM2	CO3	T1, R8	
27.	Tidal Power generation	1	24-08-2023		TLM1/ TLM2	CO3	T1, R8	
28.	Classification of Tidal Power Plant,	1	24-08-2023		TLM1/ TLM2	CO3	T1	
29.	Site requirements	1	26-08-2023		TLM1/ TLM2	CO3	T1	
30.	WAVE ENERGY : Introduction, Wave energy and Power	1	04-09-2023		TLM1/ TLM2	CO3	Т1	
31.	Wave Energy devices – Merits and Demerits	1	06-09-2023		TLM1/ TLM2	CO3	Т1	
32.	OCEAN THERMAL ENERGY: Introduction	1	11-09-2023		TLM1/ TLM2	CO3	T1	
33.	Working principle of Ocean Thermal Energy Conversion	1	11-09-2023		TLM1/ TLM2	CO3	Т1	
34.	OTEC Systems,	1	13-09-2023		TLM1/ TLM2	CO3	T1	
35.	Advantages and Disadvantages of OTEC plants.	1	13-09-2023		TLM1/ TLM2	CO3	T1	
36.	Quiz/Assignment		14-09-2023			CO3		
No. of classes required to complete UNIT-III		10			No. of cla	asses take	n:	

UNIT-IV: BIO – ENERGY

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
37.	BIO – ENERGY: Introduction	1	16-09-2023		TLM1/ TLM2	CO4	T1	WEERIN
38.	Biomass Energy Sources	1	20-09-2023		TLM1/ TLM2	CO4	T1	
39.	Aerobic and Anaerobic bio- conversion processes	1	21-09-2023		TLM1/ TLM2	CO4	Т1	
40.	Types of Biogas plants	3	23-09-2023 25-09-2023 27-09-2023		TLM1/ TLM2	CO4	Т1	
41.	Raw Materials and properties of Bio-gas	1	30-09-2023		TLM1/ TLM2	CO4	T1	
42.	Bio-gas plant Technology and Status	1	04-10-2023		TLM1/ TLM2	CO4	Т1	
43.	Biomass gasification	2	05-10-2023		TLM1/ TLM2	CO4	T1	
44.	Types and application of gasifier	1	07-10-2023		TLM1/ TLM2	CO4	Т1	
45.	Quiz/Assignment		09-10-2023			CO4		
1	f classes required nplete UNIT-IV		11		N	o. of class	es taken:	

UNIT-V: DIRECT ENERGY CONVERSION SYSTEMS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
46.	DIRECT ENERGY CONVERSION SYSTEMS: Introduction	2	11-10-2023		TLM1/ TLM2	CO5	Т1	
47.	Peltier effect, seebeck effect, Thomson effect,	1	12-10-2023		TLM1/ TLM2	CO5	Т1	
48.	Fuel Cells-Types.	2	16-10-2023		TLM1/ TLM2	CO5	T1	
49.	Efficiency of Fuel Cells.	1	18-10-2023		TLM1/ TLM2	CO5	T1	
50.	Thermoelectric power Generation	1	19-10-2023		TLM1/ TLM2	CO5	T1	
51.	Thermionic electro power Generation	1	21-10-2023					
52.	MHD Generator	1	21-10-2023		TLM1/ TLM2	CO5	T1	
53.	Open and closed systems	1	26-10-2023		TLM1/ TLM2	CO5	T1	
54.	applications of direct energy energy conversion systems	1	28-10-2023		TLM1/ TLM2	CO5	T1	
55. Quiz/Assignment			28-10-2023			CO5		
No. of classes required to complete UNIT-V		11			No. of cla	asses take	n:	

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
тьмз	Tutorial	TLM6	Group Discussion/Project			

Academic Calender-A.Y-2023-24

Description	From	To	Weeks		
B Tech V Semester					
Commencement of class work		03.07.2023			
I phase of Instructions	03.07.2023	26.08.2023	8		
I Mid Examination	28.08.2023	02.09.2023	1		
II phase of Instructions	04.09.2023	28.10.2023	8		
II Mid Examination	30.10.2023	04.11.2023	1		
Preparation and Practical	06.11.2023	11.11.2023	1		
Semester End Examination	13.11.2023	25.11.2023	2		

Part - C

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Assignment 1	1	A1=5
Assignment 2	2	A2=5
I-Mid Examination	1,2,3	B1=15
Quiz – 1	1,2,3	Q1=10
Assignment 3	3	A3=5
Assignment 4	4	A4=5
Assignment 5	5	A5=5
II-Mid Examination	3,4,5	B2=15
Quiz – 2	3,4,5	Q2=10
Evaluation of Assignment: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=5
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=15
Evaluation of Quiz Marks: Q=75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	1,2,3,4,5	Q=10
Cumulative Internal Examination: A+B+Q	1,2,3,4,5	CIE=30
Semester End Examinations	1,2,3,4,5	SEE=70
Total Marks: CIE+SEE	1,2,3,4,5	100

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1: To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

PEO2: To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.

PEO3: To develop inquisitiveness towards good communication and lifelong learning.

PROGRAMME OUTCOMES (POs)

Engineering Graduates will be able to:

- **1. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **2. Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first

principles of mathematics, natural sciences, and engineering sciences.

- **3. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **6. The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **7. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8. Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **11. Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PSOs

- 1. To apply the principles of thermal sciences to design and develop various thermal systems.
- 2. To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.
- **3.** To apply the basic principles of mechanical engineering design or evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Course Instructor	Course Coordinator	Module Coordinator	HOD
MALLIKARJUNA RAO DANDU	Dr V Dhana Raju	Dr. P. Vijay Kumar	Dr. S. Pichi Reddy

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

hodcse@lbrce.ac.in, cseoffice@lbrce.ac.in, Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: R. Ashok

Course Name & Code : COMPUTER NETWORKS LAB&20CS60

L-T-P Structure : 0-0-3 Credits: 1.5

Program/Sem/Sec : B.Tech. CSE., V-Sem., Section-A A.Y: 2023-24

PRE-REQUISITES: Data Structures and Operating Systems

COURSE EDUCATIONAL OBJECTIVES (**CEOs**): The main objective of this course is to prepare students to write programs to illustrate communication in networks configure different networks (LAN, WAN) and prepare students to differentiate various protocols and their performance.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Implement Network layer functionalities using NS3 simulator
CO 2	Demonstrate Transport Layer functionalities
CO 3	Analyze Application layer protocols using Wireshark
CO 4	Improve individual / teamwork skills, communication & report writing skills with ethical values.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	3	3	-	-	-	-	-		-	1	-	-	
CO2	1	2	3	3	-	-	-	-	-	-	-	1	-	-	•
CO3	1	2	3	3	-	-	-	-	-	-	-	1	-	-	•
CO4	-	•	•	1	•	•	-	1	3	2	•	•	•	•	•

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'
1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

PART-B

COURSE DELIVERY PLAN (LESSON PLAN): Section - A

S. No.	Topics to be covered	No. of Classe s Required	Tentative Date of Completion	Actual Date of Completion	HOD Sign
1.	Introduction	3	06-07-2023		
2.	Basic network commands & utilities	3	13-07-2023		
3.	Network layer tools and analyzecaptures for congestion	3	20-07-2023		
4.	Network layer tools and analyzecaptures for congestion	3	27-07-2023		
5.	Queue management techniques and global routing in NS3	3	03-08-2023		
6.	Broadcasting, multicasting and bridging in LAN using ns3	3	10-08-2023		
7.	Learn about Wifi and mobile Adhoc topologies with NS3	3	17-08-2022		
8.	Socket programming in TCP and UDP	3	24-08-2023		
9.	Observation of TCP Connection states, Flags and Flow control	3	07-09-2023		
10.	TCP Flow control, Error controland Congestion	3	14-09-2023		
11.	Wireshark & tcpdump, observation of packets in a LAN	3	21-09-2023		
12.	Analyze HTTP packets using Wireshark tool and understand records returned by DNS Server.	3	05-10-2023		
13.	Practise	3	12-10-2023		
14.	Practise	3	19-10-2023		
15.	Lab Internal Exam		26-10-2023		

PROGRAMME OUTCOMES (POs):

PO 1

Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and teamwork : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

	Programming Paradigms: To inculcate algorithmic thinking, formulation techniques and
	visualization, leading to problem solving skills using different programming paradigms. 2. Data
PSO 1	Engineering: To inculcate an ability to Analyze, Design and implement data driven applications
PSU 1	into the students. 3. Software Engineering: Develop an ability to implement various processes /
	methodologies /practices employed in design, validation, testing and maintenance of software
	products.
	Data Engineering: To inculcate an ability to Analyze, Design and implement data driven
PSO 2	applications into the students.
PSO 3	Software Engineering: Develop an ability to implement various processes / methodologies
	/practices employed in design, validation, testing and maintenance of software products.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Mr. R. Ashok	Dr. K. Naga Prasanthi	Dr. D. Venkata Subbaiah	Dr. D. Veeraiah

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

hodcse@lbrce.ac.in, cselbreddy@gmail.com, Phone: 08659-222 933, Fax: 08659-222931

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor : Dr. P. Bhagath

Course Name & Code : Machine Learning using Python Lab (20AD54)
L-T-P Structure : 0-0-3 Credits: 1.5
Program/Sem/Sec : B.Tech, CSE, V-Sem., Sec-A A.Y: 2023-24

PRE-REQUISITE : Python Programming and Data Mining

COURSE EDUCATIONAL OBJECTIVES (CEOs): The objective of this lab is to Practical exposure on implementation of well-known data mining algorithms and Learning performance evaluation of data mining algorithms in a supervised and an unsupervised setting.

COURSE OUTCOMES (COs): At the end of the course, students can

CO 1	Apply the appropriate pre-processing techniques on data set.	(Apply - L3)
CO 2	Implement supervised Machine Learning algorithms.	(Apply - L3)
CO 3	Implement advanced Machine Learning algorithms	(Apply - L3)
CO 4	Improve individual / teamwork skills, communication & report wri	iting skills with
	ethical values	

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	1	-	1	ı	-	-	-		1	1	-	3
CO2	3	2	-	2	-	1	ı	-	-	-	-	-	2	-	-
CO3	2	3	2	2	-	-	-	-	-	-	-	2	-	2	2

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

COURSE DELIVERY PLAN (LESSON PLAN): Section-B

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1	Installing Virtual Environment and libraries required for Machine Learning	3	11.07.23		TLM4	
2	Basic statistical functions for data exploration	6	18.07.23 25.07.23		TLM4	
3	Data Visualization: Box plot, scatter plot, histogram	6	01.08.23 08.08.23		TLM4	
4	Data Pre-processing: Handling missing values, outliers, normalization, Scaling	6	15.08.23 22.08.23		TLM4	
5	Principal Component Analysis (PCA)	3	05.09.23		TLM4	
6	Singular Value Decomposition (SVD)	3	12.09.23		TLM4	
7	Linear Discriminant Analysis (LDA)	3	19.09.23		TLM4	
8	Regression Analysis: Linear regression, Logistic regression,	6	26.09.23 03.10.23		TLM4	
9	Polynomial Regression, Regularized Regression	6	10.10.23 17.10.23		TLM4	
10	K-Nearest Neighbour (kNN) Classifier	3	24.10.23		TLM4	
11	Support Vector Machines (SVMs)	3	31.10.23		TLM4	
12	Random Forest model	3	07.11.23		TLM4	
13	AdaBoost Classifier and XGBoost	3	14.11.23		TLM4	

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
DO C	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering
107	solutions in societal and environmental contexts, and demonstrate the knowledge of, and
	need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and teamwork: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend
	and write effective reports and design documentation, make effective presentations, and give
	and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization.
PSO 2	The ability to design and develop computer programs in networking, web applications and IoT as per the society needs.
PSO 3	To inculcate an ability to analyze, design and implement database applications.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Dr. P. Bhagath	Dr. K. Devi Priya	Dr. K. Naga Prasanthi	Dr. D. Veeraiah
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

hodcse@lbrce.ac.in, cseoffice@lbrce.ac.in, Phone: 08659-222 933, Fax: 08659-222931

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE HANDOUT PART-A

Name of Course Instructor: Mr.P.Somaraju

Course Name & Code: Mean Stack Technologies - 20CSS3

L-T-P Structure : 1-0-3 Credits: 2
Program/Sem/Sec : B.Tech. - CSE/V/A A.Y.: 2022-24

PREREQUISITE: Full Stack Development

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Develop professional web pages of an application using HTML elements like lists, navigations, tables, various form elements, embedded media which includes images, audio, video and CSS Styles (Apply-L3)
CO2	Build a basic web server using Node.js , Exress.js and also working with Node Package Manager (NPM) (Apply-L3)
СО3	Make use of Typescript to optimize JavaScript code by using the concept of strict type checking. (Apply-L3)
CO4	Improve individual / teamwork skills, communication & report writing skills with ethical values

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	1	-	2	•	2	-	-	-	-	-	-	2	-	3	-
CO2	1	-	2	-	2	-	-	-	-	-	-	2	-	3	-
CO3	1	ı	2	-	2	-	-	-	-	-	•	2	•	3	•
CO4	-	•	-	•	ı	1	ı	2	2	2	•	1	1	-	ı
		1	- Low			2	-Medi	ium			3	- High			

Text Books & REFERENCE BOOKS:

T1	Programming the World Wide Web, 7th Edition, Robet W Sebesta, Pearson
T2	Pro Mean Stack Development, 1st Edition, ELadElrom, Apress O'Reilly.
Т3	Budi Kurniawan, "Struts 2 Design and Programming: A Tutorial", BrainySoftware, 2nd Edition,
	2008.
R1	Web Technologies, HTML, JavaScript, PHP, Java, JSP, XML and AJAX, Black book, 1st Edition,
	Dream Tech.
R2	An Introduction to Web Design, Programming, 1st Edition, Paul S Wang, Sanda S Katila, Cengage
	Learning.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Complet ion	Teac hing Lear ning Meth ods	HOD Sign Weekly
1.	Cycle-1(HTML)	4	19-07-23&22-07-23		DM5/ DM6	
2.	Cycle -2(HTML)	4	26-07-23&29-07-23		DM5/ DM6	
3.	Cycle-3(JS)	4	02-08-23&05-08-23		DM5/ DM6	
4.	Cycle-4(JS)	4	09-08-23&12-08-23		DM5/ DM6	
5.	Cycle-5(JS)	4	16-08-23&19-08-23		DM5/ DM6	
6.	Cycle-6(Node.JS)	4	23-08-23&26-08-23		DM5/ DM6	
7.	Cycle-6(Node.JS)	4	09-09-23&13-09-23		DM5/ DM6	
8.	Cycle-7(Express.js)	4	20-09-23&23-09-23		DM5/ DM6	
9.	Cycle-8(Express.js)	4	27-09-23&30-09-23		DM5/ DM6	
10.	Cycle-9 (Typescript)	4	04-10-23&07-10-23		DM5/ DM6	
11.	Cycle-10 (Typescript)	4	11-10-23&14-10-23		DM5/ DM6	
12.	Cycle-11 (Typescript)	4	18-10-23&21-10-23		DM5/ DM6	
13.	Cycle-12 (Typescript)	4	18-10-23&21-10-23		DM5/ DM6	
14.	Cycle-12 (Typescript)	4	25-10-23&28-10-23		DM5/ DM6	
15.	Assessment	4	25-10-23&28-10-23		DM5/ DM6	

Teaching Learning Methods							
DM1	Chalk and Talk	DM4	Assignment/Test/Quiz				
DM2	ICT Tools	DM5	Laboratory/Field Visit				
DM3	Tutorial	DM6	Web-based Learning				

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Report	10
Quality of work	10
Presentation	20

Interaction / Queries	10
Total	50

PART-D

PROGRAMME OUTCOMES (POs):

PO 1 fundamentals, and an engineering specialization to the solution of complex engineering problems. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. PO 10 Endividual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management		
PO 2 Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a	20.4	
Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a	PO 1	
PO 2 engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. PO 8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a		*
PO 3 PO 3 Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. PO 8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a		
PO 3 Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate considerations. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. PO 8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a	PO 2	
and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. PO 8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a		
appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. PO 8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. PO 9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a		
appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. PO 8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a	PO 3	
PO 4 PO 5 PO 6 PO 7 PO 8 PO 8 PO 8 PO 9 PO 9 Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. PO 8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a		
research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a		
And synthesis of the information to provide valid conclusions. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. PO 8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. PO 9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a		
PO 5 Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. PO 9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a	PO 4	
modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. PO 9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a		
PO 6 PO 7 PO 8 PO 8 PO 9 PO 9 PO 10 PO 10 PO 10 PO 10 PO 10 PO 10 PO 11 PO 10 PO 11 PO 11 PO 10 PO 11 PO 10 PO 11 PO 11 PO 10 PO 11 PO 11 PO 10 PO 11 PO 10 PO 10 PO 10 PO 10 PO 11 PO 11 PO 10 PO 11 PO 11 PO 10 PO 11 PO 10 PO 11 PO 10 PO 10 PO 11 PO 11 PO 10 PO 11 PO 10 PO 11 PO 11 PO 11 PO 11 PO 11 PO 16 PO 17 PO 17 PO 17 PO 17 PO 18 PO 19 PO 19 PO 10 PO 10 PO 10 PO 10 PO 10 PO 11 PO 10 PO 11 PO 11 PO 11 PO 11 PO 11 PO 11 PO 12 PO 16 PO 17 PO 17 PO 17 PO 18 PO 19 PO 19 PO 10 PO 10 PO 11 PO 11 PO 11 PO 16 PO 17 PO 17 PO 17 PO 18 PO 19	D0 =	
The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a	PO 5	
PO 6 assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. PO 8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a		
responsibilities relevant to the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. PO 8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a	DO 6	
PO 7 Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. PO 8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a	PU 6	, , ,
PO 7 engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development. PO 8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. PO 9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. PO 10 Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a		
knowledge of, and need for sustainable development. PO 8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. PO 9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a	DO 7	
PO 8 Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice. PO 9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a	PU /	
and norms of the engineering practice. PO 9 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a		
PO 10 Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a	PO 8	
PO 10 leader in diverse teams, and in multidisciplinary settings. PO 10 Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a		
PO 10 Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a	PO 9	· · · · · · · · · · · · · · · · · · ·
engineering community and with society at large, such as, being able to Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a		
Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a	PO 10	
PO 11 engineering and management principles and apply these to one's own work, as a		
	PO 11	, ,
member and leader in a team, to manage projects and in multidisciplinary environments.		member and leader in a team, to manage projects and in multidisciplinary environments.
		Life-long learning: Recognize the need for, and have the preparation and ability to
	PO 12	engage in independent and life-long learning in the broadest context of technological
change.		

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization.						
PSO 2	The ability to design and develop computer programs in networking, web applications and						
F30 2	IoT as per the society needs.						
PSO 3	To inculcate an ability to analyze, design and implement database applications.						

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department	
Name of the Faculty	(Mr.P.Somaraju)	(Dr.Y.Bhaskar Reddy)	(Dr. K.Naga Prasathi)	(Dr. D. Veeraiah)	
Signature					

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with'A' Grade & NBA (Under Tier - I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

hodcse@lbrce.ac.in, cseoffice@lbrce.ac.in, Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Mr B SIVARAMAKRISHNA
Course Name & Code :Computer Networks (20CS12)

L-T-P Structure : 3-0-0 Credits:3
Program/Sem/Sec : B.Tech V SemSec -B CSE A.Y.: 2023-24

PREREQUISITE: Data Structures and Operating Systems

COURSE EDUCATIONAL OBJECTIVES (**CEOs**): The Objective of the course is to provide a foundation to understand computer networks using layered architectures. It also helps students to understand the various network models, addressing concept, routing protocols and design aspects of computer networks. **COURSE OUTCOMES** (**COs**): At the end of the course, student will be able to

CO1	Demonstrate the modern network architectures from a design perspective (Understand-L2)
CO2	Apply various Data Link layer design issues and error detection & correction techniques to solve collisions problems.(Apply-L3)
CO3	Demonstrate the network Layer functionalities(Understand-L2)
CO4	Outline the functions of transport layer protocols(Understand-L2)
CO5	Examine different application layer protocols(Understand-L2)

COURSE ARTICULATION MATRIX(Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	3	2	-	-	-	1	-	1	-	-	-	-	-	-	3
CO2	3	2	-	-	-	-	-	-	-	-	-	-	-	-	3
СО3	3	2	1	-	-	-	-	-	-	-	-	-	-	-	3
CO4	-	2	1	-	-	1	-	1	-	-	-	-	-	-	3
CO5	2	3	1	-	-	1	-	1	-	-	-	-	-	-	3
1 - Low 2 - Medium					um	3 - High									

TEXTBOOKS:

- T1 Behrouz A. Forouzan, "Data Communication and Networking", McGraw-Hill, 4th Edition, 2011.
- T2 AndrewS. Tanenbaum, "Computer Networks", Pearson New International Edition, 8th Edition, 2013.

REFERENCE BOOKS:

- R1 WilliamStallings, "DataandComputerCommunication", PearsonPrent iceHallIndia, 8th Edition.
- **R2** Douglas Comer, Internetworking with TCP/IP, Prentice Hall of India, Volume 1,6thEdition,2009. Richard Stevens, "TCP/IP Illustrated", Addison-Wesley

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Data Communication Components

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	CEOs and COs discussion, Computer Networks Syllabus Discussion	1	03,04-07-2023		1 & 2	
2.	Data Communication components :Representation of data	1	08-07-2023		1 & 2	
3.	Data Flow	1	10,11-07-2023		1 & 2	
4.	Network	1	13,15-07-2023		1 & 2	
5.	Connection in topology	1	17,18-07-2023		1 & 2	
6.	Protocols and standards	1	20,22-07-2023		1 & 2	
7.	OSI Model	1	24,26-07-2023		1 & 2	
8.	Transmission Media	1	28,31-07-2023		1 & 2	
9.	LAN :Wired LAN, Wireless LANs	1	02-08-2023		1 & 2	
10.	Connecting LAN and Virtual LAN	1	04-08-2023		1 & 2	
No. o	of classes required to compl	No. of clas	ses taker	1:		

UNIT-II: Data Link Layer and Medium Access Sub Layer

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
11.	Error Detection and Error Correction - Fundamentals,	1	05-08-2023		1 & 2	
12.	Block coding, Hamming Distance,	1	07-08-2023		1 & 2	
13.	CRC	1	09-08-2023		1 & 2	
14.	Flow Control and Error control protocols - Stop and Wait	1	11-08-2023		1 & 2	
15.	Go back – N ARQ	1	12-08-2023		1 & 2	
16.	Selective Repeat ARQ,	1	14,16-08-2023		1 & 2	
17.	Sliding Window, Piggybacking	1	18-08-2023		1 & 2	
18.	Random Access, Multiple access protocols -Pure ALOHA	1	19-08-2023		1 & 2	
19.	Slotted ALOHA,	1	21,23-08-2023		1 & 2	
20.	CSMA/CD,CDMA/CA	1	25-08-2023		1 & 2	
No. o	of classes required to comple	No. of clas	ses takei	1:		

UNIT-III: Network Layer

S.N o.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completi on	Teaching Learning Methods	HOD Sign Weekly
21.	Switching	1	26-08-2023		1 & 2	
22.	Logical addressing – IPV4	2	29,30-08-23		1 & 2	
23.	IPV6	1	04,06-09-2023		1 & 2	
24.	Address mapping -ARP,RARP	1	08,09-09-2023		1 & 2	
25.	ВООТР	1	20-09-2023		1 & 2	
26.	DHCP-Delivery	1	27-09-2023		1 & 2	
27.	Forwarding protocols	1	29-09-2023		1 & 2	
28.	and Unicast Routing protocols	1	30-09-2023			
	No. of classes required to com	No. of c	lasses tal	ken:		

UNIT-IV: Transport Layer

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly			
29.	Process to Process Communication	1	06-10-2023		1 & 2				
30.	User Datagram Protocol(UDP),	1	07-10-2023		1 & 2				
31.	Transmission Control Protocol (TCP)	2	10-10-2023 11-10-2023		1 & 2				
32.	SCTP	1	13-10-2023		1 & 2				
33.	Congestion Control	2	14-10-2023 17-10-2023		1 & 2				
34.	Quality of Service	1	18-10-2023		1 & 2				
35.	QoS improving techniques: Leaky Bucket	1	20-10-2023		1 & 2				
36.	Token Bucket algorithm	1	21-10-2023		1 & 2				
No. o	No. of classes required to complete UNIT-IV: 10 No. of classes taken:								

UNIT-V: Application layer

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
37.	Domain Name Space(DNS)	2	25-10-2023		1 & 2	
38.	DDNS	1	27-10-2023		1 & 2	
39.	TELNET	1	28-10-2023		1 & 2	
40.	EMAIL,	1	01-11-2023		1 & 2	
41.	File Transfer Protocol (FTP)	1	03-11-2023		1 & 2	
42.	WWW,HTTP	1	04-11-2023		1 & 2	
43.	SNMP	1	07-11-2023		1 & 2	
44.	Bluetooth,	1	10-11-2023		1 & 2	
45.	Firewalls	2	11-11-2023 13-11-2023		1 & 2	
No. o	f classes required to complete U		No. of clas	ses taker	1:	

Teaching	Teaching Learning Methods									
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)							
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)							
TLM3	Tutorial	TLM6	Group Discussion/Project							

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II& UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II& UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II& UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- DescriptiveExamination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max((M1+Q1+A1),(M2+Q2+A2))+20% of Min((M1+Q1+A1), (M2+Q2+A2))	M=30

Cumulative Internal Examination (CIE): M	<mark>30</mark>
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

	MINE OUTCOMES (1 OS).
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to
PO 11	Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization.							
DCO 2	The ability to design and develop computer programs in networking, web applications and							
PSO 2	IoT as per the society needs.							
PSO 3	To inculcate an ability to analyze, design and implement database applications.							

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Dr.B S R Krishna	Dr.K Naga Prasanthi		Dr. D Veeraiah
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I),ISO 9001:2015Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

hodcse@lbrce.ac.in, cselbreddy@gmail.com, Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE HANDOUT PART-A

Name of Course Instructor : Mrs B.Swathi

Course Name & Code : Machine Learning (20AD04)

L-T-P Structure : 3-0-0 Credits : 3 Program/Sem/Sec : B.Tech., CSE., V-B A.Y: 2022-23

PRE-REQUISITE: Probability and Statistics, Data Warehousing and Data Mining

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The objective of the course provides the basic concepts and techniques of Machine Learning and helps to use recent machine learning software for solving practical problems. It enables students to gain experience by doing independent study and research.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Identify the characteristics of machine learning. (Understand- L2)
CO 2	Understand the Model building and evaluation approaches (Understand- L2)
CO 3	Apply regression algorithms for real-world Problems. (Apply- L3)
CO 4	Handle classification problems via supervised learning algorithms. (Apply-L3)
CO 5	Learn advanced learning techniques to deal with complex data (Apply- L3)

COURSE ARTICULATION MATRIX(Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	2	-	-	-	-	-	-	-	2	-	2	-
CO2	3	2	-	2	-	-	-	-	-	-	-	2	-	2	-
CO3	3	2	-	-	-	-	ı	ı	ı	-	ı	2	-	2	ı
CO4	3	_	-	3	-	-	-	-		-	-	2	-	2	-
CO5	3	1	-	3	-	-	-	-	-	-	-	2	-	2	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- 1. Subramanian Chandramouli, Saikat Dutt, Amit Kumar Das, "Machine Learning", Pearson Education India ,1st edition,2015.
- 2. Tom M. Mitchell, "Machine Learning', MGH, 1997.

REFERENCE BOOKS:

- 1. Shai Shalev-Shwartz, ShaiBen David, "Understanding Machine Learning: From Theory to Algorithms", Cambridge
- 2. Peter Harington, "Machine Learning in Action", Cengage, 1st edition, 2012.
- 3. Peter Flach, "Machine Learning: The art and science of algorithms that make sense of data", Cambridge university press,2012.

4. Jason Brownlee, "Machine Learning Mastery with Python Understand Your Data, Create Accurate Models and Work Projects End-To-End", Edition: v1.4, 2011.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN): Section C

UNIT-I: Introduction to Machine Learning and Preparing to Model

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction	1	03-07-2023		TLM1	
2.	Types of Machine Learning- supervise Learning	1	05-07-2023		TLM1	
3.	Unsupervised Learning	1	06-07-2023		TLM1	
4.	Reinforcement Learning	1	10-07-2023		TLM1	
5.	Applications of Machine Learning,	1	12-07-2023		TLM1	
6.	Issues in Machine Learning	1	13-07-2023		TLM1	
7.	Introduction, Machine Learning Activities	1	15-03-2023		TLM1	
8.	Basic Types of Data in Machine Learning	1	17-07-2023		TLM1	
9.	Exploring Structure of Data	1	19-07-2023		TLM1	
10.	Exploring Structure of Data	1	20-07-2023		TLM1	
11.	Data Quality and Remediation,	1	22-07-2023		TLM1	
12.	Data PreProcessing	1	24-07-2023		TLM1	
	No. of classes required to complete UNIT-I			No of classes taken		

UNIT-II: Modelling & Evaluation, Basics of Feature Engineering

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
13	Introduction,	1	26-07-2023			
14.	selecting a Model, training a Model (for Supervised Learning),	2	27-07-2023		TLM1	
15.	, Model Representation and Interpretability	1	31-07-2023		TLM1	
16.	Evaluating Performance of a Model.	1	02-08-2023		TLM1	
17.	Feature Transformation	1	03-08-2023		TLM1	
18.	Feature Construction	1	05-08-2023		TLM1	
19.	Feature Extraction	1	07-08-2023		TLM1	
20.	Principal Component Analysis (PCA),	1	09-08-2023		TLM1	
21.	Singular Value Decomposition	1	10-08-2023		TLM1	
22	Linear Discriminant Analysis (LDA), Feature Subset Selection	1	14-08-2023			

No. of classes required to complete UNIT-II	12		No of classes taken
---	----	--	---------------------

UNIT-III: Regression

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
23.	Introduction to regression analysis, Simple linear regression	1	16-08-2023		TLM1	
24.	Multiple linear regression	2	17-08-2023& 19-08-2023		TLM1	
25.	Assumptions in Regression Analysis, Main Problems in Regression Analysis	1	21-08-2023		TLM1	
26.	Improving Accuracy of the linear regression model,	2	23-08-2023		TLM1	
27.	Polynomial Regression Model	1	24-08-2023		TLM1	
28.	Logistic Regression	1	26-08-2023		TLM1	
29.	Regularization	1	04-09-2023		TLM1	
30.	Regularized Linear Regression	1	07-09-2023		TLM1	
31.	Regularized Logistic Regression.	1	11-09-2023		TLM1	
	f classes required to lete UNIT-III	11		No of classes taken		

UNIT-IV: Supervised Learning: Classification

		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
		Required	Completion	Completion	Methods	Weekly
32.	Supervised Learning	1	13-09-2023		TLM1	
32.	Introduction and example	1	13-09-2023		ILLIVIT	
33.	Classification Model	2	14-09-2023		TLM1	
	Classification Learning	1	11 07 1010		TLM1	
	Classification Learning	1			I LIVI I	
34.	Steps		16-09-2023			
35.	k-Nearest Neighbour	2	20-09-2023		TLM1	
35.	(kNN)	2	20-09-2023			
36.	Support vector Machines	2	21-09-2023		TLM1	
50.			21 07 2023			
37.	Random Forest model	2	23-09-2023		TLM1	
NT -	6 -1			No of		
	No. of classes required to			classes		
comp	olete UNIT-IV	10				
_				taken		

UNIT-V: Other Types of Learning

S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign
		Required	Completion	Completion	Methods	Weekly
38.	Bagging	2	25-09-2023& 27-09-2023		TLM1	
39.	Boosting	2	30-09-2023& 04-10-2023		TLM2	
40	Stacking and its impact on bias and variance	2	05-10-2023& 07-10-2023		TLM2	
41	AdaBoost	2	09-10-2023& 11-10-2023		TLM2	
42	,Gradient Boosting Machines	2	12-10-2023& 16-10-2023		TLM2	
43	XGBoost	2	18-10-2023& 19-10-2023		TLM2	
44	Reinforcement Learning- Q learning	3	21-10-2023& 26-10-2023		TLM2	
45	Revision	1	28-10-2023		TLM3	
46	Revision	1	30-10-2023		TLM3	
47	Revision	1	01-11-2023		TLM3	
	classes required to ete UNIT-V	14		No of classes taken		

Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)					
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)					
TLM3	Tutorial	TLM6	Group Discussion/Project					

PART-C

EVALUATION PROCESS (R20 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I , Unit-III)	A1=5
Assignment-II (Unit-III, Unit-IV, Unit-V)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5

Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
PO 1	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
	Problem analysis : Identify, formulate, review research literature, and analyze complex
PO 2	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
	Design/development of solutions : Design solutions for complex engineering problems
PO 3	and design system components or processes that meet the specified needs with
103	appropriate consideration for the public health and safety, and the cultural, societal, and
	environmental considerations.
	Conduct investigations of complex problems: Use research-based knowledge and
PO 4	research methods including design of experiments, analysis and interpretation of data,
	and synthesis of the information to provide valid conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
PO 5	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations
	The engineer and society : Apply reasoning informed by the contextual knowledge to
PO 6	assess societal, health, safety, legal and cultural issues and the consequent responsibilities
	relevant to the professional engineering practice
	Environment and sustainability : Understand the impact of the professional engineering
PO 7	solutions in societal and environmental contexts, and demonstrate the knowledge of, and
	need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and
100	norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or
109	leader in diverse teams, and in multidisciplinary settings.
	Communication : Communicate effectively on complex engineering activities with the
PO 10	engineering community and with society at large, such as, being able to comprehend
1010	and write effective reports and design documentation, make effective presentations, and
	give and receive clear instructions.
	Project management and finance : Demonstrate knowledge and understanding of the
PO 11	engineering and management principles and apply these to one's own work, as a member
	and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for and have the preparation and ability to engage
FU 12	in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization.
PSO 2	The ability to design and develop computer programs in networking, web applications and IoT as per the society needs.
PSO 3	To inculcate an ability to analyze, design and implement database applications.

Course Instructor	Course Coordinator	Module Coordinator	HOD

AFPLAVAR DUTCH

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' GRADE & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Dr. D VEERAIAH

Course Name & Code : THEORY OF COMPUTATION & 20CS13

PREREQUISITE: Discrete Mathematical Structures

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The objective of the course is to provide a formal connection between algorithmic problem solving and the theory of automata and languages, and develop them into a mathematical view towards algorithmic design and in general computation itself.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Construct finite automata for regular languages and prove it's equivalence (Apply-L3)
CO2	Construct regular expression for regular languages and prove the equivalence of regular expression and Finite Automata (Apply-L3)
CO3	Design Pushdown automata for the context free languages. (Understand-L2)
CO4	Design Turing Machine to model computational problems (Apply-L3)
CO5	Distinguish decidable and undecidable problems with the help of Turing machine
000	(Understand-L2)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	3	2											1		
CO2	3	2											1		
CO3	3	2													
CO4	3	2													
CO5	1	2													
		1 - Low			2	-Medi	ium			3	- High				

TEXTBOOKS:

John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, "Introduction to Automata Theory, Languages, and Computation", Pearson Education Asia, 1997

REFERENCE BOOKS:

R1	Harry R. Lewis and Christos H. Papadimitriou, "Elements of the Theory of Computation", Pearson Education Asia, 2000
R2	Dexter C. Kozen, "Automata and Computability", Springer,2011.
R3	Michael Sipser, "Introduction to the Theory of Computation", PWS Publishing, 2005.
R4	John Martin, Introduction to Languages and The Theory of Computation, Tata McGraw Hill,2 nd Edition,2003

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: FINITE AUTOMATA

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction- Course Objective & Outcomes	1	04-07-2023		TLM1	
2.	Basic Concepts of Finite Automata	1	06-07-2023		TLM1	
3.	Finite automata Classification	1	07-07-2023		TLM1	
4.	DFA Construction	2	08-07-2023 11-07-2023		TLM1	
5.	NFA Construction	1	12-07-2023		TLM1	
6.	Equivalence of NFA & DFA	1	14-07-2023		TLM1	
7.	NFA with epsilon to NFA without epsilon	1	15-07-2023		TLM1	
8.	Minimization of Finite Automata	2	18-07-2023 19-07-2023		TLM1	
9.	Finite Automata with output	1	21-07-2023		TLM1	
10.	Construction of Moore and Melay Machine	2	22-07-2023 25-07-2023		TLM1	
11.	Equivalence of Moore and Melay	2	26-07-2023 28-07-2023		TLM1	
No.	of classes required to complete UN	No. of class	ses taken:			

UNIT-II: Regular Expression and Regular Languages

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
12.	Introduction to Regular Expressions	1	01-08-2023		TLM1	
13.	Construction of RE	1	02-08-2023		TLM1	
14.	RE to Finite Automata	1	04-08-2023		TLM1	
15.	FA to Regular expressions	1	05-08-2023		TLM1	
16.	Regular grammar, Construction	1	08-08-2023		TLM1	
17.	Parse Trees	1	09-08-2023		TLM1	
18.	Equivalence of grammar to Finite Automata	1	11-08-2023		TLM1	
19.	Pumping Lemma for regular languages	1	12-08-2023		TLM1	
20.	Closure Properties for Regular Language	1	16-08-2023		TLM1	
No. of	No. of classes required to complete UNIT-II: 09				sses take	n:

UNIT-III: CONTEXT FREE GRAMMER AND PUSH DOWN AUTOMATA

S.	Tonics to be governed	No. of Classes	Tentative Date of	Actual Date of	Teaching	HOD	
No.	Topics to be covered	Required	Completion	Completion	Learning Methods	Sign Weekly	
21.	Context Free Grammer	1	18-08-2023	-	TLM1	_	
22.	Ambiguity of CFG	1	19-08-2023		TLM1		
23.	Simplification of CFG	1	22-08-2023		TLM1		
24.	CNF	1	23-08-2023		TLM1		
25.	GNF	2	25-08-2023 26-08-2023		TLM1		
26.	PDA Definition	1	05-09-2023		TLM1		
27.	Deterministic PDA and Non Deterministic PDA	1	08-09-2023		TLM1		
28.	Construction of PDA	1	09-09-2023		TLM1		
29.	CFG to PDA	1	12-09-2023		TLM1		
30.	PDA to CFG	1	13-09-2023		TLM1		
31.	Pumping lemma for CFL's	1	15-09-2023		TLM1		
32.	Closure properties of CFL's	1	16-09-2023		TLM1		
	No. of classes required to complete UNIT-III: 13 No. of classes taken:						

UNIT-IV: Turing Machine

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
33.	Introduction, Basic Model of TM	1	20-09-2023		TLM1	
34.	Languages, closure properties	1	22-09-2023		TLM1	
35.	TM Construction	3	23-09-2023 26-09-2023 27-09-2023		TLM1	
36.	Variants of TM	2	29-09-2023 30-09-2023		TLM1	
37.	NDTM equivalence with DTM	2	03-10-2023 04-10-2023		TLM1	
38.	Unrestricted Grammar and its equivalence TM	1	06-10-2023		TLM1	
39.	TM as enumerators	2	07-10-2023 10-10-2023			
No.	No. of classes required to complete UNIT-IV: 12				ses taken	:

UNIT-V: Undecidability

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
40.	Introduction	1	11-10-2023		TLM1	
41.	Church Turing Thesis	1	13-10-2023		TLM1	
42.	Universal Turing Machine	1	14-10-2023		TLM1	
43.	The universal and diagonalization Languages	1	17-10-2023		TLM1	
44.	Reduction between Languages	1	18-10-2023		TLM1	
45.	Rice Theorem	1	21-10-2023		TLM1	
46.	PCP Problem	1	25-10-2023		TLM1	
47.	Undecidable problems about Languages	1	27-10-2023		TLM1	
No. o	No. of classes required to complete UNIT-V: 08				ses takei	1:

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Phases of Compiler	1	28-10-2023		TLM1	

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30
Cumulative Internal Examination (CIE): M	30
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering problems.
DO 0	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering
PO 2	problems reaching substantiated conclusions using first principles of mathematics, natural sciences,
	and engineering sciences.
DO 0	Design/development of solutions : Design solutions for complex engineering problems and design
PO 3	system components or processes that meet the specified needs with appropriate consideration for
	the public health and safety, and the cultural, societal, and environmental considerations.
DO 4	Conduct investigations of complex problems: Use research-based knowledge and research
PO 4	methods including design of experiments, analysis and interpretation of data, and synthesis of the
	information to provide valid conclusions.
DO F	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
PO 5	engineering and IT tools including prediction and modeling to complex engineering activities with
	an understanding of the limitations.
DO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
PO 6	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
	Environment and sustainability: Understand the impact of the professional engineering solutions
PO 7	in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable
FU /	development.
	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms
PO 8	of the engineering practice.
	Individual and team work: Function effectively as an individual, and as a member or leader in
PO 9	diverse teams, and in multidisciplinary settings.
	Communication: Communicate effectively on complex engineering activities with the engineering
PO 10	community and with society at large, such as, being able to comprehend and write effective reports
1010	and design documentation, make effective presentations, and give and receive clear instructions.
	Project management and finance: Demonstrate knowledge and understanding of the engineering
PO 11	and management principles and apply these to one's own work, as a member and leader in a team,
1011	to manage projects and in multidisciplinary environments.
	Life-long learning : Recognize the need for, and have the preparation and ability to engage in
PO 12	independent and life-long learning in the broadest context of technological change
	material and me iong fouring in the orotatest content of technological change
L	

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	To inculcate algorithmic thinking, formulation techniques and visualization, leading to problem solving skills using different programming paradigms.
PSO 2	To inculcate an ability to analyze, design and implement data driven applications into the students
PSO 3	Develop an ability to implement various processes/methodologies/practices employed in design, validation, testing and maintenance of software products.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Dr. D.Veeraiah	Dr. D.Veeraiah	Dr. S.Jayaprada	Dr. D.Veeraiah
Signature				

THEODY COLLEGE OF THE PROPERTY OF THE PROPERTY

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Mr. G.V.Suresh Course Name & Code : PAI & 20CS16

L-T-P Structure :3-0-0 Credits: 3
Program/Sem/Sec :BTECH/V/B A.Y.: 2023-24

PREREQUISITE: Basic Engineering and Mathematics knowledge

COURSE EDUCATIONAL OBJECTIVES (CEOS):

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Understand the fundamentals of Artificial Intelligence types of AI agents and their structures to solve engineering problems. (Understand – L2)					
CO2	Identify different search algorithms to find and ontimise the solution for the given					
CO3	Apply different gaming algorithms and identify the importance of knowledge representations in Artificial Intelligence. (Apply-L3)					
CO4	Make use of predicate logic and rule-based system to represent the knowledge in AI domain. (Understand-L2)					
CO5	Interpret the forms of learning in the AI domain as well as present efficient technologies to remove uncertainty in knowledge domain. (Understand -L2)					

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	3	2	1	-	1	1	-	-	ı	-	-	1	-	2	-
CO2	2	3	1	1	-	-	-	1		-	-	-	-	2	-
CO3	2	3	1	1	ı	ı	ı	-	ı	-	ı	1	-	2	-
CO4	3	2	2	ı	ı	ı	ı	ı	ı	-	ı	ı	-	2	•
CO5	3	2	1	ı	1	ı	ı	ı	ı	-	1	ı	-	2	-
		1	- Low			2	-Medi	ium			3	- High			

TEXTBOOKS:

	Т1	Stuart J. Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach", Pearson
	Education Asia, third edition, 2009.can also second edition, 2003.	
	T2	Elaine Rich, Kevin Knight Artificial Intelligence, TMH, second edition, 2007.

REFERENCE BOOKS:

R1	Nils J.Nilsson "Artificial Intelligence - A New Synthesis", ,Morgan Kaufmann, 1988				
R2	David poole, Alan Mackworth, "Artificial Intelligence: Foundations for computational				
	agents",Cambridge Univ.press,2010.				
R3	Ronald Brachman, "Knowledge representation and Reasoning", Morgan Kaufmann, 2004.				
R4	Frank van Harmelen, Vladimir Lifschitz, Bruce Porter (Eds), "Handbook of Knowledge				
	representation",Elsevier,2008.				
R5	Ivan Bratko," Prolog Programming for Artificial Intelligence",4th Ed., Addition-Wesley,2011.				

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	AI Introduction	1	03-07-23		TLM1	
2.	Applications of AI	1	05-07-23		TLM1	
3.	History of AI	1	06-07-23		TLM1	
4.	Types of AI	1	07-07-23		TLM1	
5.	Agents and Rationality	1	10-07-23		TLM2	
6.	Structure of the Agents	1	12-07-23		TLM2	
7.	Agent environment and nature of the environment	1	13-03-23		TLM2	
8.	Types of agents-Simple reflex agents and model-based agents	1	14-07-23		TLM2	
9.	Types of agents-Goal based agents and Utility-based agents	1	17-07-23		TLM2	
10.	Types of agents-Learning agents	1	19-07-23		TLM2	
11.	Problems, search spaces	1	20-07-23		TLM2	
12.	Defining the problem as state space search	1	21-07-23		TLM2	
13.	Production System	1	24-07-23		TLM2	
14.	Problem Characteristics	1	26-07-23		TLM2	
15.	Issues in the design of search programs.	1	27-07-23		TLM2	
No.	No. of classes required to complete UNIT-I: 15 No. of classes taken:					

UNIT-II:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
16.	Problem solving agents and search algorithm terminologies	1	28-07-23		TLM2	
17.	Properties of search algorithms and types of search algorithms	1	31-07-23		TLM2	
18.	Uninformed search algorithms: Breadth-first Search	1	02-08-23		TLM2	
19.	Depth-first Search and Depth-limited Search	1	03-08-23 04-08-23		TLM2	
20.	Iterative deepening Depth-First Search.	1	05-08-23		TLM2	
21.	Uniform cost search, Bidirectional search.	1	07-08-23		TLM2	
22.	Informed/Heuristic Search algorithms: Greedy Best-First Search algorithm	1	09-08-23		TLM2	
23.	A* Search algorithm	1	10-08-23		TLM2	
24.	Hill climbing algorithm	1	14-08-23		TLM2	
25.	Constraint satisfaction problem	1	16-08-23		TLM2	
26.	Means-Ends Analysis	1	17-08-23		TLM2	
No.	No. of classes required to complete UNIT-II: 11 No. of classes taken:					

UNIT-III:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
27.	Adversarial search/Game playing: Introduction	1	17-08-23		TLM2	
28.	Minmax Algorithm	1	21-08-23		TLM2	
29.	Alpha-Beta Pruning	1	23-08-23		TLM2	
30.	Knowledge representation: Representations and mappings	1	24-08-23		TLM2	
31.	Approaches of Knowledge representation	1	25-08-23		TLM2	
32.	Issues in Knowledge Representation	1	28-08-23		TLM2	
	No. of classes required to complete UNIT-III: 09 No. of classes taken:					

UNIT-IV:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
33.	Knowledge Representation Using predicate logic: Representing simple facts in logic.	1	04-09-23		TLM2		
34.	Representing instance and Isa relationships	2	07-09-23 08-09-23		TLM2		
35.	Computable functions and predicates	1	11-09-23		TLM2		
36.	Resolution	1	13-09-23		TLM2		
37.	Natural deduction	1	14-09-23		TLM2		
38.	Representing knowledge using Rules: Procedural verses declarative knowledge	1	15-09-23		TLM2		
39.	Logic programming	1	20-09-23		TLM2		
40.	Forward verses backward reasoning	1	21-09-23		TLM2		
41.	Matching	1	22-09-23		TLM2		
42.	Control knowledge	1	25-09-23		TLM2		
No.	No. of classes required to complete UNIT-IV: 12 No. of classes taken:						

UNIT-V:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
43.	Uncertain knowledge and Reasoning: Probability and Bayes theorem	1	27-09-23		TLM2	
44.	Certainty factors and rule-based systems	1	30-09-23		TLM2	
45.	Bayesian networks	1	04-10-23		TLM2	
46.	Dempster – Shafer Theory	1	05-10-23		TLM2	
47.	Fuzzy logic	1	07-10-23		TLM2	
48.	Learning: Overview of different forms of learning	1	09-10-23		TLM2	
49.	Learning Decision Trees	1	11-10-23		TLM2	
50.	Neural networks	1	12-10-23		TLM2	
No.	No. of classes required to complete UNIT-V: 12 No. of classes taken:					n:

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30
Cumulative Internal Examination (CIE): M	30
Semester End Examination (SEE)	70
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
PO 1	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
	Problem analysis: Identify, formulate, review research literature, and analyze complex
PO 2	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
	Design/development of solutions : Design solutions for complex engineering problems and
PO 3	design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
	Conduct investigations of complex problems: Use research-based knowledge and research
PO 4	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern
PO 5	engineering and IT tools including prediction and modeling to complex engineering activities
	with an understanding of the limitations.
DO (The engineer and society: Apply reasoning informed by the contextual knowledge to assess
PO 6	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice.
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
107	for sustainable development.
	Tot destamante de l'elophiene
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and teamwork: Function effectively as an individual, and as a member or leader

	in diverse teams, and in multidisciplinary settings.							
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.							
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.							
PO 12	Life-long learning : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.							

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization.							
PSO 2	The ability to design and develop computer programs in networking, web applications							
F30 Z	and IoT as per the society needs.							
PSO 3	To inculcate an ability to analyze, design and implement database applications.							

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	G.V.Suresh	G.V.Suresh	Dr.D V Subbaiah	Dr.D Veeraiah
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(Autonomous)

Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC and NBA (CSE, IT, ECE, EEE & ME) under Tier - I

DEPARTMENT OF MECHANICAL ENGINEERING **COURSE HANDOUT**

Part-A

PROGRAM : B.Tech., V-Sem., CSE., B-SECTION

ACADEMIC YEAR : 2022-23

COURSE NAME & CODE: RENEWABLE ENERGY SOURCES- 20ME81

L-T-P STRUCTURE : 4-0-0

COURSE CREDITS : 3

COURSE INSTRUCTOR: KAMALA PRIYA B COURSE COORDINATOR: K Lakshmi Prasad

PRE-REQUISITES: Nil

COURSE EDUCATIONAL OBJECTIVES (CEOs): To provide the insights on different non-conventional energy sources, potential, salient features and utilization of solar, wind, geothermal, ocean thermal energy, bio energy and direct energy conversion systems.

COURSE OUTCOMES (COs)

After completion of the course, the student will be able to

CO1: Compute the performance of solar energy harnessing devices and its energy scenario. (Applying-L3)

CO2: Apply the principles of energy conversion for wind and geothermal power generating plants. (Applying - L3)

CO3: Compare the power generating capacities of tidal energy, wave energy and ocean thermal energy plants. (Understanding - L2)

CO4: Illustrate the various biomass power generation system technologies.

(Understanding - L2)

CO5: Comprehend the direct energy power generation systems. (Understanding - L2)

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

COs	PO1	PO2	РО3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	-	-	-	3	3	-	-	-	-	2	2	-	-
CO2	2	1	-	-	-	3	3	-	-	-	-	2	2	-	-
соз	1	1	-	-	-	3	3	-	-	-	-	2	2	-	-
CO4	1	1	-	-	-	3	3	-	-	-	-	2	2	-	-
CO5	1	1	-	-	-	3	3	-	-	-	-	2	2	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- **T1** G.D.Rai, Non-Conventional Energy Sources, 5th Edition 2011, Khanna Publishers, New Delhi, India.
- **T2** Kreith, F and Kreider, J. F., Principles of Solar Engineering, McGraw-Hill, 1978.

BOS APPROVED REFERENCE BOOKS:

- **R1** John Twidell&Tony Weir, Renewable Energy Resources 2nd Edition, Taylor & Francis
- **R2** G.N.Tiwari, Solar Energy Fundamentals, Design, Modelling and Applications –Narosa Publication Ltd.,2000.
- **R3** Ashok V Desai, Non-Conventional Energy- Wiley Eastern, 2000.

Part-B
COURSE DELIVERY PLAN (LESSON PLAN): Section-A
UNIT-I: GLOBAL AND NATIONAL ENERGY SCENARIO & SOLAR ENERGY
HARNESSING DEVICES

S.No.	Topics to be	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	Learning Outcome	Text Book	HOD Sign
5.11.01	covered	Required	Completion	Completion	Methods	COs	followed	Weekly
1.	Course Outcomes & Blooms Taxonomy Levels	1	03.07.2023		TLM1/ TLM2	CO1		
2.	Over view of conventional & renewable energy sources	1	05.07.2023		TLM1/ TLM2	CO1	Т1	
3.	Need & Development of renewable energy sources	1	07.07.2023		TLM1/ TLM2	CO1	T1	
4.	Types of renewable energy systems.	1	10.07.2023		TLM1/ TLM2	CO1	Т1	
5.	Energy available from Sun	1	12.07.2023		TLM1/ TLM2	CO1	Т1	
6.	Solar radiation data,	1	14.07.2023		TLM1/ TLM2	CO1		
7.	Flat plate and Concentrating collectors	1	15.07.2023		TLM1/ TLM2	CO1	T1	
8.	Mathematical analysis of Flat plate collectors	1	17.07.2023		TLM1/ TLM2	CO1	Т1	
9.	collector efficiency	1	19.07.2023		TLM1/ TLM2	CO1		
10.	Solar water Heating, Space Heating	1	21.07.2023		TLM1/ TLM2	CO1	T1	
11.	Active and Passive heating	1	22.07.2023		TLM1/ TLM2	CO1		
12.	solar stills and ponds	1	24.07.2023		TLM1/ TLM2	CO1	T1	
13.	basic principle of power generation in photovoltaic cell	1	26.07.2023		TLM1/ TLM2	CO1	Т1	
14.	Problems	1	28.07.2023		TLM1/ TLM2	CO1	Т1	
15.	Quiz/Assignment							
	1 =	ı	l .	1	1	ı	ı	

No. of classes required to complete UNIT-I	No. of classes taken:
--	-----------------------

UNIT-II: WIND ENERGY & GEOTHERMAL ENERGY

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
16.	Wind – characteristics – wind energy conversion systems	1	02.08.2023		TLM1/ TLM2	CO2	Т1	
17.	Types of wind energy	1	04.08.2023		TLM1/ TLM2	CO2		
18.	Betz model & Interference factor	1	05.08.2023		TLM1/ TLM2	CO2	Т1	
19.	Power Coefficient Torque Coefficient and thrust coefficient	1	07.08.2023		TLM1/ TLM2	CO2		
20.	site selection requirements.	1	09.08.2023		TLM1/ TLM2	CO2	Т1	
21.	GEOTHERMAL ENERGY: Structure of Earth, Geothermal sources	1	11.08.2023		TLM1/ TLM2	CO2	Т1	
22.	Hot springs, Hot Rocks& Hot Aquifers	1	14.08.2023		TLM1/ TLM2	CO2	Т1	
23.	Interconnection of geothermal fossil systems	1	16.08.2023		TLM1/ TLM2	CO2	Т1	
24.	Problems	1	18.08.2023		TLM1/ TLM2	CO2	T1	
25.	Quiz/Assignment							
	f classes required mplete UNIT-II	9			No. of cla	asses take	n:	l

UNIT-III: TIDAL ENERGY, WAVE ENERGY and OCEAN THERMAL ENERGY

S.N o.	Topics to be covered	No. of Classe s Requir ed	Tentative Date of Completion	Actual Date of Completion	Teachin g Learnin g Method s	Learnin g Outcom e COs	Text Book followe d	HOD Sign Weekl y
26.	Tidal Energy - Introduction, Origin of Tides	1	19.08.2023		TLM1/ TLM2	CO3	T1, R8	
27.	Tidal Power generation	1	21.08.2023		TLM1/ TLM2	CO3		
28.	Classification of Tidal	1	23.08.2023		TLM1/ TLM2	CO3	Т1	

	Power Plant,							
29.	Site requirements	1	28.08.2023		LM1/ LM2	CO3	Т1	
30.	WAVE ENERGY: Introduction, Wave energy and Power	1	26.08.2023		`LM1/ `LM2	CO3	T1	
31.	Wave Energy devices – Merits and Demerits	1	04.09.2023 08.09.2023		LM1/ LM2	CO3	T1	
32.	OCEAN THERMAL ENERGY: Introduction	1	09.09.2023		LM1/ LM2	CO3	T1	
33.	Working principle of Ocean Thermal Energy Conversion	1	11.09.2023		`LM1/ `LM2	CO3	T1	
34.	OTEC Systems,	1	13.09.2023		LM1/ LM2	CO3	T1	
35.	Advantages and Disadvantages of OTEC plants.	1	15.09.2023		LM1/ LM2	CO3		
36.	Quiz/Assignment					CO3		
	No. of classes required to complete UNIT-III			No	No. of classes taken:			

UNIT-IV: BIO – ENERGY

	CIVIT-IV . DIO - E		ı	_		ı		
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome Cos	Text Book followed	HOD Sign Weekly
37.	BIO – ENERGY: Introduction	1	16.09.2023		TLM1/ TLM2	CO4	Т1	
38.	Biomass Energy Sources	1	20.09.2023		TLM1/ TLM2	CO4	Т1	
39.	Aerobic and Anaerobic bio- conversion processes	1	22.09.2023		TLM1/ TLM2	CO4	Т1	
40.	Types of Biogas plants	3	23.09.2023 25.09.2023 27.09.2023		TLM1/ TLM2	CO4		
41.	Raw Materials and properties of Bio-gas	1	29.09.2023		TLM1/ TLM2	CO4	Т1	
42.	Bio-gas plant Technology and Status	1	30.09.2023		TLM1/ TLM2	CO4	Т1	
43.	Biomass gasification	2	04.10.2023 06.10.2023		TLM1/ TLM2	CO4	Т1	

44.	Types and application of gasifier	1	07.10.2023	TLM1/ TLM2	CO4	Т1	
45.	Quiz/Assignment				CO4		
No. of classes required to complete UNIT-IV		11		No. of c	lasses tak	en:	

UNIT-V: DIRECT ENERGY CONVERSION SYSTEMS

	UNIT-V: DIRECT ENERGY CONVERSION SYSTEMS												
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome Cos	Text Book followed	HOD Sign Weekly					
46.	DIRECT ENERGY CONVERSION SYSTEMS: Introduction	2	09.10.2023 11.10.2023		TLM1/ TLM2	CO5	Т1						
47.	Peltier effect, seebeck effect, Thomson effect,	1	13.10.2023		TLM1/ TLM2	CO5	T1						
48.	Fuel Cells-Types.	2	14.10.2023 16.10.2023		TLM1/ TLM2	CO5	T1						
49.	Efficiency of Fuel Cells.	1	18.10.2023		TLM1/ TLM2	CO5	Т1						
50.	Thermoelectric power Generation	1	20.10.2023		TLM1/ TLM2	CO5	T1						
51.	Thermionic electro power Generation	1	21.10.2023		TLM1/ TLM2	CO5							
52.	MHD Generator	1	25.10.2023		TLM1/ TLM2	CO5	T1						
53.	Open and closed systems	1	27.10.2023		TLM1/ TLM2	CO5	Т1						
54.	applications of direct energy energy conversion systems	1	28.10.2023		TLM1/ TLM2	CO5	T1						
55.	Quiz/Assignment					CO5							
	l f classes required mplete UNIT-V	11			No. of cla	asses take	en:						

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

Academic Calender-A.Y-2023-24

reddenie Calcidei 11:1 2023 2-1					
Description	From	To	Weeks		
B Tech V Semester					
Commencement of class work		03.07.2023			

I phase of Instructions	03.07.2023	26.08.2023	8
I Mid Examination	28.08.2023	02.09.2023	1
II phase of Instructions	04.09.2023	28.10.2023	8
II Mid Examination	30.10.2023	04.11.2023	1
Preparation and Practical	06.11.2023	11.11.2023	1
Semester End Examination	13.11.2023	25.11.2023	2

Part - C

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Assignment 1	1	A1=5
Assignment 2	2	A2=5
I-Mid Examination	1,2,3	B1=15
Quiz – 1	1,2,3	Q1=10
Assignment 3	3	A3=5
Assignment 4	4	A4=5
Assignment 5	5	A5=5
II-Mid Examination	3,4,5	B2=15
Quiz – 2	3,4,5	Q2=10
Evaluation of Assignment: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=5
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=15
Evaluation of Quiz Marks: Q=75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	1,2,3,4,5	Q=10
Cumulative Internal Examination: A+B+Q	1,2,3,4,5	CIE=30
Semester End Examinations	1,2,3,4,5	SEE=70
Total Marks: CIE+SEE	1,2,3,4,5	100

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1: To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

PEO2: To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.

PEO3: To develop inquisitiveness towards good communication and lifelong learning.

PROGRAMME OUTCOMES (POs)

Engineering Graduates will be able to:

- **1. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **2. Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. Design/development of solutions: Design solutions for complex engineering

problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

- **4. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **6. The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **7. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8. Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary

 environments.
- **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PSOs

- **1.** To apply the principles of thermal sciences to design and develop various thermal systems.
- **2.** To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.
- **3.** To apply the basic principles of mechanical engineering design or evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Course Instructor	Course Coordinator	Module Coordinator	HOD
Kamala Priya B	K Lakshmi Prasad	Dr. P. Vijay Kumar	Dr. S. Pichi Reddy

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT COMPUTER SCIENCE AND ENGINEERING

COURSE HANDOUT PART-A

Name of Course Instructor: Mr B SIVARAMAKRISHNA

Course Name & Code : Computer Networks Lab (20CS60)

L-T-P Structure : 0-0-3 Credits: 1.5 Program/Sem/Sec : B.Tech V Sem Sec _B CSE A.Y.: 2022-23

PRE-REQUISITE: Data Structures, and Operating Systems

COURSE EDUCATIONAL OBJECTIVES (**CEOs**): The Objective of the course is to prepare students to write programs to illustrate communication in networks, configure different networks (LAN, WAN) and prepare students to differentiate various protocols and their performance.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Implement Network layer functionalities using NS3 simulator.(Apply-L3)
CO 2	Demonstrate Transport Layer functionalities.(Understand-L2)
CO 3	Analyze Application layer protocols using Wire shark.(Analyze–L4)
CO 4	Improve individual / team work skills, communication & report writing skills with
	ethical values.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	2	2	-	2	-	-	-	-	-	-	1	-	-	3
CO2	-	1	1	1	1	-	-	-	-	-	-	-	-	-	3
CO3	3	-	1	1	1	-	-	-	-	-	-	-	-	-	3
CO4	-	-	ı	i	-	-	i	2	2	2	-	1	-	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'
1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

PART-B

COURSE DELIVERY PLAN (LESSON PLAN): Section-A

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1	To gain familiarity with the basic network commands & utilities available in the Linux OS.	3	05,12.07.23		TLM4	
2	To learn about network layer tools and analyze captures for congestion.	3	19,26.07.23		TLM4	
3	To learn about queue management techniques, and global routing inns3.	3	02.08.23		TLM4	
4	To learn about broadcasting, multicasting, and bridging in a Local Area Network using ns3.	3	09.08.23		TLM4	
5	To learn about Wifi and Mobile Adhoc topologies with ns3.	3	16.08.23		TLM4	
6	To introduce Socket Programming in TCP and UDP.	3	23.08.23/06. 09.23		TLM4	
7	Observations of Transmission Control Protocol(TCP) Connection states, Flags and Flow control.	3	13.09.23		TLM4	
8	To learn Transmission Control Protocol(TCP) Flow Control, ErrorControl, and Congestion.	3	20.09.23		TLM4	
9	To introduce Wire shark & tcp dump, and observation of packets in a LAN network.	3	27.09.23/04. 10.23		TLM4	
10	To analyze HTTP packets using Wire shark tool, and understand the records returned by a DNS server.	3	11,18.10.23		TLM4	
11	Internal Exam	3	23.10.23		TLM4	

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

PROGRAMME OUTCOMES (POs):

INOU	Engineering knowledge : Apply the knowledge of mathematics, science, engineering
PO 1	fundamentals, and an engineering specialization to the solution of complex
101	engineering problems.
	Problem analysis : Identify, formulate, review research literature, and analyze
PO 2	complex engineering problems reaching substantiated conclusions using first
102	principles of mathematics, natural sciences, and engineering sciences.
	Design/development of solutions : Design solutions for complex engineering
	problems and design system components or processes that meet the specified needs
PO 3	with appropriate consideration for the public health and safety, and the cultural,
	societal, and environmental considerations.
	Conduct investigations of complex problems : Use research-based knowledge and
PO 4	research methods including design of experiments, analysis and interpretation of data,
	and synthesis of the information to provide valid conclusions.
	Modern tool usage : Create, select, and apply appropriate techniques, resources, and
PO 5	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations
	The engineer and society : Apply reasoning informed by the contextual knowledge to
PO 6	assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice
	Environment and sustainability : Understand the impact of the professional
PO 7	engineering solutions in societal and environmental contexts, and demonstrate the
	knowledge of, and need for sustainable development.
DO 0	Ethics : Apply ethical principles and commit to professional ethics and responsibilities
PO 8	and norms of the engineering practice.
PO 9	Individual and teamwork : Function effectively as an individual, and as a member or
PU 9	leader in diverse teams, and in multidisciplinary settings.
	Communication : Communicate effectively on complex engineering activities with the
DO 10	engineering community and with society at large, such as, being able to comprehend
PO 10	and write effective reports and design documentation, make effective presentations,
	and give and receive clear instructions.
	Project management and finance: Demonstrate knowledge and understanding of the
PO 11	engineering and management principles and apply these to one's own work, as a
PUII	member and leader in a team, to manage projects and in multidisciplinary
	environments.
	Life-long learning: Recognize the need for and have the preparation and ability to
PO 12	engage in independent and life-long learning in the broadest context of technological
	change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization.
PSO 2	The ability to design and develop computer programs in networking, web applications and IoT as per the society needs.
PSO 3	To inculcate an ability to analyze, design and implement database applications.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department	
Name of the Faculty	B S R Krishna	Dr.K Naga Prasanthi	Dr.D.V. Subbaiah	Dr. D Veeraiah	
Signature					

THEODY COLLEGE OF THE PROPERTY OF THE PROPERTY

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with A & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

COURSE HANDOUT PART-A

Name of Course Instructor: Mrs B.Swathi

Course Name & Code :- Machine learning Lab-20AD53

PREREQUISITE: Knowledge of basic Computer hardware & software.

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The objective of this lab is to make use of Data sets in implementing the machine learning algorithms in any suitable language of choice.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Apply the appropriate pre-processing techniques on data set. (Apply – L3)
CO2	Implement supervised Machine Learning algorithms. (Apply – L3)
CO3	Implement unsupervised Machine Learning algorithms (Apply – L3)
CO4	Improve individual / teamwork skills, communication & report writing skills with ethical values.

COURSE ARTICULATION MATRIX(Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	-	2	-	2	3	-	-	-	-	-	-	-	-	-	-
CO2	-	2	-	2	3	-	-	-	-	-	-	-	-	-	-
СО3	2	2	-	-	3	-	-	-	-	-	-	-	-	2	-
CO4	-	-	-	-	-	-	-	-	-	2	-	-	-	2	-
1 - Low					2 -Medium				3 - High						

COURSE DELIVERY PLAN (LESSON PLAN):

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Basic statistical functions for data exploration	3	10-07-2023		DM5	
2.	Data Visualization: Box plot, scatter plot, histogram	3	17-07-2023		DM5	

3.	Data Pre-processing: Handling missing values, outliers, normalization, Scaling	3	24-07-2023	DM5
4.	Principal Component Analysis (PCA)	3	31-07-2023	DM5
5.	Singular Value Decomposition (SVD)	3	07-08-2023	DM5
6.	Linear Discriminant Analysis (LDA)	3	14-08-2023	DM5
7.	Regression Analysis: Linear regression, Logistic regression, Polynomial regression	3	21-08-2023	DM5
8.	Regularized Regression	3	04-09-2023	DM5
9.	K-Nearest Neighbour (kNN) Classifier	3	11-09-2023	DM5
10.	Support Vector Machines (SVMs)	3	25-09-2023	DM5
11.	Random Forest model	3	9-10-2023	DM5
12.	AdaBoost Classifier and XGBoost	3	16-10-2023	DM5
13.	Internal exam	3	30-10-2023	

Teaching Learning Methods						
DM1	Chalk and Talk	DM4	Assignment/Test/Quiz			
DM2	ICT Tools	DM5	Laboratory/Field Visit			
DM3	Tutorial	DM6	Web-based Learning			

PART-C

EVALUATION PROCESS (R20 Regulations):

Evaluation Task	Marks			
Day-to-day work	A1 = 05			
Record	A2 = 05			
Internal test	A3 = 05			
CIE Total: (A1+A2+A3)	$\mathbf{M1} = 15$			
Procedure/Algorithm	B1 = 5			
Experimentation/Program execution	B2 = 10			
Observations/Calculations/Validation				
Result/Inference	B4 = 5			
Viva voce	B5 = 5			
SEE Total: (B1+B2+B3+B4+B5)	M2 = 35			
Total Marks = CIE + SEE = (M1+M2)	50			

PART-D

PROGRAMME OUTCOMES (POs):

	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
PO 1	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
	Problem analysis: Identify, formulate, review research literature, and analyze complex
PO 2	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
	Design/development of solutions: Design solutions for complex engineering problems
PO 3	and design system components or processes that meet the specified needs with
PU 3	appropriate consideration for the public health and safety, and the cultural, societal, and
	environmental considerations.
	Conduct investigations of complex problems: Use research-based knowledge and
PO 4	research methods including design of experiments, analysis and interpretation of data,
	and synthesis of the information to provide valid conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
PO 5	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations
DO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to
PO 6	assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional
PU /	engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
	Ethics: Apply ethical principles and commit to professional ethics and responsibilities
PO 8	and norms of the engineering practice.
	Individual and team work: Function effectively as an individual, and as a member or
PO 9	leader in diverse teams, and in multidisciplinary settings.
-0.45	Communication: Communicate effectively on complex engineering activities with the
PO 10	engineering community and with society at large, such as, being able to
	Project management and finance: Demonstrate knowledge and understanding of the
PO 11	engineering and management principles and apply these to one's own work, as a
	member and leader in a team, to manage projects and in multidisciplinary environments.
	Life-long learning: Recognize the need for, and have the preparation and ability to
PO 12	engage in independent and life-long learning in the broadest context of technological
	change.

PSO 1	The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization.					
PSO 2	The ability to design and develop computer programs in networking, web applications and					
	IoT as per the society needs.					
PSO 3	To inculcate an ability to analyze, design and implement database applications.					

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Mrs B.Swathi	(Dr. K.DeviPriya)	(Dr.K Naga prasanthi)	(Dr. D. Veeraiah)
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

hodcse@lbrce.ac.in, cseoffice@lbrce.ac.in, Phone: 08659-222 933, Fax: 08659-222931

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE HANDOUT PART-A

Name of Course Instructor: Dr.K DeviPriya

Course Name & Code :Mean Stack Technologies -20CSS3

L-T-P Structure :1-0-3 Credits:2
Program/Sem/Sec : B.Tech. - CSE/V/B A.Y.:2023-24

PREREQUISITE: Full Stack Development

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Develop professional web pages of an application using HTML elements like lists, navigations, tables, various form elements, embedded media which includes images, audio, video and CSS Styles (Apply-L3)
CO2	Build a basic web server using Node.js , Exress.js and also working with Node Package Manager (NPM) (Apply-L3)
CO3	Make use of Typescript to optimize JavaScript code by using the concept of strict type checking. (Apply-L3)
CO4	Improve individual / teamwork skills, communication & report writing skills with ethical values

COURSE ARTICULATION MATRIX(Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	1	-	2	-	2	-	-	-	-	-	-	2	-	3	-
CO2	1	-	2	-	2	-	-	-	-	-	-	2	-	3	-
CO3	1	•	2	-	2	•	•	•	•	-	•	2	•	3	•
CO4	-	•	-	ı	ı	ı	ı	2	2	2	ı	•	ı	ı	1
1 - Low				2	-Medi	ium			3	- High					

Text Books & REFERENCE BOOKS:

T1	Programming the World Wide Web, 7th Edition, Robet W Sebesta, Pearson
T2	Pro Mean Stack Development, 1st Edition, ELadElrom, Apress O'Reilly.
Т3	Budi Kurniawan, "Struts 2 Design and Programming: A Tutorial", BrainySoftware, 2nd Edition, 2008.
R1	Web Technologies, HTML, JavaScript, PHP, Java, JSP, XML and AJAX, Black book, 1st Edition, Dream Tech.
R2	An Introduction to Web Design, Programming, 1st Edition, Paul S Wang, Sanda S Katila, Cengage Learning.

PART-B

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Cycle-1(HTML)	4	4-7-2023		DM5/ DM6	
2.	Cycle -2(HTML)	4	11-7-2023		DM5/ DM6	
3.	Cycle-3(JS)	4	18-7-2023		DM5/ DM6	
4.	Cycle-4(JS)	4	25-7-2023		DM5/ DM6	
5.	Cycle-5(JS)	4	1-8-2023		DM5/ DM6	
6.	Cycle-6(Node.JS)	4	8-8-2023		DM5/ DM6	
7.	Cycle-6(Node.JS)	4	22-8-2023		DM5/DM6	
8.	Cycle- 7(Express.js)	4	5-9-2023		DM5/DM6	
9.	Cycle- 8(Express.js)	4	12-9-2023		DM5/DM6	
10.	Cycle-9 (Typescript)	4	19-9-2023		DM4DM5/ DM6	
11.	Cycle-10 (Typescript)	4	26-9-2023		DM5/DM6	
12.	Cycle-11 (Typescript)	4	3-10-2023		DM5/DM6	
13.	Cycle-12 (Typescript)	4	10-7-2023		DM5/DM6	
14.	Cycle-12 (Typescript)	4	17-10-2023		DM4/DM5/ DM6	
15.	Assessment	4	24-10-2023		DM4/DM5/ DM6	

Teaching Learning Methods						
DM1	Chalk and Talk	DM4	Assignment/Test/Quiz			
DM2	ICT Tools	DM5	Laboratory/Field Visit			
DM3	Tutorial	DM6	Web-based Learning			

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Report	10
Quality of work	10
Presentation	20
Interaction / Queries	10
Total	50

PART-D

PROGRAMME OUTCOMES (POs):

	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
PO 1	fundamentals, and an engineering specialization to the solution of complex engineering
101	problems.
	Problem analysis: Identify, formulate, review research literature, and analyze complex
PO 2	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
	Design/development of solutions: Design solutions for complex engineering problems
PO 3	and design system components or processes that meet the specified needs with
PU 3	appropriate consideration for the public health and safety, and the cultural, societal, and
	environmental considerations.
	Conduct investigations of complex problems: Use research-based knowledge and
PO 4	research methods including design of experiments, analysis and interpretation of data,
	and synthesis of the information to provide valid conclusions.
20 =	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
PO 5	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations
DO C	The engineer and society: Apply reasoning informed by the contextual knowledge to
PO 6	assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice Environment and sustainability: Understand the impact of the professional
PO 7	engineering solutions in societal and environmental contexts, and demonstrate the
107	knowledge of, and need for sustainable development.
	Ethics: Apply ethical principles and commit to professional ethics and responsibilities
PO 8	and norms of the engineering practice.
DO 6	Individual and team work: Function effectively as an individual, and as a member or
PO 9	leader in diverse teams, and in multidisciplinary settings.
DO 10	Communication: Communicate effectively on complex engineering activities with the
PO 10	engineering community and with society at large, such as, being able to
	Project management and finance: Demonstrate knowledge and understanding of the
PO 11	engineering and management principles and apply these to one's own work, as a
	member and leader in a team, to manage projects and in multidisciplinary environments.
	Life-long learning: Recognize the need for, and have the preparation and ability to
PO 12	engage in independent and life-long learning in the broadest context of technological
	change.

The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization.
The ability to design and develop computer programs in networking, web applications and IoT as per the society needs.
To inculcate an ability to analyze, design and implement database applications.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	((Dr. K. Devi Priya)	Dr. Y.V. Bhaskar Reddy	Dr. Y.V. Bhaskar Reddy	(Dr. D. Veeraiah)
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS) Accredited by NAAC with 'A' Grade & (Under Tier - I), ISO 9001:2015 Certified Institution

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

hodcse@lbrce.ac.in, cselbreddy@gmail.com, Phone: 08659-222 933, Fax: 08659-22931 DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE HANDOUT PART-A

Name of Course Instructor: Dr K N Prasanthi

Course Name & Code: ComputerNetworks- 20CS12

L-T-P Structure :3-0-0 Credits: 3
Program/Sem/Sec : B.Tech-CSE/V/C A.Y.: 2023-24

PREREQUISITE: Basic Computer Fundamentals and Concepts

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The Objective of the course is to provide a foundation to understand computer networks using layered architectures. It also helps students to understand the various network models, addressing concept, routing protocols and design aspects of computer networks.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

COUNDE	TOO TOO HES (COS). At the cha of the coarse, stadent will be able to
CO1	Demonstrate the modern network architectures from a design perspective
CO2	Apply various Data Link layer design issues and error detection & correction techniques to solve collisions problems.
CO3	Demonstrate the network Layer functionalities.
CO4	Outline the functions of transport layer protocols
CO5	Examine different application layer protocols.

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

COs	P0 1	P0 2	P0 3	P0 4	P0 5	P0 6	P0 7	P0 8	P0 9	P0 10	P0 11	P0 12	PSO 1	PSO 2	PSO 3
CO1	2	2	2											1	
CO2	1	2	2									1		1	
CO3	1	3	3									1		1	
C04	2	3	3	1								1	1		
CO5	2	2	2									1	1		

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

TEXT BOOKS:

- T1 1 B. A. Frouzan, Data Communication, Tata Mc Graw Hill.
 - 2 S. Tanenbaum —Computer Network: Second Ed. Prentice Hall, India.

REFERENCE BOOKS:

- **R1** William Stallings, "Data and Computer Communication", Pearson Prentice Hall India, 8th Edition.
- **R2** Douglas Comer, Internetworking with TCP/IP, Prentice Hall of India, Volume 1, 6th Edition, 2009.
- R3 Richard Stevens, "TCP/IP Illustrated", Addison-Wesley, Volume 1, 2001.
- R4 http://www.cse.iitk.ac.in/users/dheeraj/cs425/ http://www.tcpipguide.com/free/t OSIReferenceModelLayers.htm

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I:

S.No.	Topics to be covered	No. of Classes Reguired	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1. 1	Introduction to computer	1	3-7-23		TLM2	
2.	Data Communication	1	5-7-23		TLM2	
3.	Representation of data and its flow Networks	1	6-7-23		TLM2	
4.	Various Connection Topology	1	10-7-23		TLM2	
5.	Protocols and Standards	1	12-7-23		TLM2	
6.	OSI model	2	13-7-23 15-7-23		TLM2	
7.	TCP/IPmodel	1	17-7-23		TLM2	
8.	Transmission Media	2	19-7-23 20-7-23		TLM2	

9.	LAN: Wired LAN, Wireless LANs	2	22-7-23 24-7-23		TLM2	
10.	Connecting LAN and Virtual LAN.	1	26-7-23		TLM2	
No. of Classes Required to complete:13				No. of Classes	Taken:	

UNIT-II

S.No.	Topics to be covered	No. of Classes Require d	Tentative Date of Completio n	Actual Date of Completio n	Teachin g Learning Methods	HOD Sign Weekl y
11. 1	Data Link Layer And Medium Access Sublayer	1	27-7-23		TLM2	
12.	Error Detection and Error Correction - Fundamentals	1	31-7-23		TLM2	
13.	Block coding, Hamming Distance, CRC	1	2-8-23		TLM2	
14.	Flow Control and Error control protocols	2	3-8-23 5-8-23		TLM2	
15.	Stop and Wait, Go back — N ARQ	1	7-8-23		TLM2	
16.	Selective Repeat ARQ	1	9-8-23		TLM2	
17.	Sliding Window, Piggybacking	2	10-8-23 11-8-23		TLM2	
18.	Random Access, Multiple access protocols -Pure ALOHA, Slotted ALOHA	1	14-8-23		TLM2	
19.	CSMA/CD,CDMA/C	2	16-8-23 17-8-23		TLM2	
No. o	of Classes Required to	complete:	12	No. of Classe	es Taken:	

UNIT-III:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
20			19-8-23		TLM2	
	Network Layer	1				
21	Switching	1	21-8-23		TLM2	
			23-8-23			
22	Logical addressing — IPV4, IPV6	2	24-8-23		TLM2	
23	Address mapping — ARP	1	26-8-23		TLM2	
24	RARP, BOOTP and DHCP—Delivery	2	4-9-23 7-9-23		TLM2	
25	Forwarding	1	11-9-23		TLM2	
26	Unicast Routing protocols.	3	13-9-23 14-9-23 16-9-23		TLM2	
	No. of Classes Required	to complet	e:11	No. of Classe	s Taken:	

UNIT-IV:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
27. 2	Transport Layer	1	20-9-23		TLM2	
28.	Process to Process Communication	2	21-9-23 23-9-23		TLM2	
29.	User Datagram Protocol (UDP)	1	25-9-23		TLM2	
30.	Transmission Control Protocol (TCP)	2	27-9-23 30-9-23		TLM2	
31.	SCTP Congestion Control	1	4-10-23		TLM2	
32.	Quality of Service	1	5-10-23		TLM2	
33.	QoS improving techniques: Leaky Bucket and Token Bucket algorithm.	2	7-10-23 9-10-23		TLM2	
No. of	Classes Required	to complete	e:10	No. of Classe	s Taken:	

UNIT-V:

_							
		Topics to be	No. of	Tentative	Actual	Teaching	HOD
	S.No.		Classes	Date of	Date of	Learning	Sign
		covered	Required	Completion	Completion	Methods	Weekly

34.	3	Application Layer	1	11-10-23		TLM2	
35.		Domain Name Space (DNS), DDNS	2	12-10-23 16-10-23		TLM2	
36.		TELNET, EMAIL	2	18-10-23 19-10-23		TLM2	
37.		File Transfer Protocol (FTP)	1	21-10-23		TLM2	
38.		WWW, HTTP	1	25-10-23		TLM2	
39.		SNMP, Bluetooth, Firewalls	1	26-10-23		TLM2	
40.		Revision	1	28-10-23			
No.	of	Classes Required	No. of Classe	s Taken:			

Teaching	Teaching Learning Methods									
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)							
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)							
TLM3	Tutorial	TLM6	Group Discussion/Project							

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30
Cumulative Internal Examination (CIE): M	<mark>30</mark>
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first

	principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
P0 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
P0 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
P0 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the enginee ring and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PSO 1	To inculcate algorithmic thinking, formulation techniques and visualization, leading to problem solving skills using different programming paradigms.
PSO 2	To inculcate an ability to Analyse, Design and implement data driven applications into the students.
PSO 3	Develop an ability to implement various processes / methodologies /practices emple in design, validation, testing and maintenance of software products

itle	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Dr. K Naga Prasanthi	Dr. K Naga Prasanthi	Dr D.V. Subbaiah	Dr. D Veeraiah
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I)
An ISO 21001:2018, 14001:2015, 50001:2018 Certified Institution
Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada
L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

hodcse@Lbrce.ac.in, cseoffice@Lbrce.ac.in, Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor : Mr. Shaik Johny Basha

Course Name & Code : Machine Learning (20AD04)

L-T-P Structure : 3-0-0 Credits : 3

Program/Sem/Sec : B.Tech. – CSE / V Sem / C A.Y.: 2023 – 24

PRE-REQUISITE: Probability and Statistics, Data Warehousing and Data Mining

COURSE EDUCATIONAL OBJECTIVE (CEO): The objective of the course provides the basic concepts and techniques of Machine Learning and helps to use recent machine learning software for solving practical problems. It enables students to gain experience by doing independent study and research.

COURSE OUTCOMES (COs): At the end of the course, the student will be able to:

CO1:	Identify the characteristics of machine learning.	Understand – Level 2	
CO2 :	Understand the Model building and evaluation approaches.	Understand – Level 2	
CO3:	Apply regression algorithms for real-world Problems	Apply – Level 3	
CO4:	Handle classification problems via supervised learning algorithms.	Apply – Level 3	
CO5 :	Learn advanced learning techniques to deal with complex data.	Apply – Level 3	

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	3	2	-	2	-	•	•	•	•	-	•	2	-	2	-
CO2	3	2	-	2	-	•	•	•	•	-	•	2	-	2	-
CO3	3	2	-	-	-	•	•	•	•	-	•	2	-	2	-
CO4	3	-	-	3	-	ı	ı	ı	ı	-	ı	2	-	2	-
CO5	3	1	-	3	-	ı	ı	ı	ı	-	ı	2	-	2	-
1 - Low					2 - Medium			•	3 – High			•			

TEXTBOOKS:

- **T1:** Subramanian Chandramouli, Saikat Dutt, Amit Kumar Das, "Machine Learning", Pearson Education India, 1st Edition, 2015.
- T2: Tom M. Mitchell, "Machine Learning", MGH, 1997.

REFERENCE BOOKS:

- **R1:** Shai Shalev-Shwartz, ShaiBen David, "Understanding Machine Learning: From Theory to Algorithms", Cambridge
- **R2:** Peter Harington, "Machine Learning in Action", Cengage, 1st edition, 2012.
- **R3:** Peter Flach, "Machine Learning: The art and science of algorithms that make sense of data", Cambridge university Press, 2012.
- **R4:** Jason Brownlee, "Machine Learning Mastery with Python Understand Your Data, Create Accurate Models and Work Projects End-To-End", Edition: v1.4, 2011.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT - I: Introduction to Machine Learning and Preparing to Model

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
1.	Introduction to Machine Learning - Introduction	1	04/07/23					
2.	Types of Machine Learning	1	06/07/23					
3.	Applications of Machine Learning	1	10/07/23					
4.	Issues in Machine Learning	1	11/07/23					
5.	Preparing to Model - Introduction	1	13/07/23					
6.	Machine Learning Activities	1	15/07/23					
7.	Basic Types of Data in Machine Learning	1	17/07/23					
8.	Exploring Structure of Data	2	18/07/23 20/07/23					
9.	Data Quality and Remediation	1	22/07/23					
10.	Data Pre-Processing	1	24/07/23					
No.	of classes required to complete	No. of classes required to complete UNIT – I: 11						

UNIT - II: Modelling & Evaluation, Basics of Feature Engineering

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
11.	Modelling & Evaluation - Introduction	1	25/07/23			
12.	Selecting a Model	1	27/07/23			
13.	Training a Model (for Supervised Learning)	1	31/07/23			
14.	Model Representation and Interpretability	1	01/08/23			
15.	Evaluating Performance of a Model	1	03/08/23			
16.	Basics of Feature Engineering - Introduction	1	05/08/23			
17.	Feature Transformation – Feature Construction, Feature Extraction	1	07/08/23			
18.	Principal Component Analysis (PCA)	1	08/08/23			
19.	Singular Value Decomposition (SVD)	1	10/08/23			
20.	Linear Discriminant Analysis (LDA)	1	12/08/23			
21.	Feature Subset Selection	1	14/08/23			
No.	of classes required to complete	UNIT - II:	11	No. of clas	ses taker	1:

UNIT - III: Regression

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
22.	Introduction to regression analysis	1	17/08/23			
23.	Simple linear regression	1	19/08/23			
24.	Multiple linear regression	1	21/08/23			
25.	Assumptions in Regression Analysis	1	22/08/23			
26.	Main Problems in Regression Analysis	1	24/08/23			
27.	Improving Accuracy of the linear regression model	1	26/08/23			

No.	of classes required to complete	: 10	No. of clas	sses takei	n:	
31.	Regularized Linear Regression and Regularized Logistic Regression	1	09/09/23			
30.	Regularization	1	07/09/23			
29.	Logistic Regression	1	05/09/23			
28.	Polynomial Regression Model	1	04/09/23			

UNIT - IV: Supervised Learning: Classification

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
32.	Classification – Introduction	1	11/09/23			
33.	Example of Supervised Learning	1	12/09/23			
34.	Classification Model	2	14/09/23 16/09/23			
35.	Classification Learning Steps	2	18/09/23 21/09/23			
36.	Common Classification Algorithms - k-Nearest Neighbour (kNN),	2	23/09/23 25/09/23			
37.	Support vector Machines (SVM)	1	26/09/23			
38.	Random Forest model	2	30/09/23 03/10/23			
No.	of classes required to complete	No. of clas	ses taker	1:		

UNIT - V: Other Types of Learning

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
39.	Ensemble Learning – Bagging	1	05/10/23			
40.	Boosting	1	07/10/23			
41.	Stacking and its impact on bias and variance	2	09/10/23 10/10/23			
42.	AdaBoost	1	12/10/23			
43.	Gradient Boosting Machines	1	14/10/23			
44.	XGBoost	1	16/10/23			
45.	Reinforcement Learning – Introduction	1	17/10/23			
46.	Q Learning	2	19/10/23 21/10/23			
No.	of classes required to complete	No. of clas	ses taker	1:		

Content Beyond the Syllabus:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
47.	Applications of Regularization		26/10/23			
48.	Image processing applications		28/10/23			

	Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)						
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)						
TLM3	Tutorial	TLM6	Group Discussion/Project						

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment – I (Units-I, II & UNIT-III (Half of the Syllabus))	A1 = 5
I – Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1 = 15
I – Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1 = 10
Assignment – II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2 = 5
II – Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2 = 15
II – Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2 = 10
Mid Marks = 80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30
Cumulative Internal Examination (CIE): M	<mark>30</mark>
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

P01	Engineering knowledge : Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
	Problem analysis : Identify, formulate, review research literature, and analyze complex
P02	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
	Design/development of solutions : Design solutions for complex engineering problems
P03	and design system components or processes that meet the specified needs with
P03	appropriate consideration for the public health and safety, and the cultural, societal, and
	environmental considerations.
	Conduct investigations of complex problems: Use research-based knowledge and
P04	research methods including design of experiments, analysis and interpretation of data,
	and synthesis of the information to provide valid conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
P05	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations
	The engineer and society : Apply reasoning informed by the contextual knowledge to
P06	assess societal, health, safety, legal and cultural issues, and the consequent responsibilities
	relevant to the professional engineering practice
	Environment and sustainability : Understand the impact of the professional engineering
P07	solutions in societal and environmental contexts, and demonstrate the knowledge of, and
	need for sustainable development.
200	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and
P08	norms of the engineering practice.
200	Individual and teamwork: Function effectively as an individual, and as a member or
P09	leader in diverse teams, and in multidisciplinary settings.
	Communication : Communicate effectively on complex engineering activities with the
2010	engineering community and with society at large, such as, being able to comprehend and
P010	write effective reports and design documentation, make effective presentations, and give
	and receive clear instructions.
	Project management and finance: Demonstrate knowledge and understanding of the
P011	engineering and management principles and apply these to one's own work, as a member
1011	and leader in a team, to manage projects and in multidisciplinary environments.
	Life-long learning : Recognize the need for and have the preparation and ability to engage
P012	in independent and life-long learning in the broadest context of technological change.
	in macpendent and me-tong teating in the broadest context of technological change.

PSO1	The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization.							
PSO2	The ability to design and develop computer programs in networking, web applications and IoT as per the society needs.							
PSO3	To inculcate an ability to analyze, design and implement database applications.							

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department	
Name of the Faculty	Mr. Shaik Johny Basha	Dr. K. Devi Priya	Dr. K. Naga Prasanthi	Dr. D. Veeraiah	
Signature					

AFPLAVA RIMANS

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' GRADE & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Dr. D. VEERAIAH

Course Name & Code: THEORY OF COMPUTATION & 20CS13

L-T-P Structure : 3-0-0 Credits: 3
Program/Sem/Sec : B.Tech/V/C A.Y.: 2023-24

PREREQUISITE: Discrete Mathematical Structures

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The objective of the course is to provide a formal connection between algorithmic problem solving and the theory of automata and languages, and develop them into a mathematical view towards algorithmic design and in general computation itself.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Construct finite automata for regular languages and prove it's equivalence (Apply-L3)
CO2	Construct regular expression for regular languages and prove the equivalence of regular expression and Finite Automata (Apply-L3)
CO3	Design Pushdown automata for the context free languages. (Understand-L2)
CO4	Design Turing Machine to model computational problems (Apply-L3)
CO5	Distinguish decidable and undecidable problems with the help of Turing machine
COS	(Understand-L2)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	PO12	PSO1	PSO2	PSO3
CO1	3	2											1		
CO2	3	2											1		
CO3	3	2													
CO4	3	2													
CO5	1	2													
1 - Low					2	-Medi	um			3	- High				

TEXTBOOKS:

T1 John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, "Introduction to Automata Theory, Languages, and Computation", Pearson Education Asia, 1997

REFERENCE BOOKS:

R1	Harry R. Lewis and Christos H. Papadimitriou, "Elements of the Theory of Computation", Pearson Education Asia, 2000
R2	Dexter C. Kozen, "Automata and Computability", Springer,2011.
R3	Michael Sipser, "Introduction to the Theory of Computation", PWS Publishing,2005.
R4	John Martin, Introduction to Languages and The Theory of Computation, Tata McGraw Hill,2 nd Edition,2003

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: FINITE AUTOMATA

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
1.	Introduction- Course Objective & Outcomes	1	04-07-2023		TLM1			
2.	Basic Concepts of Finite Automata	1	06-07-2023		TLM1			
3.	Finite automata Classification	1	07-07-2023		TLM1			
4.	DFA Construction	2	08-07-2023 11-07-2023		TLM1			
5.	NFA Construction	1	13-07-2023		TLM1			
6.	Equivalence of NFA & DFA	1	14-07-2023		TLM1			
7.	NFA with epsilon to NFA without epsilon	1	15-07-2023		TLM1			
8.	Minimization of Finite Automata	2	18-07-2023 20-07-2023		TLM1			
9.	Finite Automata with output	1	21-07-2023		TLM1			
10.	Construction of Moore and Melay Machine	2	22-07-2023 25-07-2023		TLM1			
11.	Equivalence of Moore and Melay	2	27-07-2023 28-07-2023		TLM1			
No.	No. of classes required to complete UNIT-I: 15 No. of classes taken:							

UNIT-II: Regular Expression and Regular Languages

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
12.	Introduction to Regular Expressions	1	01-08-2023		TLM1	
13.	Construction of RE	1	03-08-2023		TLM1	
14.	RE to Finite Automata	1	04-08-2023		TLM1	
15.	FA to Regular expressions	1	05-08-2023		TLM1	
16.	Regular grammar, Construction	1	08-08-2023		TLM1	
17.	Parse Trees	1	10-08-2023		TLM1	
18.	Equivalence of grammar to Finite Automata	1	11-08-2023		TLM1	
19.	Pumping Lemma for regular languages	1	12-08-2023		TLM1	
20.	Closure Properties for Regular Language	1	16-08-2023		TLM1	
No. of	classes required to complete UN		No. of class	sses take	n:	

UNIT-III: CONTEXT FREE GRAMMER AND PUSH DOWN AUTOMATA

S.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign			
No.	- op-	Required	Completion	Completion	Methods	Weekly			
21.	Context Free Grammer	1	17-08-2023		TLM1				
22.	Ambiguity of CFG	1	18-08-2023		TLM1				
23.	Simplification of CFG	1	19-08-2023		TLM1				
24.	CNF	1	22-08-2023		TLM1				
25.	GNF	2	24-08-2023 25-08-2023		TLM1				
26.	PDA Definition	1	26-08-2023		TLM1				
27.	Deterministic PDA and Non Deterministic PDA	1	05-09-2023		TLM1				
28.	Construction of PDA	1	07-09-2023		TLM1				
29.	CFG to PDA	1	08-09-2023		TLM1				
30.	PDA to CFG	1	09-09-2023		TLM1				
31.	Pumping lemma for CFL's	1	12-09-2023		TLM1	_			
32.	Closure properties of CFL's	1	14-09-2023		TLM1				
	No. of classes required to complete UNIT-III: 13 No. of classes taken:								

UNIT-IV: Turing Machine

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
33.	Introduction, Basic Model of TM	1	15-09-2023		TLM1	
34.	Languages, closure properties	1	16-09-2023		TLM1	
35.	TM Construction	3	21-09-2023 22-09-2023 23-09-2023		TLM1	
36.	Variants of TM	2	26-09-2023 29-09-2023		TLM1	
37.	NDTM equivalence with DTM	2	30-09-2023 03-10-2023		TLM1	
38.	Unrestricted Grammar and its equivalence TM	1	05-10-2023		TLM1	
39.	TM as enumerators	2	06-10-2023 07-10-2023			
No.	of classes required to complete U	No. of clas	ses taken	:		

UNIT-V: Undecidability

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
40.	Introduction	1	10-10-2023		TLM1	
41.	Church Turing Thesis	1	12-10-2023		TLM1	
42.	Universal Turing Machine	1	13-10-2023		TLM1	
43.	The universal and diagonalization Languages	1	14-10-2023		TLM1	
44.	Reduction between Languages	1	17-10-2023		TLM1	
45.	Rice Theorem	1	19-10-2023		TLM1	
46.	PCP Problem	1	20-10-2023		TLM1	
47.	Undecidable problems about Languages	*			TLM1	
No. o	f classes required to complete	No. of clas	ses takei	1:		

Contents beyond the Syllabus

S.No.	Topics to be covered	<u>-</u>		Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Phases of Compiler	1	28-10-2023		TLM1	

Teaching	Teaching Learning Methods										
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)								
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)								
TLM3	Tutorial	TLM6	Group Discussion/Project								

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30
Cumulative Internal Examination (CIE): M	<mark>30</mark>
Semester End Examination (SEE)	70
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering									
	fundamentals, and an engineering specialization to the solution of complex engineering problems.									
DO 0	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering									
PO 2	problems reaching substantiated conclusions using first principles of mathematics, natural sciences,									
	and engineering sciences.									
DO 0	Design/development of solutions : Design solutions for complex engineering problems and design									
PO 3	system components or processes that meet the specified needs with appropriate consideration for									
	the public health and safety, and the cultural, societal, and environmental considerations.									
DO 4	Conduct investigations of complex problems: Use research-based knowledge and research									
PO 4	methods including design of experiments, analysis and interpretation of data, and synthesis of the									
	information to provide valid conclusions.									
DO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern									
PO 5	engineering and IT tools including prediction and modeling to complex engineering activities with									
	an understanding of the limitations.									
DO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess									
PO 6	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the									
	professional engineering practice.									
DO 5	Environment and sustainability: Understand the impact of the professional engineering solutions									
PO 7	in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable									
	development.									
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms									
	of the engineering practice.									
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in									
	diverse teams, and in multidisciplinary settings.									
DO 40	Communication : Communicate effectively on complex engineering activities with the engineering									
PO 10	community and with society at large, such as, being able to comprehend and write effective reports									
	and design documentation, make effective presentations, and give and receive clear instructions.									
DO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering									
PO 11	and management principles and apply these to one's own work, as a member and leader in a team,									
	to manage projects and in multidisciplinary environments.									
DO 46	Life-long learning : Recognize the need for, and have the preparation and ability to engage in									
PO 12	independent and life-long learning in the broadest context of technological change									

PSO 1	To inculcate algorithmic thinking, formulation techniques and visualization, leading to problem solving skills using different programming paradigms.
PSO 2	To inculcate an ability to analyze, design and implement data driven applications into the students
PSO 3	Develop an ability to implement various processes/methodologies/practices employed in design, validation, testing and maintenance of software products.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Dr. D.Veeraiah	Dr. D.Veeraiah	Dr. S.Jayaprada	Dr. D.Veeraiah
Signature				

DE LIO TOURNE

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

hodcse@lbrce.ac.in, cseoffice@lbrce.ac.in, Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Ms. Ch Nagamani Course Name & Code : PAI & 20CS16

L-T-P Structure :3-0-0 Credits: 3
Program/Sem/Sec :BTECH/V/C A.Y.: 2023-24

PREREQUISITE: Basic Engineering and Mathematics knowledge

COURSE EDUCATIONAL OBJECTIVES (CEOs):

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Understand the fundamentals of Artificial Intelligence types of AI agents and their structures to solve engineering problems. (Understand – L2)
CO2	Identify different search algorithms to find and optimise the solution for the given problem. (Understand-L2)
соз	Apply different gaming algorithms and identify the importance of knowledge representations in Artificial Intelligence. (Apply-L3)
CO4	Make use of predicate logic and rule-based system to represent the knowledge in AI domain. (Understand-L2)
CO5	Interpret the forms of learning in the AI domain as well as present efficient technologies to remove uncertainty in knowledge domain. (Understand -L2)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	PO10	P011	P012	PSO1	PSO2	PSO3
CO1	3	2	1	-	-	-	-	-	-	-	-	1	-	2	-
CO2	2	3	1	1	-	-	-	-	-	-	-	-	-	2	-
CO3	2	3	1	1	ı	-	ı	-	ı	-	ı	1	1	2	1
CO4	3	2	2	-	1	ı	ı	ı	ı	-	1	ı	ı	2	1
CO5	3	2	1	-	-	-	-	-	1	-	-	-	ı	2	•
	1 - Low				2	-Medi	ium			3	- High				

TEXTBOOKS:

Т1	Stuart J. Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach", Pearson
11	Education Asia, third edition, 2009.can also second edition, 2003.
T2	Elaine Rich, Kevin Knight Artificial Intelligence, TMH, second edition, 2007.

REFERENCE BOOKS:

R1	Nils J.Nilsson "Artificial Intelligence - A New Synthesis", ,Morgan Kaufmann, 1988						
R2	David poole, Alan Mackworth, "Artificial Intelligence: Foundations for computational						
	agents",Cambridge Univ.press,2010.						
R3	Ronald Brachman, "Knowledge representation and Reasoning", Morgan Kaufmann, 2004.						
R4	Frank van Harmelen, Vladimir Lifschitz, Bruce Porter (Eds), "Handbook of Knowledge						
	representation",Elsevier,2008.						
R5	Ivan Bratko," Prolog Programming for Artificial Intelligence",4th Ed., Addition-Wesley,2011.						

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	AI Introduction	1	05-7-2023		TLM1	
2.	Applications of AI	1	07-7-2023		TLM1	
3.	History of AI	1	10-7-2023		TLM1	
4.	Types of AI	1	12-7-2023		TLM1	
5.	Agents and rationality	1	14-7-2023		TLM2	
6.	Structure of the agents	1	15-7-2023		TLM2	
7.	Agent environment and nature of the environment	1	17-7-2023		TLM2	
8.	Types of agents-Simple reflex agents and model-based agents	1	19-7-2023		TLM2	
9.	Types of agents-Goal based agents and Utility-based agents	1	21-7-2023		TLM2	
10.	Types of agents-Learning agents	1	22-7-2023		TLM2	
11.	Problems, search spaces	1	24-7-2023		TLM2	
12.	Defining the problem as state space search	1	26-7-2023		TLM2	
13.	Production system	1	28-7-2023		TLM2	
14.	Problem characteristics	1	02-8-2023		TLM2	
15.	Issues in the design of search programs.	1	04-8-2023		TLM2	
No.	No. of classes required to complete UNIT-I: 15 No. of classes taken:					

UNIT-II:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
16.	Problem solving agents and search algorithm terminologies	1	05-8-2023		TLM2	
17.	Properties of search algorithms and types of search algorithms	1	07-8-2023		TLM2	
18.	Uninformed search algorithms: Breadth-first Search	1	09-8-2023		TLM2	
19.	Depth-first Search and Depth-limited Search	1	11-8-2023		TLM2	
20.	Iterative deepening depth-first search.	1	12-8-2023		TLM2	
21.	Uniform cost search, Bidirectional search.	1	14-8-2023		TLM2	
22.	Informed/Heuristic Search algorithms: Greedy best-first search algorithm	1	16-8-2023		TLM2	
23.	A* Search algorithm	1	18-8-2023		TLM2	
24.	Hill climbing algorithm	1	19-8-2023		TLM2	
25.	Constraint satisfaction problem	1	21-8-2023		TLM2	
26.	Means-Ends Analysis	1	23-8-2023		TLM2	
No.	No. of classes required to complete UNIT-II: 11 No. of classes taken:					

UNIT-III:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
27.	Adversarial search/Game playing: Introduction	1	25-8-2023		TLM2	
28.	Minmax Algorithm	1	26-8-2023		TLM2	
29.	Alpha-Beta Pruning	1	04-9-2023		TLM2	
30.	Knowledge representation: Representations and mappings	2	08-9-2023 09-9-2023		TLM2	
31.	Approaches of Knowledge representation	2	11-9-2023 13-9-2023		TLM2	
32.	Issues in Knowledge Representation	2	15-9-2023 16-9-2023		TLM2	
	No. of classes required to complete UNIT-III: 09 No. of classes taken:					1:

UNIT-IV:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
33.	Knowledge Representation Using predicate logic: Representing simple facts in logic.	1	20-9-2023	-	TLM2	·
34.	Representing instance and Isa relationships	2	22-9-2023 23-9-2023		TLM2	
35.	Computable functions and predicates	1	25-9-2023		TLM2	
36.	Resolution	1	27-9-2023		TLM2	
37.	Natural deduction	1	29-9-2023		TLM2	
38.	Representing knowledge using Rules: Procedural verses declarative knowledge	1	30-9-2023		TLM2	
39.	Logic programming	1	4-10-2023		TLM2	
40.	Forward verses backward reasoning	1	6-10-2023		TLM2	
41.	Matching	1	7-10-2023		TLM2	
42.	Control knowledge	1	9-10-2023		TLM2	
No.	No. of classes required to complete UNIT-IV: 11 No. of classes taken:					1:

UNIT-V:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
43.	Uncertain knowledge and Reasoning: Probability and Bayes theorem	2	11-10-2023 13-10-2023		TLM2	
44.	Certainty factors and rule-based systems	1	14-10-2023		TLM2	
45.	Bayesian networks	1	16-10-2023		TLM2	
46.	Dempster – Shafer Theory	2	18-10-2023 20-10-2023		TLM2	
47.	Fuzzy logic	1	21-10-2023		TLM2	
48.	Learning: Overview of different forms of learning	1	25-10-2023		TLM2	
49.	Learning Decision Trees	1	27-10-2023		TLM2	
50.	Neural networks	1	28-10-2023		TLM2	
No. o	f classes required to complete	e UNIT-V:	10	No. of clas	sses takei	1:

Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4 Demonstration (Lab/Field V						
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)					
TLM3	Tutorial	TLM6	Group Discussion/Project					

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	M=30
Cumulative Internal Examination (CIE): M	<mark>30</mark>
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO 9	Individual and teamwork: Function effectively as an individual, and as a member or leader
109	in diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PSO 1	The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization.			
PSO 2	The ability to design and develop computer programs in networking, web applications and IoT as per the society needs.			
PSO 3 To inculcate an ability to analyze, design and implement database application				

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Ms. Ch Nagamani	Mr G.V.Suresh	Dr.D.V Subbaiah	Dr.D Veeraiah
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(Autonomous)

Approved by AICTE, New Delhi and Permanently Affiliated to JNTUK, Kakinada Accredited by NAAC and NBA (CSE, IT, ECE, EEE & ME) under Tier - I

DEPARTMENT OF MECHANICAL ENGINEERING COURSE HANDOUT

Part-A

PROGRAM: B.Tech., VI-Sem., CSE., C-SECTION

ACADEMIC YEAR : 2023-24

COURSE NAME & CODE: RENEWABLE ENERGY SOURCES- 20ME81

L-T-P STRUCTURE : 4-0-0

COURSE CREDITS : 3

COURSE INSTRUCTOR: MALLIKARJUNA RAO DANDU

COURSE COORDINATOR: Dr V Dhana Raju

PRE-REQUISITES: Nil

COURSE EDUCATIONAL OBJECTIVES (CEOs): To provide the insights on different non-conventional energy sources, potential, salient features and utilization of solar, wind, geothermal, ocean thermal energy, bio energy and direct energy conversion systems.

COURSE OUTCOMES (COs)

After completion of the course, the student will be able to

CO1: Compute the performance of solar energy harnessing devices and its energy scenario. (Applying-L3)

CO2: Apply the principles of energy conversion for wind and geothermal power generating plants. (Applying - L3)

CO3: Compare the power generating capacities of tidal energy, wave energy and ocean thermal energy plants. (**Understanding - L2**)

CO4: Illustrate the various biomass power generation system technologies.

(Understanding - L2)

CO5: Comprehend the direct energy power generation systems. **(Understanding - L2)**

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

COs	PO1	PO2	РО3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	-	-	-	3	3	-	-	-	-	2	2	-	-
CO2	2	1	-	-	-	3	3	-	-	-	-	2	2	-	-
соз	1	1	-	-	-	3	3	-	-	-	-	2	2	-	-
CO4	1	1	-	-	-	3	3	-	-	-	-	2	2	-	-
CO5	1	1	-	-	-	3	3	-	-	-	-	2	2	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), **2 -** Moderate (Medium), **3 -** Substantial (High).

BOS APPROVED TEXT BOOKS:

- **T1** G.D.Rai, Non-Conventional Energy Sources, 5th Edition 2011, Khanna Publishers, New Delhi, India.
- **T2** Kreith, F and Kreider, J. F., Principles of Solar Engineering, McGraw-Hill, 1978.

BOS APPROVED REFERENCE BOOKS:

- **R1** John Twidell&Tony Weir, Renewable Energy Resources 2nd Edition, Taylor & Francis
- **R2** G.N.Tiwari, Solar Energy Fundamentals, Design, Modelling and Applications –Narosa Publication Ltd.,2000.
- **R3** Ashok V Desai, Non-Conventional Energy- Wiley Eastern, 2000.

Part-B

COURSE DELIVERY PLAN (LESSON PLAN): Section-A

UNIT-I : GLOBAL AND NATIONAL ENERGY SCENARIO & SOLAR ENERGY HARNESSING DEVICES

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
1.	Course Outcomes & Blooms Taxonomy Levels	1	11-07-2023		TLM1/ TLM2	CO1	Т1	
2.	Over view of conventional & renewable energy sources	1	12-07-2023		TLM1/ TLM2	CO1	Т1	
3.	Need & Development of renewable energy sources	1	13-07-2023		TLM1/ TLM2	CO1	Т1	
4.	Types of renewable energy systems.	1	15-07-2023		TLM1/ TLM2	CO1	T1	
5.	Energy available from Sun	1	18-07-2023		TLM1/ TLM2	CO1	T1	
6.	Solar radiation data,	1	19-07-2023		TLM1/ TLM2	CO1	T1	
7.	Flat plate and Concentrating collectors	1	20-07-2023		TLM1/ TLM2	CO1	Т1	
8.	Mathematical analysis of Flat plate collectors	1	22-07-2023		TLM1/ TLM2	CO1	Т1	
9.	collector efficiency	1	25-07-2023		TLM1/ TLM2	CO1	T1	
10.	Solar water Heating, Space Heating	1	26-07-2023		TLM1/ TLM2	CO1	Т1	
11.	Active and Passive heating	1	27-07-2023		TLM1/ TLM2	CO1	T1	
12.	solar stills and ponds	1	01-08-2023		TLM1/ TLM2	CO1	T1	
13.	basic principle of power generation in photovoltaic cell	1	02-08-2023		TLM1/ TLM2	CO1	T1	
14.	Problems	1	03-08-2023		TLM1/ TLM2	CO1	T1	
15.	Quiz/Assignment	1	05-08-2023					
	f classes required nplete UNIT-I	14			N	lo. of class	ses taken:	

UNIT-II: WIND ENERGY & GEOTHERMAL ENERGY

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
16.	Wind – characteristics – wind energy conversion systems	1	07-08-2023		TLM1/ TLM2	CO2	Т1	

17.	Types of wind energy	1	08-08-2023	TLM1/ TLM2	CO2	Т1	
18.	Betz model & Interference factor	1	09-08-2023	TLM1/ TLM2	CO2	T1	
19.	Power Coefficient Torque Coefficient and thrust coefficient	1	09-08-2023				
20.	site selection requirements.	1	10-08-2023	TLM1/ TLM2	CO2	Т1	
21.	GEOTHERMAL ENERGY: Structure of Earth, Geothermal sources	1	10-08-2023	TLM1/ TLM2	CO2	Т1	
22.	Hot springs, Hot Rocks& Hot Aquifers	1	16-08-2023	TLM1/ TLM2	CO2	T1	
23.	Interconnection of geothermal fossil systems	1	17-08-2023	TLM1/ TLM2	CO2	Т1	
24.	Problems	1	19-08-2023	TLM1/ TLM2	CO1	Т1	
25.	Quiz/Assignment		22-08-2023				
	No. of classes required to complete UNIT-II		9	N	lo. of class	ses taken:	:

UNIT-III: TIDAL ENERGY, WAVE ENERGY and OCEAN THERMAL ENERGY

S.N o.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text	HOD Sign Weekly
26.	Tidal Energy -Introduction, Origin of Tides	1	23-08-2023		TLM1/ TLM2	CO3	T1, R8	
27.	Tidal Power generation	1	24-08-2023		TLM1/ TLM2	CO3	T1, R8	
28.	Classification of Tidal Power Plant,	1	24-08-2023		TLM1/ TLM2	CO3	T1	
29.	Site requirements	1	26-08-2023		TLM1/ TLM2	CO3	T1	
30.	WAVE ENERGY : Introduction, Wave energy and Power	1	05-09-2023		TLM1/ TLM2	CO3	Т1	
31.	Wave Energy devices – Merits and Demerits	1	07-09-2023		TLM1/ TLM2	CO3	Т1	
32.	OCEAN THERMAL ENERGY: Introduction	1	12-09-2023		TLM1/ TLM2	CO3	T1	
33.	Working principle of Ocean Thermal Energy Conversion	1	12-09-2023		TLM1/ TLM2	CO3	T1	
34.	OTEC Systems,	1	13-09-2023		TLM1/ TLM2	CO3	T1	
35.	Advantages and Disadvantages of OTEC plants.	1	13-09-2023		TLM1/ TLM2	CO3	T1	
36.	Quiz/Assignment		14-09-2023			CO3		
	f classes required to blete UNIT-III	10			No. of cla	asses take	n:	

UNIT-IV: BIO – ENERGY

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
37.	BIO – ENERGY: Introduction	1	16-09-2023	-	TLM1/ TLM2	CO4	T1	
38.	Biomass Energy Sources	1	19-09-2023		TLM1/ TLM2	CO4	T1	
39.	Aerobic and Anaerobic bioconversion processes	1	20-09-2023		TLM1/ TLM2	CO4	Т1	
40.	Types of Biogas plants	3	21-09-2023 23-09-2023 26-09-2023		TLM1/ TLM2	CO4	Т1	
41.	Raw Materials and properties of Bio-gas	1	27-09-2023		TLM1/ TLM2	CO4	Т1	
42.	Bio-gas plant Technology and Status	1	30-09-2023		TLM1/ TLM2	CO4	Т1	
43.	Biomass gasification	2	05-10-2023		TLM1/ TLM2	CO4	T1	
44.	Types and application of gasifier	1	07-10-2023		TLM1/ TLM2	CO4	Т1	
45.	Quiz/Assignment		03-10-2023			CO4		
	f classes required mplete UNIT-IV		11		No. of classes taken:			

UNIT-V: DIRECT ENERGY CONVERSION SYSTEMS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	Text Book followed	HOD Sign Weekly
46.	DIRECT ENERGY CONVERSION SYSTEMS: Introduction	2	04-10-2023		TLM1/ TLM2	CO5	Т1	
47.	Peltier effect, seebeck effect, Thomson effect,	1	05-10-2023		TLM1/ TLM2	CO5	Т1	
48.	Fuel Cells-Types.	2	07-10-2023		TLM1/ TLM2	CO5	T1	
49.	Efficiency of Fuel Cells.	1	10-10-2023		TLM1/ TLM2	CO5	T1	
50.	Thermoelectric power Generation	1	11-10-2023		TLM1/ TLM2	CO5	T1	
51.	Thermionic electro power Generation	1	12-10-2023					
52.	MHD Generator	1	14-10-2023		TLM1/ TLM2	CO5	T1	
53.	Open and closed systems	1	17-10-2023		TLM1/ TLM2	CO5	T1	
54.	applications of direct energy energy conversion systems	1	18-10-2023		TLM1/ TLM2	CO5	Т1	
55.	Quiz/Assignment		19-10-2023			CO5		
	f classes required nplete UNIT-V			No. of cla	asses take	n:		

Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)					
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)					
тьмз	Tutorial	TLM6	Group Discussion/Project					

Academic Calender-A.Y-2023-24

Description	From	To	Weeks						
B Tech V Semester									
Commencement of class work	03.07.2023								
I phase of Instructions	03.07.2023	26.08.2023	8						
I Mid Examination	28.08.2023	02.09.2023	1						
II phase of Instructions	04.09.2023	28.10.2023	8						
II Mid Examination	30.10.2023	04.11.2023	1						
Preparation and Practical	06.11.2023	11.11.2023	1						
Semester End Examination	13.11.2023	25.11.2023	2						

Part - C

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Assignment 1	1	A1=5
Assignment 2	2	A2=5
I-Mid Examination	1,2,3	B1=15
Quiz – 1	1,2,3	Q1=10
Assignment 3	3	A3=5
Assignment 4	4	A4=5
Assignment 5	5	A5=5
II-Mid Examination	3,4,5	B2=15
Quiz – 2	3,4,5	Q2=10
Evaluation of Assignment: A=(A1+A2+A3+A4+A5)/5	1,2,3,4,5	A=5
Evaluation of Mid Marks: B=75% of Max(B1,B2)+25% of Min(B1,B2)	1,2,3,4,5	B=15
Evaluation of Quiz Marks: Q=75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	1,2,3,4,5	Q=10
Cumulative Internal Examination: A+B+Q	1,2,3,4,5	CIE=30
Semester End Examinations	1,2,3,4,5	SEE=70
Total Marks: CIE+SEE	1,2,3,4,5	100

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1: To build a professional career and pursue higher studies with sound knowledge in Mathematics, Science and Mechanical Engineering.

PEO2: To inculcate strong ethical values and leadership qualities for graduates to become successful in multidisciplinary activities.

PEO3: To develop inquisitiveness towards good communication and lifelong learning.

PROGRAMME OUTCOMES (POs)

Engineering Graduates will be able to:

- **1. Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **2. Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first

principles of mathematics, natural sciences, and engineering sciences.

- **3. Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **4. Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **5. Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **6. The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **7. Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **8. Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **9. Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **10. Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **11. Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **12. Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PSOs

- 1. To apply the principles of thermal sciences to design and develop various thermal systems.
- 2. To apply the principles of manufacturing technology, scientific management towards improvement of quality and optimization of engineering systems in the design, analysis and manufacturability of products.
- **3.** To apply the basic principles of mechanical engineering design or evaluation of performance of various systems relating to transmission of motion and power, conservation of energy and other process equipment.

Course Instructor	Course Coordinator	Module Coordinator	HOD
MALLIKARJUNA RAO DANDU	Dr V Dhana Raju	Dr. P. Vijay Kumar	Dr. S. Pichi Reddy

SELECTION COLLEGE ON THE PROPERTY OF THE PROPE

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

hodcse@lbrce.ac.in, cselbreddy@gmail.com, Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor : Dr K Naga Prasanthi

Course Name & Code : COMPUTER NETWORKS LAB&20CS60

L-T-P Structure : 0-0-3 Credits : 1.5 Program/Sem/Sec : B.Tech., CSE., V-Sem., Section-C A.Y: 2023-24

PRE-REQUISITES: Data Structures and Operating Systems

COURSE EDUCATIONAL OBJECTIVES (**CEOs**): The main objective of this course is to prepare students to write programs to illustrate communication in networks, configure different networks(LAN, WAN) and prepare students to differentiate various protocols and their performance.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Implement Network layer functionalities using NS3 simulator
CO 2	Demonstrate Transport Layer functionalities
CO 3	Analyze Application layer protocols using Wireshark
CO 4	Improve individual / teamwork skills, communication & report writing skills with ethical
	values.

COURSE ARTICULATION MATRIX(Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	3	3	-	-	-	-	-	-	-	1		-	-
CO2	1	2	3	3	-	-	-	-	-	-	-	1	-	-	-
CO3	1	2	3	3	-	-	-	-	-	-	-	1	-	-	-
CO4	-	-	•	-	1	-	-	1	3	2	-		1	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'
1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

PART-B

COURSE DELIVERY PLAN (LESSON PLAN): Section - A

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	HOD Sign
1.	Introduction	3	4-7-23		
2.	Basic network commands & utilities	3	11-7-23		
3.	Network layer tools and analyze captures for congestion	3	18-7-23		
4.	Network layer tools and analyze captures for congestion	3	25-7-23		
5.	Queue management techniques and global routing in NS3	3	1-8-23		
6.	Broadcasting, multicasting and bridging in LAN using ns3	3	8-8-23		
7.	Learn about Wifi and mobile Adhoc topologies with NS3	3	22-8-23		
8.	Socket programming in TCP and UDP	3	5-9-23		
9.	Observation of TCP Connection states, Flags and Flow control	3	12-9-23		
10.	TCP Flow control, Error control and Congestion	3	19-9-23		
11.	Wireshark & tcpdump, observation of packets in a LAN	3	26-9-23		
12.	Analyze HTTP packets using Wireshark tool and understand records returned by DNS Server.	3	3-10-23		
13.	Practise	3	10-10-23		
14.	Practise	3	17-10-23		
15.	Lab Internal Exam		24-10-23		

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of the
	information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
D O (with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
DO 5	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for
PO 8	sustainable development.
PU	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and teamwork: Function effectively as an individual, and as a member or leader in
109	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
1010	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PSO 1	To inculcate algorithmic thinking, formulation techniques and visualization, leading
	to problem solving skills using different programming paradigms.
PSO 2	To inculcate an ability to Analyse, Design and implement data driven applications
	into the students.
PSO 3	Develop an ability to implement various processes / methodologies /practices empl
	in design, validation, testing and maintenance of software products

Title Course Instructor		Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Dr.K. Naga Prasanthi	Dr.K. Naga Prasanthi	Dr. D. Venkata Subbaiah	Dr. D. Veeraiah
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I)
An ISO 21001:2018, 14001:2015, 50001:2018 Certified Institution
Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada
L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

hodcse@Lbrce.ac.in, cseoffice@Lbrce.ac.in, Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor : Mr. Shaik Johny Basha / Dr. P. Bhagath / Mr. N. Srikanth

Course Name & Code : Machine Learning Lab (20AD54)

L-T-P Structure : 0-0-3 Credits : 1.5

Program/Sem/Sec : B.Tech. – CSE / V Sem / C A.Y.: 2023 – 24

PRE-REQUISITE: Probability and Statistics, Programming Knowledge

COURSE EDUCATIONAL OBJECTIVE (CEO): The objective of this lab is to Make use of Data sets in implementing the machine learning algorithms in any suitable language of choice.

COURSE OUTCOMES (COs): At the end of the course, the student will be able to:

CO1:	Apply the appropriate pre-processing techniques on data set	Apply – Level 3
CO2:	Implement supervised Machine Learning algorithms	Apply – Level 3
CO3:	Implement advanced Machine Learning algorithms	Apply – Level 3
CO4:	Improve individual / teamwork skills, communication & report writing skills with ethical values.	

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	-	2	-	2	3	•	-	-	-	-	-	2	-	-	-
CO2	-	2	-	2	3		-	-	-		-	2	-	2	-
CO3	2	2	-	-	3	•	1	1	1	ı	ı	2	-	2	-
CO4	-	ı	ı	-		ı	1	1	ı	2	ı	ı	1	ı	-
1 – Low						2 - Medium						3 – High			

COURSE DELIVERY PLAN (LESSON PLAN):

G		No. of C	lasses	Data of	Dolizzowy
S. No.	Programs to be covered	Required as per the Schedule	Taken	Date of Completion	Delivery Method
1.	Basic statistical functions for data exploration	3			DM5
2.	Data Visualization: Box plot, scatter plot, histogram	3			DM5
3.	Data Pre-processing: Handling missing values, outliers, normalization, Scaling	3			DM5
4.	Principal Component Analysis (PCA)	3			DM5
5.	Singular Value Decomposition (SVD)	3			DM5
6.	Linear Discriminant Analysis (LDA)	3			DM5
7.	Regression Analysis: Linear regression, Logistic regression, Polynomial regression	6			DM5
8.	Regularized Regression	3			DM5
9.	K-Nearest Neighbour (kNN) Classifier	3			DM5
10.	Support Vector Machines (SVMs)	3			DM5
11.	Random Forest model	3			DM5
12.	AdaBoost Classifier and XGBoost	3			DM5
13.	Internal Lab Exam	3			DM4

	Delivery Methods								
DM1	Chalk and Talk	DM4	Assignment/Test/Quiz						
DM2	ICT Tools	DM5	Laboratory/Field Visit						
DM3	Tutorial	DM6	Web-based Learning						

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Mr. Shaik Johny Basha	Dr. K. Devi Priya	Dr. K. Naga Prasanthi	Dr. D. Veeraiah
Signature				

PART-C

PROGRAMME OUTCOMES (POs):

P01	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.							
PO2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.							
P03	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.							
P04	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.							
P05	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations							
P06	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues, and the consequent responsibilities relevant to the professional engineering practice							
P07	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.							
P08	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.							
P09	Individual and teamwork : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.							
PO10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.							
P011	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.							
P012	Life-long learning : Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.							

PSO1	The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization.					
PSO2	The ability to design and develop computer programs in networking, web applications and IoT as per the society needs.					
PSO3	To inculcate an ability to analyze, design and implement database applications.					

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Mr. Shaik Johny Basha	Dr. K. Devi Priya	Dr. K. Naga Prasanthi	Dr. D. Veeraiah
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, NTR DIST., A.P.-521 230.

hodcse@lbrce.ac.in, cseoffice@lbrce.ac.in, Phone: 08659-222 933, Fax: 08659-222931

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Mr. S. Govindu

Course Name & Code: Mean Stack Technologies

(Backend Development) & 20CSS3

L-T-P Structure : 1-0-3 Credits: 2
Program/Sem/Sec : B.Tech. - CSE/V/C A.Y.: 2023-24

PREREQUISITE: Full Stack Development

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Develop professional web pages of an application using HTML elements like lists, navigations, tables, various form elements, embedded media which includes images, audio, video and CSS Styles (Apply-L3)
CO2	Build a basic web server using Node.js , Exress.js and also working with Node Package Manager (NPM) (Apply-L3)
CO3	Make use of Typescript to optimize JavaScript code by using the concept of strict type checking. (Apply-L3)
CO4	Improve individual / teamwork skills, communication & report writing skills with ethical values

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	-	-	2	-	2	-	-	-	-	-	-	-	-	1	3
CO2	-	-	2	-	2	-	-	-	-	-	-	-	-	3	-
CO3	-	•	2	-	2	-	-	-	•	•	•	•	•	3	-
CO4	-	•	-	-	1	-	-	2	2	2	•	•	ı		-
1 - Low					2 -	-Medi	um			3	- High				

Text Books & REFERENCE BOOKS:

T1	Programming the World Wide Web, 7th Edition, Robet W Sebesta, Pearson
T2	Pro Mean Stack Development, 1st Edition, ELadElrom, Apress O'Reilly.
Т3	Budi Kurniawan, "Struts 2 Design and Programming: A Tutorial", BrainySoftware, 2nd Edition, 2008.
R1	Web Technologies, HTML, JavaScript, PHP, Java, JSP, XML and AJAX, Black book, 1st Edition, Dream Tech.
R2	An Introduction to Web Design, Programming, 1st Edition, Paul S Wang, Sanda S Katila, Cengage Learning.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Cycle-1, Cycle -2(HTML)	3	14-07-2023		DM5	
2.	Cycle-3(JS)	3	21-07-2023		DM5	
3.	Cycle-4,5(JS)	3	28-07-2023		DM5	
4.	Cycle-6(Node.JS)	3	04-08-2023		DM5	
5.	Cycle-6(Node.JS)	3	11-08-2023		DM5	
6.	Cycle-6(Node.JS)	3	18-08-2023		DM5	
7.	Cycle-6(Node.JS)	6	25-08-2023 08-09-2023		DM5	
8.	Cycle-7(Express.JS)	3	15-09-2023		DM5	
9.	Cycle-8(Expres.JS)	3	22-09-2023		DM5	
10.	Cycle-8(Expres.JS)	3	29-09-2023		DM5	
11.	Cycle-8(Expres.JS)	3	06-10-2023			
12.	Cycle-8(Expres.JS)	3	13-10-2023		DM5	
13.	Cycle-9(Type Script)	3	20-10-2023			
14.	Cycle-9(Type Script)	3	27-10-2023		DM5	

Teaching Learning Methods								
DM1	Chalk and Talk	DM4	Assignment/Test/Quiz					
DM2	ICT Tools	DM5	Laboratory/Field Visit					
DM3	Tutorial	DM6	Web-based Learning					

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Report	10
Quality of work	10
Presentation	20
Interaction / Queries	10
Total	50

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering								
PUI	fundamentals, and an engineering specialization to the solution of complex engineering problems.								
	Problem analysis: Identify, formulate, review research literature, and analyze complex								
PO 2	engineering problems reaching substantiated conclusions using first principles of								
	mathematics, natural sciences, and engineering sciences. Design/development of solutions: Design solutions for complex engineering problems								
	and design system components or processes that meet the specified needs with								
PO 3	appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.								
	Conduct investigations of complex problems: Use research-based knowledge and								
PO 4	research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.								
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and								
PO 5	modern engineering and IT tools including prediction and modelling to complex								
	engineering activities with an understanding of the limitations								
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent								
100	responsibilities relevant to the professional engineering practice								
	Environment and sustainability: Understand the impact of the professional								
PO 7	engineering solutions in societal and environmental contexts, and demonstrate the								
	knowledge of, and need for sustainable development.								
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.								
	Individual and team work: Function effectively as an individual, and as a member or								
PO 9	leader in diverse teams, and in multidisciplinary settings.								
PO 10	Communication: Communicate effectively on complex engineering activities with the								
PO 10	engineering community and with society at large, such as, being able to								
	Project management and finance: Demonstrate knowledge and understanding of the								
PO 11	engineering and management principles and apply these to one's own work, as a								
	member and leader in a team, to manage projects and in multidisciplinary environments.								
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological								
1012	change.								
	· · · ·								

PSO 1	The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization.							
PSO 2	The ability to design and develop computer programs in networking, web applications and							
1 30 2	IoT as per the society needs.							
PSO 3	To inculcate an ability to analyze, design and implement database applications.							

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department	
Name of the Faculty	(Mr. S. Govindu)	(Dr. K. Devi Priya)	(Dr. K. Naga Prasanthi)	(Dr. D. Veeraiah)	
Signature					