LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE HANDOUT PART-A

Name of Course Instructor : K.RANI RUDRAMA

Course Name & Code : MICROWAVE ENGINEERING-17EC27

L-T-P Structure : 2-2-0 Credits: 3

Program/Sem/Sec : B.Tech., ECE., VII-Sem., Section- A A.Y : 2020-21

PRE-REQUISITE: Electromagnetics, waveguides

Course Educational Objective: This course provides the knowledge on microwave communications in terms of various bands, advantages, applications. The course will give an idea about microwave active and passive devices. The course also gives the complete information regarding microwave bench setup and microwave measurements

Course Outcomes (COs):

At the end of the course, students will be able to

CO1 Understand the operation and use of Microwave solid state devices

CO2 Analyze the characteristics of Microwave tubes.

CO3 Apply the properties of S-parameters to waveguide components.

CO4 Evaluate the various microwave parameters using microwave bench setup

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	-	-	-	-	-	-	-	-	1	2	-	-
CO2	2	3	-	-	-	-	-	-	-	-	-	1	3	-	-
CO3	3	3	1	1	ı	-	ı	1	1	-	-	2	3	ı	-
CO4	2	3	1	-	-	-	-	-	-	-	-	2	3	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

T1 Samuel Y. Liao, "Microwave Devices and Circuits", PHI Publishers, 3rdEdition, 2003.

T2 David M.Pozar, "Microwave Engineering", John Wiley Publishers, 4thEdition.

REFERENCES:

- 1. G. S. N. Raju," Microwave Engineering", IK International Publishers, New Delhi
- 2. Robert E. Collin "Foundations for microwave engineering" Tata McGraw Hill,2nd edition
- 3. M. Kulakarni, "Microwave and Radar Engineering", Umesh Publications, New Delhi 5 thEdition,
- 4. Peter A. Rizzi, "Microwave Engineering Passive Circuits", Prentice-Hall Publishers.
- 5. G. Sasibhushana Rao, "Microwave and Radar Engineering", Pearson Education India.

Part-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Microwave Tubes

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to microwave Engineering, Course Outcomes	1	17.08.2020		TLM2	
2.	Introduction, Microwave Spectrum and Bands	1	18.08.2020		TLM2	
3.	Advantages and Applications of Microwaves.	1	19.08.2020		TLM2	
4.	Limitations and Losses of conventional tubes at microwave frequencies	1	24.08.2020		TLM2	
5.	Microwave tubes-O type and M type classifications	1	25.08.2019		TLM2	
6.	Two Cavity Klystron – Structure, Velocity Modulation Process	1	26.08.2020		TLM2	
7.	Applegate Diagram, Bunching Process	1	31.08.2020		TLM2	
8.	Expressions for o/p Power and Efficiency	1	01.09.2020		TLM2	
9.	Reflex Klystron-Structure, Applegate Diagram and Principle of working	1	02.09.2020		TLM2	
10.	Mathematical Theory of Bunching, Power Output, Efficiency, o/p Characteristics	1	07.09.2020		TLM2	
11.	TUTORIAL-1	1	08.09.2020		TLM2	
No. of	classes required to complete UNIT-I:	11	No. of classes	taken:		

UNIT-II: Helix TWT

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
12.	Helix TWT Significance, Types and Characteristics of Slow Wave Structures	1	09.09.2020		TLM2	
13.	Structure of TWT and Amplification Process	1	14.09.2020		TLM2	
14.	Axial Electric Field ,Convection Current	1	15.09.2020		TLM2	
15.	Propagation Constants, Gain Considerations	1	16.09.2020		TLM2	
16.	M-type tubes : Introduction, Cross-field effects, Different Types of Magnetrons	1	21.09.2020		TLM2	
17.	8-Cavity Cylindrical Travelling Wave Magnetron	1	22.09.2020		TLM2	
18.	Hull Cut-off and Hartee Conditions	1	23.09.2020		TLM2	
19.	Modes of Resonance and PI-Mode Operation	1	24.09.2020		TLM2	
20.	o/p characteristics, Frequency Pulling and pushing, Strapping	1	28.09.2020		TLM2	
21.	TUTORIAL-2	1	29.09.2020		TLM2	
No. of	classes required to complete UNIT-II :	10	No. of classes	taken:		

UNIT-III: Microwave Solid State Devices

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
22	Introduction, Classification, Applications	1	30.09.2020		TLM2	
23	Transferred Electron Devices: Introduction, Gunn Diode –Principle	1	01.10.2020		TLM2	
24	Two Valley Model Theory, Characteristics	1	05.10.2020		TLM2	
25	RWH Theory Characteristics, Modes of Operation	1	06.10.2020		TLM2	
26	Avalanche Transit Time Devices: Introduction	1	07.10.2020		TLM2	
27	IMPATT Diodes Principle of Operation	1	08.10.2020		TLM2	
28	Characteristics, related expressions	1	12.10.2020		TLM2	
29	TRAPATT Diodes Principle of Operation	1	13.10.2020		TLM2	
30	Characteristics related expressions		14.10.2020		TLM2	
31	TUTORIAL-3	1	15.10.2020		TLM2	
No. of	classes required to complete UNIT-III :	10	No. of classes	taken:		

UNIT-IV : Waveguide Components-I

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
32	Waveguide Multiport Junctions	1	19.10.2020		TLM2	
33	Working principle of E plane Tee and H plane Tee,	1	20.10.2020		TLM2	
34	Working principle of Magic Tee	1	21.10.2020		TLM2	
35	Working principle of Hybrid Ring 2 Hole-Directional Couplers	1	22.10.2020		TLM2	
36	Working principle of Bethe Hole Directional Couplers	1	26.10.2020		TLM2	
37	Scattering Matrix- S-parameters Formulation	1	27.10.2020		TLM2	
38	Properties of S Matrix	1	28.10.2020		TLM2	
39	S Matrix Calculations for E plane Tee and H plane Tee	1	29.10.2020		TLM2	
40	S -Matrix Calculations for Magic Tee, Directional Coupler	1	02.11.2020		TLM2	
41	TUTORIAL-4	1	03.11.2020		TLM2	
No. of	classes required to complete UNIT-IV	10	No. of classes t	taken:		

UNIT-V: Waveguide Components-II

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Waveguide Discontinuities, Waveguide irises	1	04.11.2020		TLM2	
2.	TuningScrewsandPosts Matched Loads	1	05.11.2020		TLM2	
3.	Waveguide Attenuators , Resistive Card, Rotary Vane types	1	09.11.2020		TLM2	
4.	Waveguide Phase Shifters :Dielectric, Rotary Vane types	1	10.11.2020		TLM2	
5.	Ferrites–Composition and Characteristics, Faraday Rotation	1	11.11.2020		TLM2	
6.	Ferrite Components :Gyrator, Isolator, Circulator	1	12.11.2020		TLM2	
7.	Description of Microwave Bench Different Blocks and their Features ,Precautions	1	16.11.2020		TLM2	
8.	Measurement of Attenuation, Frequency VSWR.	1	17.11.2020		TLM2	
9.	Measurement of Cavity Q, Impedance, Power	1	18.11.2020		TLM2	
No. of	classes required to complete UNIT-V	9	No. of classes ta	aken		<u></u>

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
10.	RADAR, RF Microstrip Passive Devices	1	19.11.2020			

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5

II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and
	an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering
	problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and
	engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design
	system components or processes that meet the specified needs with appropriate consideration for the
	public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research methods
	including design of experiments, analysis and interpretation of data, and synthesis of the information to
	provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering
	and IT tools including prediction and modelling to complex engineering activities with an understanding
	of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal,
	health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional
	engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in
	societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable
	development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the
	engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse
	teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering
	community and with society at large, such as, being able to comprehend and write effective reports
	and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and
	management principles and apply these to one's own work, as a member and leader in a team, to manage
	projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the inter
	disciplinary skills to meet current and future needs of industry.
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or systems
	and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues related to
	real time applications

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF Electronics & Communication Engineering COURSE HANDOUT

PART-A

Name of Course Instructor : Dr.A.Narendra Babu

Course Name & Code : COMMUNICATION NETWORKS & 17EC92

L-T-P Structure : 3-0-0 Credits : 3 Program/Sem/Sec : B.Tech., ECE., VII-Sem., Section- A A.Y : 2019-20

PRE-REQUISITE: Telecommunication Switching Systems and Networks

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course provides knowledge on

Communication Networks and various protocols used in different layers

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Understand the layered architecture of OSI and TCP/IP Reference models.
CO 2	Analyze the Protocols of OSI and TCP/IP Reference models
CO 3	Evaluate routing algorithms, congestion control Algorithms, IP addressing used in Network layer.
CO 4	Apply the knowledge of protocols in networking applications.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

	COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1	1	2	-	-	-	-	-	-	-	-	-	1	1	-	-
	CO2	2	3	1	1	1	-	-	-	-	-	-	1	3	-	-
	CO3	3	3	2	1	1	1	-	ı	ı	-	ı	1	3	-	-
Ī	CO4	2	3	2	1	1	-	-	-	-	-	-	1	3	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS

- 1. Tanenbaum and Wetherall, "Computer Networks", Pearson Education, Fifth Edition.
- 2. Behrouz. A. Forouzan, "Data Communication and Networking", Fourth Edition, Tata McGraw-hill, New Delhi, 2006

REFERENCES

- 1. S.Keshav," An Engineering Approach to Computer Networks", Pearson Education, 2nd Edition,
- 2. W.A.Shay,"Understanding communications and Networks", Cengage Learning, 3rd Edition
- **3.** Chwan-Hwa (John) Wu, J. David Irwin," Introduction to Computer Networks and Cyber Security", CRC Press.
- **4.** L.L.Peterson and B.S.Davie," Computer Networks", ELSE VIER, 4th edition.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction & Physical Layer

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	CO discussion and overview of Syllabus	1	20-08-20			•
2.	Introduction to Communication Networks	1	21-08-20			
3.	Network Hardware , Network software	1	27-08-20			
4.	Network models LAN, WAN, MAN, Network software-protocols, layer issues	1	28-08-20			
5.	connection oriented and connection less services, Reference models-OSI	1	29-08-20			
6.	TCP/IP, Comparison between OSI and TCP/IP	1	03-09-20			
7.	Critics of OSI and TCP/IP model	1	04-09-20			
8.	Physical Layer- Guided Transmission Medium	1	05-09-20			
9.	Wireless Transmission Media, EM Spectrum, Radio, Light, Infrared and Microwave Transmission	1	10-09-20			
10.	Digital Modulation and Multiplexing, Bassband and Passband, FDM, TDM and Code Division Multiplexing	1	11-09-20			
No. o	f classes required to complete UN	IT-I:10		No. of class	sses taken:	_

UNIT-II: Data Link Layer

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction of DLL, Design Issues	1	12-09-20			
2.	Services provided to Network Layer Farming Methods, Error control and Flow Control	1	17-09-20			
3.	Error Detection and Correction, , Hamming codes, CRC, Checksum	1	18-09-20			
4.	Stop & wait , Sliding window, one bit, go-back -n, Selective repeat protocols, Medium Access control sub layer	1	19-09-20			
5.	channel allocation problem, Multiple Access protocols- ALOHA, CSMA protocols, CSMA with collision detection, Collision free protocols	1	23-09-20			
6.	Ethernet	1	24-09-20			
7.	Wireless Lans-Infrastructure, Protocol stack, MAC frame, 802.11 services	1	25-09-20			
8.	Bluetooth-Architecture, Protocol stack, Frame structure	1	26-09-20			
No. o	f classes required to complete UN	IT-II:8				

UNIT-III: Network Layer

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Network Layer Design Issues- store and forward, datagrams and virtual circuits	1	07-10-20			
2.	Routing algorithms- Optimality Principle, Shortest Path	1	08-10-20			
3.	Flooding, Distance vector routing,	1	09-10-20			
4.	Link state routing, Hierarchical routing	1	10-10-20			
5.	Board cast routing & Multicast Routing	1	14-10-20			
6.	Congestion control in data subnets, warning bits	1	15-10-20			
7.	Load shedding, choke packets, Jitter control, RED	1	16-10-20			
No. o	f classes required to complete UN	IT-III:07		No. of class	ses taken:	

UNIT-IV: Transport Layer

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Internetworking	1	17-10-20			
2.	Tunneling, Packet Fragmentation	1	21-10-20			
3.	IPV4	1	22-10-20			
4.	IPV6, comparision between IPV4 and IPV6	1	23-10-20			
5.	Internet control protocols, OSPF BGP	1	28-10-20			
6.	Transport layer services to the upward Layers	1	29-10-20			
7.	Addressing Address connection establishment	1	31-10-20			
8.	Connection release, Crash Recvoery	1	04-11-20			
No. o	f classes required to complete UNI	IT-IV:8		No. of clas	ses taken:	

UNIT-V: The Internet Transport Protocols & Application Layer

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Internet transport protocols: UDP- RPC, Real Time Transport Protocols	1	05-11-20	_		
2.	Internet transport protocols: TCP-I, TCP service model	1	06-11-20			
3.	TCP Segment Header	1	07-11-20			
4.	Domain Name system	1	11-11-20			
5.	Email Architecture and services	1	12-11-20			
6.	SMTP, WWW and its architecture	1	13-11-20			
No. of	classes required to complete UN	T-V:6		No. of clas	ses taken:	

S.No. Topics to	be covered No. of	Tentative	Actual	Teaching	HOD
-----------------	-------------------	-----------	--------	----------	-----

		Classes Required	Date of Completion	Date of Completion	Learning Methods	Sign Weekly		
1.								
2.								
No. of classe	No. of classes required to complete UNIT-V:5 No. of classes taken:							

Teaching I	Learning Methods		
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
DO 2	natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
104	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
DO 0	for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in
103	diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the						
	inter disciplinary skills to meet current and future needs of industry.						
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or						
	systems and Implement real time applications in the field of VLSI and Embedded Systems						
	using relevant tools						
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues						
	related to real time applications						

Course Instructor Course Coordinator Module Coordinator HOD (Dr.A.Narendra Babu) (Dr.A.Narendra Babu) (Dr.M.Venkata Sudhakar) (Dr.Y.Amar Babu)

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE HANDOUT PART-A

Name of Course Instructor : Mr. K. Ravi Kumar

Course Name & Code : Optical Communications – 17EC28

L-T-P Structure : 3-0-0 Credits: 3

Program/Sem/Sec : B.Tech., ECE., VII-Sem., Section- A A.Y : 2020-21

PRE-REQUISITE: Electromagnetic Theory, Analog Communications, Digital Communications.

COURSE OBJECTIVE: This course gives knowledge on optical communication fundamentals, fiber types, and fiber materials. This course also describe about transmission losses in the fiber, optical sources, source to fiber coupling scheme, and optical receivers. This course also provides understanding of digital optical link, analog optical systems, wavelength division multiplexing and optical networks

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO1	Understand the concepts of optical communication systems, WDM systems, and optical
	networks.
CO2	Apply knowledge of signal transmission characteristics on fibers, optical sources and
COZ	detectors.
CO3	Analyze the optical device characteristics and their signal degradation mechanisms in analog
	and digital signal transmission.
CO4	Evaluate the performance of optical fiber communication systems

COURSE ARTICULATION MATRIX (Correlation between COs &POs, PSOs):

COs	PO	PSO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	-	-	-	-	-	-	-	-	-	1	1	-	-
CO2	3	3	1	-	-	-	-	-	-	-	-	2	3	-	-
CO3	2	3	1	-	-	-	-	-	-	-	-	2	2	-	-
CO4	2	2	1	-	-	-	-	-	-	-	-	2	3	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1-Slight(Low), **2-**Moderate(Medium), **3-**Substantial (High).

TEXT BOOKS:

T1	Gerd Keiser, Optical Fiber Communications, Mc Graw-Hill International edition,4th Edition, 2008.
T2	Joseph C. Palais, Fiber Optic Communications, Pearson Education, 4th Edition, 2004.

REFERENCE BOOKS:

R1	John M. Senior, Optical Fiber Communications, PHI, 2nd Edition, 2002.
R3	Govind P. Agarwal, Fiber Optic Communication Systems, John Wiley, 3rd Edition, 2004
R3	S. C. Gupta, Text Book on Optical Fiber Communication and its Applications, PHI,2005.

PART-B COURSE DELIVERY PLAN (LESSON PLAN): Section-A

UNIT-I: Overview of Optical Fiber Communications

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Course, COs, POs	1	18.08.2020			
2.	The General System, The Evolution of Fiber Optic Systems	1	19.08.2020			
3.	Elements of Optical Fiber Link, Merits and Demerits of Optical Fiber Communications	1	21.08.2020			
4.	Applications of Optical Fiber Communications, Basic Optical Laws: Refractive Index, Refraction, Reflection	1	25.08.2020			
5.	Critical Angle, Total Internal Reflection,	1	26.08.2020			
6.	Optical Fiber Structure, Step Index Fiber Structure, Graded Index Fiber Structure	1	28.08.2020			
7.	Ray Optic Representation, Acceptance Angle, Numerical Aperture,	1	01.09.2020			
8.	Meridional and Skew Rays, Overview of Modes, Summary of Key Modal Concepts	1	02.09.2020			
9.	Cut-off Wavelength, Mode Field Diameter	1	04.09.2020			
10.	Revision of Unit-I	1	08.09.2020	_		
No. of	classes required to complete UNIT-I	10	No.	of classes tak	en	

UNIT-II: Fiber Materials and Signal Degradation in Optical Fibers

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-II	1	09.09.2020			
2.	Fiber Materials, Glass Fibers, Active Glass Fibers, Plastic Glass Fibers,	1	11.09.2020			
3.	Attenuation , Attenuation Units, Absorption, Scattering Losses	1	15.09.2020			
4.	Bending Losses, Core-Cladding Losses	1	16.09.2020			
5.	Signal Distortion in Optical Waveguides, Information Capacity Determination, Group delay	1	18.09.2020			
6.	Material Dispersion, Polarization-Mode Dispersion, Intermodal Dispersion, Pulse Broadening in Graded-Index Waveguides	1	22.09.2020			
7.	Mode Coupling, Design Optimization of Single-Mode Fibers, Refractive Index Profiles	1	23.09.2020			
8.	Revision of Unit-II	1	25.09.2020			
No. o	f classes required to complete UNIT-I	08	No.	of classes tak	en	

UNIT-III: Optical Sources, Power Launching and Coupling

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Requirements of Optical Sources, LED Structures, Light Source Materials	1	06.10.2020			
2.	Quantum Efficiency and LED Power, Modulation of LED	1	07.10.2020			
3.	LASER Diodes, Laser Diode Modes and Threshold Conditions	1	09.10.2020			
4.	Semiconductor Laser Diodes, Fabry Perot Lasers	1	13.10.2020			
5.	Distributed Feedback (DFB) Lasers, Laser diode rate equations, External quantum efficiency and resonant frequencies	1	14.10.2020			
6.	Source to fiber launching, Source output pattern, power coupling calculation	1	16.10.2020			
7.	Lensing Schemes for coupling improvement, Laser Diode-to-Fiber Coupling	1	20.10.2020			
No. of	classes required to complete UNIT-III	07	No. o	of classes tak	en	

UNIT-IV: Optical detectors and receivers

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to unit-IV	1	21.10.2020			
2.	Photo Detectors, Physical Principles of Photodiodes	1	23.10.2020			
3.	PIN Photo Detector, Avalanche Photo Diodes	1	27.10.2020			
4.	Detector Response Time, Temperature Effect on Avalanche Gain, Comparison of Photo Detectors	1	28.10.2020			
5.	Fundamental Receiver Operation, Digital Signal Transmission, Error Sources	1	30.10.2020			
6.	Receiver Configuration, Digital Receiver Performance: Probability of Error, The Quantum Limit, Analog Receivers	1	31.10.2020			
No. of classes required to complete UNIT-IV		06	No. o	of classes taker	ı	

UNIT-V: Digital Transmission Systems and Measurements WDM and SONET/SDH

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-V, Point to Point Links, System Considerations	1	03.11.2020			
2.	Link Power Budget, Rie Time Budget	1	04.11.2020			
3.	Line Coding- NRZ codes, RZ Codes,	1	06.11.2020			
4.	Measurement of Attenuation and Dispersion	1	10.11.2020			
5.	WDM Features, Operation Principles of WDM	1	11.11.2020			
6.	Types of WDM, SONET/SDH Networks	1	13.11.2020			
No. of classes required to complete UNIT-V		06	No. o	f classes take	n	

Contents beyond the Syllabus

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Fabrication of Fibers	1	11.11.2020			

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

ACADEMIC CALENDAR:

Description	From	To	Weeks
I Phase of Instructions-1	17-08-2020	03-10-2020	7 W
I Mid Examinations	28-09-2020	03-10-2020] / w
II Phase of Instructions	05-10-2020	21-11-2020	7 W
II Mid Examinations	16-11-2020	21-11-2020	7 W
Preparation and Practical's	23-11-2020	28-11-2020	1 W
Semester End Examinations	30-11-2020	12-12-2020	2 W

PART-C

EVALUATION PROCESS:

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	Q=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PO 1:	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2:	Problem analysis: Identify, formulate, review research literature, and analyze complex
1 0 2	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
PO 3:	Design/development of solutions : Design solutions for complex engineering problems
	and design system components or processes that meet the specified needs with
	appropriate consideration for the public health and safety, and the cultural, societal, and
	environmental considerations.
PO 4:	Conduct investigations of complex problems: Use research-based knowledge and
	research methods including design of experiments, analysis and interpretation of data,
PO 5:	and synthesis of the information to provide valid conclusions. Modern tool usage: Create, select, and apply appropriate techniques, resources, and
103.	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations
PO 6:	The engineer and society: Apply reasoning informed by the contextual knowledge to
	assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice
PO 7:	Environment and sustainability: Understand the impact of the professional
	engineering solutions in societal and environmental contexts, and demonstrate the
	knowledge of, and need for sustainable development.
PO 8:	Ethics : Apply ethical principles and commit to professional ethics and responsibilities
DO 0.	and norms of the engineering practice.
PO 9:	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10:	Communication: Communicate effectively on complex engineering activities with the
1010.	engineering community and with society at large, such as, being able to comprehend
	and write effective reports and design documentation, make effective presentations, and
	give and receive clear instructions.
PO 11:	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a
	member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12:	Life-long learning : Recognize the need for, and have the preparation and ability to
	engage in independent and life-long learning in the broadest context of technological
	change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

INOGNAM	INTE SI ECITIC OUTCONIES (1508).						
PSO 1:	Communication: Design and develop modern communication technologies for						
	building the inter disciplinary skills to meet current and future needs of industry.						
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic						
	Circuits or systems and Implement real time applications in the field of VLSI and						
	Embedded Systems using relevant tools						
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize						
	the issues related to real time applications						

Course InstructorCourse CoordinatorModule CoordinatorHODMr. K. Ravi KumarDr. M. Venkata SudhakarDr. M. Venkata SudhakarDr. Y. Amar Babu

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE HANDOUT PART-A

Name of Course Instructor : Mr. M K Linga Murthy

Course Name & Code : Digital Image Processing – 17EC33

L-T-P Structure : 3-0-0 Credits: 3

Program/Sem/Sec : B.Tech., ECE., VII-Sem., Section- A A.Y : 2020-21

PRE-REQUISITE: Signals and Systems, Digital Signal Processing, Transform Techniques.

COURSE OBJECTIVE: This course provides the fundamental concepts of Image Processing.

Image enhancement which is the most prominent preprocessing step will be learnt in both time and spectral domain. The course also gives the basics of color images and their processing. Knowledge about compression as well as segmentation will also be given

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO1	Summarize the fundamentals of Digital Image Processing. (L2)
CO2	Apply the concepts of filtering, Fourier transforms for image enhancement and restoration.(L3)
CO3	Illustrate the compression of an image using loss less and lossy models. (L3)
CO4	Analyze the segmentation and color image processing techniques.(L4)

COURSE ARTICULATION MATRIX (Correlation between COs &POs, PSOs):

COs	PO	PSO	PSO	PSO											
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	1	-	-	-	-	-	-	-	-	-	1	-	-	3
CO2	2	3	2	1	-	-	-	-	-	-	-	1	-	-	3
CO3	3	3	2	2	-	-	-	-	-	-	-	1	2	-	3
CO4	3	3	3	2	-	1	-	-	-	-	-	1	-	-	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1-Slight(Low), **2-**Moderate(Medium), **3-**Substantial (High).

TEXT BOOKS:

T1 R. C. Gonzalez and R. E. Woods, "Digital Image Processing", Addison Wesley/ Pearson education, 3rd Edition, 2002

REFERENCE BOOKS:

R1	William J Pratt, "Digital Image Processing", John Wiley & Sons
R2	S.Jayaraman, E.Esakkirajan, T.Veerakumar, "Digital Image Processing", TMH edition,
	2011
R3	Anil K. Jain, "Fundamentals of Digital Image Processing", PHI Publications.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN): Section-A

UNIT-I: Introduction

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to the course, Course Objective and Course outcomes	1	19.08.2020			
2.	2D function & Basic definitions & Digital image definition	1	21.08.2020			
3.	Fundamental steps in image processing	1	26.08.2020			
4.	Components of Image processing system	1	28.08.2020			
5.	Applications of Image Processing	1	29.08.2020			
6.	Structure of Human Eye & Image formation in the eye	1	02.09.2020			
7.	Sampling & Quantization, Digital image representation, Spatial Resolution, Intensity Resolution.	1	04.09.2020			
8.	Relationships between Pixels, Adjacency, Connectivity, Regions, Boundaries & Distance measures	1	05.09.2020			
No. of	classes required to complete UNIT-I	08	No.	of classes tak	en	

UNIT-II: Image Enhancement in Spatial and Frequency Domain

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Image Enhancement, Spatial Domain Enhancement - Introduction	1	09.09.2020			
2.	Gray Level Transformation functions & Piecewise linear Transformation functions	1	11.09.2020			
3.	Histogram Processing, Histogram Equalization	1	12.09.2020			
4.	Histogram Specification & Examples	1	16.09.2020			
5.	Smoothing spatial filters & Sharpening spatial filters	1	18.09.2020			
6.	Introduction to Filtering in frequency domain, Image smoothing in frequency domain	1	19.09.2020			
7.	Image sharpening in frequency domain, Laplacian in the frequency domain	1	23.09.2020			
8.	Unsharp masking & High boost filtering	1	25.09.2020			
No. o	f classes required to complete UNIT-I	08	No. o	of classes tak	en	

UNIT-III: Image Restoration and Image Compression

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Image restoration & degradation model, Noise Models	1	26.09.2020			
2.	Restoration in the presence of noise using spatial filtering	1	07.10.2020			
3.	Inverse Filtering, MMSE filtering & Constrained least square filtering	1	09.10.2020			
4.	Introduction, Coding, Inter pixel, Psychovisual Redundancy, Fidelity Criteria	1	11.10.2020			
5.	Image compression model & Huffman & Arithmetic coding	1	14.10.2020			
6.	LZW, Bit plane and run length coding	1	16.10.2020			
7.	Lossless & Lossy predictive coding, JPEG	1	17.10.2020			
N	o. of classes required to complete UNI	T-III	07	No. of class	ses taken	

UNIT-IV: Image Segmentation

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Detection of discontinuities : Point, Line & Edge Detection	1	21.10.2020			
2.	Edge Linking, Boundary Detection: Local processing, Global Processing via Hough transformation	1	28.10.2020			
3.	Global Processing via Graph theoretic techniques	1	30.10.2020			
4.	Thresholding	1	31.10.2020			
5.	Region Growing, Region splitting & merging	1	04.11.2020			
No. of classes required to complete UNIT-IV			05	No. of class	es taken	

UNIT-V: Color Image Processing

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Color fundamentals	1	06.11.2020			
2.	Color Models	1	07.11.2020			
3.	Pseudo Color Image processing	1	11.11.2020			
4.	Full color image processing & Histogram Processing	1	13.11.2020			
No. of classes required to complete UNIT-V 04 No. of classes ta						

Contents beyond the Syllabus

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to video processing	1	13.11.2020			

Teaching Learning Methods							
TLM1 Chalk and Talk		TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOC				
TLM3	Tutorial	TLM6	Group Discussion/Project				

ACADEMIC CALENDAR:

Description	From	To	Weeks
I Phase of Instructions-1	17-08-2020	03-10-2020	7 W
I Mid Examinations	28-09-2020	03-10-2020	/ vv
II Phase of Instructions	05-10-2020	21-11-2020	7 W
II Mid Examinations	16-11-2020	21-11-2020	7 W
Preparation and Practical's	23-11-2020	28-11-2020	1 W
Semester End Examinations	30-11-2020	12-12-2020	2 W

PART-C

EVALUATION PROCESS:

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	Q=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

I NOGNAM	INIE OUTCOMES (TOS).
PO 1:	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2:	Problem analysis : Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
PO 3:	Design/development of solutions : Design solutions for complex engineering problems
	and design system components or processes that meet the specified needs with
	appropriate consideration for the public health and safety, and the cultural, societal, and
	environmental considerations.
PO 4:	Conduct investigations of complex problems: Use research-based knowledge and
	research methods including design of experiments, analysis and interpretation of data,
	and synthesis of the information to provide valid conclusions.
PO 5:	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
	modern engineering and IT tools including prediction and modelling to complex
DO (engineering activities with an understanding of the limitations
PO 6:	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice
PO 7:	Environment and sustainability: Understand the impact of the professional
107.	engineering solutions in societal and environmental contexts, and demonstrate the
	knowledge of, and need for sustainable development.
PO 8:	Ethics : Apply ethical principles and commit to professional ethics and responsibilities
	and norms of the engineering practice.
PO 9:	Individual and team work : Function effectively as an individual, and as a member or
	leader in diverse teams, and in multidisciplinary settings.
PO 10:	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend
	and write effective reports and design documentation, make effective presentations, and
	give and receive clear instructions.
PO 11:	Project management and finance : Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a
70.15	member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12:	Life-long learning: Recognize the need for, and have the preparation and ability to
	engage in independent and life-long learning in the broadest context of technological
	change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

INUGNAM	IME SPECIFIC OUTCOMES (FSOS):						
PSO 1:	Communication: Design and develop modern communication technologies for						
	building the inter disciplinary skills to meet current and future needs of industry.						
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic						
	Circuits or systems and Implement real time applications in the field of VLSI and						
	Embedded Systems using relevant tools						
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize						
	the issues related to real time applications						

Course InstructorCourse CoordinatorModule CoordinatorHODMr. M K Linga MurthyMr. M K Linga MurthyDr. G L N MurthyDr. Y. Amar Babu

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

COURSE HANDOUT

PART-A

Name of Course Instructor : Mrs. B.Rajeswari

Course Name & Code : DSP PROCESSORS - 17EC37

L-T-P Structure : 3-0-0 Credits: 3

Program/Sem/Sec : B.Tech., ECE., VII-Sem., Sections- A A.Y : 2020-21

PRE-REQUISITE: Digital Signal Processing, Microprocessor

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course provides the knowledge on digital computational accuracy of systems and Architecture of various digital signal processors. The course will give an idea how memory and I/O devices can be interfaced to digital signal processors.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Remembering basic concepts of Digital signal processing techniques in both time and
	frequency domain
CO 2	Apply different parameters of computational accuracy in DSP implementation.
CO 3	Analysebasic architectural requirements of programmable digital signal processors.
CO 4	Design architectural aspects of TMS320C54XX and Analog devices family DSPs

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	P 02	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO 1	1	1	1	1	_	1	1	1	1	-	-	1	-	-	1
CO 2	3	2	2	-	-	-	-	-	-	-	-	2	-	-	2
CO 3	2	3	2	1	-		-	-	-	-	-	2	-	-	3
CO 4	2	2	3	2								3	1	1	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

T1 Digital Signal Processing Implementations. Avatar Singh and S. Srinivasan, Thomson Publications

REFERENCE BOOKS:

- **R1** Digital Signal Processors, Architecture, Programming and Applications, B. Venkataramani and M. Bhaskar, 2002, TMH.
- **R2** Digital Signal Processing Jonatham Stein, 2005, John Wiley.
- R3 DSP Processor Fundamentals, Architecture & Features- Lapsley et al. 2000, S. Chand & Co.Press

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction To Digital Signal Processing

	J	No. of	Tentative	Actual	Teaching	HOD			
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign			
		Required	Completion	Completion	Methods	Weekly			
1.	Course Objectives	1	17-08-2020		TLM2				
2.	Introduction	1	18-08-2020		TLM2				
3.	A Digital signal- processing system	1	22-08-2020		TLM2				
4.	The sampling process	1	24-08-2020		TLM2				
5.	Discrete time sequences	1	25-08-2020		TLM2				
6.	Discrete Fourier Transform (DFT)	1	29-08-2020		TLM2				
7.	Fast Fourier Transform	1	31-08-2020		TLM2				
8.	linear time-invariant systems	1	01-09-2020		TLM2				
9.	Digital filters- FIR	1	05-09-2020		TLM2				
10.	Digital filters- IIR	1	07-09-2020		TLM2				
11.	Decimation, interpolation	1	08-09-2020		TLM2				
No. of	No. of classes required to complete UNIT-I: 11 No. of classes taken:								

UNIT-II: Computational Accuracy in DSP Implementations

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Number formats for signals and coefficients in DSP systems	1	12-09-2020		TLM2	
2.	Number formats for signals and coefficients in DSP systems	1	14-09-2020		TLM2	
3.	Dynamic Range and Precision	1	15-09-2020		TLM2	
4.	Sources of error in DSP implementations	1	19-09-2020		TLM2	
5.	A/D Conversion errors	1	21-09-2020		TLM2	
6.	D/A Conversion Errors	1	22-09-2020		TLM2	
7.	DSP Computational errors, Compensating filter	1	26-09-2020		TLM2	
No. of	classes required to comple	No. of classes	taken:			

UNIT-III: Architectures for Programmable DSP Devices

		No. of	Tentative	Actual	Teaching	HOD
S.N	Topics to be covered	Classes	Date of	Date of	Learning	Sign
		Required	Completion	Completion	Methods	Weekly

1.	Basic Architectural features	1	05-10-2020		TLM2	
2.	DSP Computational Building Blocks, Bus Architecture and Memory	1	06-10-2020		TLM2	
3.	Data Addressing Capabilities	1	10-10-2020		TLM2	
4.	Address Generation Unit	1	12-10-2020		TLM2	
5.	Programmability and Program Execution	1	13-10-2020		TLM2	
6.	Speed Issues, Features for External interfacing	1	17-10-2020		TLM2	
No. of	classes required to comple	ete UNIT-III	[: 6	No. of classes	taken:	

UNIT-IV: Programmable Digital Signal Processors

		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
	_	Required	Completion	Completion	Methods	Weekly
	Commercial Digital	_				
1.	signal-processing	1	19-10-2020		TLM2	
	Devices					
	Data Addressing modes					
2.	of TMS320C54XX	1	20-10-2020		TLM2	
	DSPs					
	Memory space of					
3.	TMS320C54XX	1	24-10-2020		TLM2	
3.	Processors, Program	1	24-10-2020		I LIVIZ	
	Control					
	TMS320C54XX					
4.	instructions and	1	26-10-2020		TLM2	
	Programming					
	On-Chip Peripherals,					
5.	Interrupts of	1	27-10-2020		TLM2	
٥.	TMS320C54XX	1	27-10-2020		I LIVIZ	
	processors					
	Pipeline Operation of					
6.	TMS320C54XX	1	31-10-2020		TLM2	
	Processors					
No. of	classes required to comple	ete UNIT-IV	: 6	No. of classes	s taken:	

UNIT-V: Analog Devices Family of DSP Devices

		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
	_	Required	Completion	Completion	Methods	Weekly
1.	Analog Devices Family of DSP Devices, ALU and MAC block diagram, Shifter Instruction	1	02-11-2020		TLM2	

2.	Base Architecture of ADSP2100	1	03-11-2020	TL	.M2
3.	ADSP-2181 high performance Processor	1	07-11-2020	TL	M2
4.	Introduction to Blackfin Processor – The Blackfin Processor	1	09-11-2020	TL	.M2
5.	Introduction to Micro Signal Architecture	1	10-11-2020	TL	.M2
6.	Overview of Hardware Processing Units and Register files, Address Arithmetic Unit	1	14-11-2020	TL	.M2
7.	Control Unit, Bus Architecture and Memory, Basic Peripherals	1	14-11-2020	TL	.M2
No. of	classes required to comple	ete UNIT-V	: 7	No. of classes taker	n:

Teaching	Teaching Learning Methods										
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)								
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)								
TLM3	Tutorial	TLM6	Group Discussion/Project								

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5

Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems
	and design system components or processes that meet the specified needs with
	appropriate consideration for the public health and safety, and the cultural, societal, and
	environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and
	research methods including design of experiments, analysis and interpretation of data,
	and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to
	assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional
	engineering solutions in societal and environmental contexts, and demonstrate the
	knowledge of, and need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities
	and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or
	leader in diverse teams, and in multidisciplinary settings.
PO	Communication : Communicate effectively on complex engineering activities with the
10	engineering community and with society at large, such as, being able to comprehend
	and write effective reports and design documentation, make effective presentations, and
	give and receive clear instructions.
PO	Project management and finance: Demonstrate knowledge and understanding of the
11	engineering and management principles and apply these to one's own work, as a
	== :

	member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological
	change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO	Communication: Design and develop modern communication technologies for										
1	building the inter disciplinary skills to meet current and future needs of industry.										
PSO	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic										
2	Circuits or systems and Implement real time applications in the field of VLSI and										
	Embedded Systems using relevant tools										
PSO	Signal Processing: Apply the Signal processing techniques to synthesize and realize the										
3	issues related to real time applications										

Course Instructor B.Rajeswari Course Coordinator V.V.Rama Krishna Module Coordinator Dr.G.L.N.Murthy

HOD Dr.Y.Amar Babu

WYLAND B

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS & COMMUNICATIONS ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor : Mr.G. Venkata Rao

Course Name & Code : Embedded System Design, 17EC29

L-T-P Structure : 3-0-0 Credits : 3

Program/Sem/Sec : B.Tech., ECE., VII-Sem., Sec-A A.Y : 2020-21

PRE-REQUISITE:

COURSE EDUCATIONAL OBJECTIVES (CEOs):

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Outline the functionality of standard single purpose processors commonly used in embedded
	systems
CO 2	Apply top-down and bottom-up methodologies for embedded system design
CO 3	Analyze state machine and concurrent process models.
CO 4	Design Control unit and data path using computational models, and develop embedded systems
	using IC design technologies.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2		-	-	-	-	-	-	-	-	1	-	1	-
CO2	3	2	1	-	-	-	-	-	-	-	-	2	-	2	
CO3	2	3	2	-	ı	-	1	1	ı	-	-	2	ı	3	-
CO4	3	3	3	-	-	-	-	-	-	-	-	3	-	3	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

T1 Frank Vahid/Tony Givargis, "Embedded Sytem Design A Unified Hardware/Software Introduction" Jhon Wiley & Sons,Inc.

REFERENCE BOOKS:

- **R1** James K Peckol," Embedded Systems- A Cntemporary Design Tool" Jhon Wiley, 2008.
- **R2** Joseph Yiu,"The Definitive Guide to the ARM Cortex-M3", Newnes, Elsevier, 2008.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Embedded System Introduction

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-1	1	18.08.2020			
2.	Embedded System overview	1	20.08.2020			
3.	Design Challenge	1	25.08.2020			
4.	Processor Technology	1	27.08.2020			
5.	IC Technology	1	29.08.2020			
6.	Design Technology, Trade-offs	1	31.08.2020			
7.	Single Purpose Processors	1	01.09.2020			
8.	RT Level Combinational Logic	1	03.09.2020			
9.	RT Level Sequential Logic	1	05.09.2020			
10.	Custom Single Purpose processor design	1	08.09.2020			
11.	Optimizing custom single Purpose processors	1	10.09.2020			
12.	Assignment-1	1	12.09.2020			
No. o	f classes required to complete UN	IT-I: 12		No. of class	sses taken:	

UNIT-II: State Machine and Concurrent Process Models

S.No.	Topics to be covered	No. of	Tentative	Actual	Teaching	HOD
		Classes	Date of	Date of	Learning	Sign
		Required	Completion	Completion	Methods	Weekly
1.	Introduction to Unit-II:	1	15.09.2020			
	Models vs Languages					
2.	Finite State machines with	1	17.09.2020			
	data path models (FSMD)					
3.	Program State machine	1	18.09.2020			
	model					
4.	Concurrent Process Model,	1	22.09.2020			
	Concurrent Processes					
5.	Communication among	1	24.09.2020			
	processes					
6.	Synchronization among	1	25.09.2020			
	processes					
7.	Implementation, Data flow	1	26.09.2020			
	models					
8.	Real-time Systems	1	06.10.2020			
9.	Assignment-2	1	08.10.2020			
No. of	classes required to complete UI	NIT-II:09		No. of classe	s taken:	

UNIT-III: Standard Single-purpose Processors

S.No.	Topics to be covered		Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	
1.	Introduction to Unit-III	1	09.10.2020			
2.	Timers, Counters,	1	10.10.2020			

	Watchdog Timers, UART, LCD Controllers					
3.	Stepper Motor Controllers	1	13.10.2020			
4.	Analog to digital Converters, Real Time Clocks	1	15.10.2020			
5.	Common memory types, Memory hierarchy and cache	1	16.10.2020			
6.	Advanced RAM	1	17.10.2020			
7.	Assignment-3	1	20.10.2020			
No. of classes required to complete UNIT-III: 07		No. of classes	taken:			

UNIT-IV: Interfacing

S.No.	Topics to be covered	No. of	Tentative	Actual	Teaching	HOD
		Classes	Date of	Date of	Learning	Sign
		Required	Completion	Completion	Methods	Weekly
1.	Introduction to Unit-IV	1	27.10.2020			
2.	Communication Basics,	1	30.10.2020			
	Microprocessor					
	Interfacing					
3.	I/O Addressing,	1	31.10.2020			
	Interrupts, Direct					
	Memory Access					
4.	Arbitration, Multi level	1	03.11.2020			
	bus architectures,					
	Advanced					
	Communication					
	principles					
5.	Serial Protocols,	1	05.11.2020			
	Parallel Protocols,					
	Wireless Protocols					
6.	Assignment-4	1	06.11.2020			
No. of	classes required to comple	ete UNIT-IV	: 06	No. of classes	taken:	

UNIT-V: IC and Design Technology

S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign
		Required	Completion	Completion	Methods	Weekly
1.	Introduction to Unit-V: IC Technology	1	06.11.2020			
2.	Full- Custom(VLSI) IC technology	1	07.11.2020			
3.	Programmable logic devices(PLD) IC technology	1	10.11.2020			
4.	Design technology: Automation, Systhesis, Verification	1	12.11.2020			
5.	Hardware/Software Cosimulation	1	12.11.2020			
6.	Reuse: Intellectual	1	13.11.2020			

	Property cores, Design Process Models					
7.	Assignment-5	1	13.11.2020			
No. of	No. of classes required to complete UNIT-V: 07			No. of classes	taken:	

Teaching l	Teaching Learning Methods				
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

PART-C

EVALUATION PROCESS (R14 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	30
Semester End Examination (SEE)	70
Total Marks = CIE + SEE	100

Academic Calendar: B.Tech., VII-Sem., 2020-21					
Description	ription From To		Weeks		
Commenc	ement of Class work:	17.08.2020			
I Phase of Instructions	17-08-2020	03-10-2020	7W		
I MID Examinations	28-09-2020	03-10-2020	7 W		
II Phase of Instructions	05-10-2020	21-11-2020	7W		
II MID Examinations	16-11-2020	21-11-2020	7 W		
Preparation and Practicals	23-11-2020	28-11-2020	1W		
Semester End Examinations	30-11-2020	14-12-2020	2W		

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering			
	fundamentals, and an engineering specialization to the solution of complex engineering			
	problems.			
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex			
	engineering problems reaching substantiated conclusions using first principles of mathematics,			
DO 2	natural sciences, and engineering sciences.			
PO 3	Design/development of solutions : Design solutions for complex engineering problems and			
	design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental			
	considerations.			
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research			
	methods including design of experiments, analysis and interpretation of data, and synthesis of			
	the information to provide valid conclusions.			
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern			
	engineering and IT tools including prediction and modelling to complex engineering activities			
	with an understanding of the limitations			
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess			
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to			
	the professional engineering practice			
PO 7	Environment and sustainability: Understand the impact of the professional engineering			
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.			
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and			
	norms of the engineering practice.			
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in			
	diverse teams, and in multidisciplinary settings.			
PO 10	Communication: Communicate effectively on complex engineering activities with the			
	engineering community and with society at large, such as, being able to comprehend and write			
	effective reports and design documentation, make effective presentations, and give and receive			
	clear instructions.			
PO 11	Project management and finance: Demonstrate knowledge and understanding of the			
	engineering and management principles and apply these to one's own work, as a member and			
DO 12	leader in a team, to manage projects and in multidisciplinary environments.			
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.			
	maspendent and me-long learning in the broadest context of technological change.			

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
	systems and Implement real time applications in the field of VLSI and Embedded Systems
	using relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS & COMMUNICATIONS ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor : Michael Sadgun Rao Kona

Course Name & Code : Introduction to Database & 17IT80

L-T-P Structure : 3-0-0 Credits : 3

Program/Sem/Sec : B.Tech., ECE., VII-Sem., A A.Y : 2020-21

PRE-REQUISITE: Elementary set theory, concepts of relations and functions, propositional logic data structures (trees, Graphs, dictionaries) & File Concepts.

COURSE EDUCATIONAL OBJECTIVES (**CEOs**): This course enables the students to know about DBMS basic concepts, Database Languages, Data base Design, Normalization process and Transaction processing and Indexing.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Understand DBMS concepts, architecture
CO 2	Design Entity Relational Model and make them to data model.
CO 3	Understand the usage of keys and constraints for relational data.
CO 4	Apply the normalization process for data base design.
CO 5	Analyze the issues in transaction processing and different recovery strategies.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2	-	-	-	1	-	-	-	-	-	3	2	2
CO2	3	3	-	1	-	-	1	-	-	-	-	-	2	3	2
CO3	3	2	-	1	-	-	1	-	-	-	-	-	2	3	2
CO4	2	1	2	-	-	-	-	-	-	-	-	-	3	2	3
CO4	2	1	2	-	1	-	Ī	1	1	-	-	-	2	3	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

T1	Henry F. Korth, Abraham Silberschatz, S. Sudarshan, "Database Concepts", McGraw
	Hill, 6th edition, 2009.
T2	RamezElmasri, Shamkanth B. Navathe, "Fundamentals Of Database Systems", Addision
	Wesley, 6th edition, 2010.

REFERENCE BOOKS:

R1	Raghu Ramakrishna, Johannese Gehrke, "Database Management System", McGraw Hill
	3rd edition, 2000.
R2	Date C. J, "An Introduction to Database System", Pearson Education, 8th edition, 2003.
R3	Shara Maheshwari, Ruchi Jain, "DBMS: Complete Practical Approach", Firewall Media,
	New Delhi, 2005.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Course and COs	1	17.08.2020		TLM2	
2.	Introduction, An overview of database management system, Database system Vs file system	1	19.08.2020		TLM2	
3.	Database system Vs file system	1	21.08.2020		TLM2	
4.	Database system concepts and architecture	1	24.08.2020		TLM2	
5.	Data models schema and instances	1	26.08.2020		TLM2	
6.	Data independence and data base language and interfaces	1	28.08.2020		TLM2	
7.	Data definitions language, DML	1	31.08.2020		TLM2	
8.	Overall Database Structure	1	2.09.2020		TLM2	
9.	Revision on Unit-1& Assignment-I	1	4.09.2020		TLM2	
	No. of classes required to comp	No.	of classes ta	aken:		

UNIT-II: Data Modelling using the Entity Relationship Model

S.No.	Topics to be covered	No. of Classes Require d	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
	ER model concepts - attributes,		07/09/20,		TLM2	
1.	entity, Relationships	1	09/09/20			
2.	notation for ER diagram	1	11/09/20		TLM2	
3.	Mapping constraints	1	14/09/20		TLM2	
4.	keys -Concepts of Super Key, and identity key, primary key, Generalization	1	16/09/20		TLM2	
5.	Aggregation	1	18/09/20		TLM2	
6.	Reduction of an ER diagrams to tables,	1	21/09/20		TLM2	
7.	Relationships of higher degree	1	23/09/20		TLM2	
8.	Revision on Unit - II & Assignment-II	1	25/09/20		TLM2	
No. o	of classes required to complete U		No. of class	sses taken:09	9	
I MID EXAMINATIONS 28/09/20 TO 03/10/20						

UNIT-III: Relational Data Model and Language

S.No.	Topics to be covered	No. of Classes Require d	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Relational data model concepts	1	05/10/20		TLM2	
2.	Integrity constraints: entity integrity, referential integrity, Keys constraints, Domain constraints	1	07/10/20		TLM2	
3.	Relational algebra	1	09/10/20		TLM2	
4.	Characteristics of SQL, Advantage of SQL SQL data types and literals, Types of SQL commands SQL operators and their procedure	1	12/10/20		TLM2	
5.	Tables, views and indexes, Queries and sub queries, Aggregate functions Insert, update and delete operations	1	14/10/20		TLM2	
6.	Unions, Intersection, Minus, Cursors in SQL, Revision of UNIT- 3&Assignment-III	1	16/10/20		TLM2	
No. o	f classes required to complete UN	NIT-III: 6		No. of class	sses taken:	

UNIT-IV: Normalization

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Functional Dependencies	1	19/10/20		TLM2	
2.	Normal Forms: First, Second, Third Normal Forms	1	21/10/20		TLM2	
3.	BCNF, Inclusion Dependences Loss Less Join Decompositions	1	23/10/20		TLM2	
4.	Normalization Using FD,MVD Normalization Using JD	1	26/10/20		TLM2	
5.	Normalization Using FD,MVD Normalization Using JD		28/10/20		TLM2	
6.	Alternative Approaches to Database Design Revision of Unit-4&Assignment-IV	1	30/10/20		TLM2	
No. o	f classes required to complete UN		No. of clas	ses taken:		

UNIT-V: Transaction Processing Concepts

S.No.	Topics to be covered	No. of Classes Require d	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Transaction System	1	02/11/20		TLM2	
2.	Testing Of Serializability, Serializability of Schedules Conflict & View Serializable Schedule	1	04/11/20		TLM2	
3.	Recoverability, Log Based Recovery, Checkpoints, ARIES Algorithm, Deadlock Handling	1	06/11/20		TLM2	
4.	Concurrency Control Techniques For Concurrency Control	1	09/11/20		TLM2	
5.	Time Stamping Protocols for Concurrency Control	1	11/11/20		TLM2	
6.	Locking, Validation Based Protocol, Multiple Granularity	1	13/11/20		TLM2	
7.	Recovery With Concurrent Transactions ,Revision of UNIT- 5&Assignment-V	1	16/11/20		TLM2	
No. o	f classes required to complete UNI	T-V: 7		No. of clas	sses taken:	

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
DO 2	natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
PO 12	leader in a team, to manage projects and in multidisciplinary environments.
PU 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
	macpendent and me-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO	Communication: Design and develop modern communication technologies for building the
1	inter disciplinary skills to meet current and future needs of industry.
PSO	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
2	systems and Implement real time applications in the field of VLSI and Embedded Systems
	using relevant tools
PSO	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
3	related to real time applications

Course Instructor	Module Coordinator	HOD	
(Mr.Michael Sadgun Rao Kona)	(Dr .S. Naganjaneyulu)	(Dr.B.Srinivasa Rao)	

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF Electronics & Communication Engineering

COURSE HANDOUT

PART-A

PROGRAM: B.Tech., VII-Sem., ECE – A Section

ACADEMIC YEAR : 2020 - 21

COURSE NAME & CODE: Embedded System Design Lab–17EC72

L-T-P STRUCTURE : 0-0-2

COURSE CREDITS : 2

COURSE INSTRUCTOR : Mr. K.V.Ashok

COURSE COORDINATOR : Mr. K. Ravi Kumar

COURSE OBJECTIVE:

This course provides practical exposure on

Course Outcomes: At the end of the course, student will be able to:

CO1	Evaluate Inter Process Communication applications using ARM based processors
CO2	Develop the Hardware platform using soft processors and applications using C on Xilinx FPGA Zynq 7000 series
CO3	Adapt effective communication, presentation and report writing skills.

COURSE ARTICULATION MATRIX(Correlation between Cos&POs,PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	2	3	-	1	ı	-	-	-	-	-	3	-
CO2	2	2	3	2	3	1	1	1	1	-	-	-	-	3	-
CO3	-	-	1	-	1	1	1	1	2	3	1	1	1	1	-
CO4	2	2	3	2	3	1	-	-	-	-	-	-	-	3	-

Note: Enter Correlation Levels **1** or **2** or **3.**If there is no correlation, **put '-' 1-** Slight(Low), **2-** Moderate(Medium), **3-** Substantial (High).

PART-B LAB SCHEDULE (LESSON PLAN): Section-C LIST OF EXPERIMENTS (Minimum 12 Experiments to be conducted)

S.No.	Experiments to be conducted	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
		CYCLE		completion	Methods	Weekly
1.	Introduction to Lab	2	20/08/2020		TLM2	
2.	ARM Assembly Language Programming-I	2	27/08/2020		TLM8	
3.	ARM Assembly Language Programming-II	2	03/09/2020		TLM8	
4.	Program to Interface 8-bit LED	2	10/09/2020		TLM8	
5.	Program to demonstrate Time Delay Program using built in Timer/Counter feature	2	17/09/2020		TLM8	
6.	Program to displaying a message in a 2line x 16 Characters LCD display and verify the result in debug terminal	2	24/09/2020		TLM8	
7.	Program to implement Generation of PWM signal on IDE environment	2	01/10/2020		TLM8	
8.	Program to demonstrate serial communication on IDE environment	2	08/10/2020		TLM8	
		CYCLE	-2			
9.	Program to implement Traffic light controller on IDE environment	2	15/10/2020		TLM8	
10.	Program to implement Stepper motor controller on IDE environment	2	22/10/2020		TLM8	
11.	Basic Audio Processing on IDE environment	2	29/10/2020		TLM8	
12.	Program to demonstrate I2C Interface on IDE environment	2	05/11/2020		TLM8	
13.	Program to implement Buzzer Interface on IDE environment	2	12/11/2020		TLM8	
14.	Design of System on Chip platform using Xilinx FPGAs and Embedded Development Kit Tools	2	19/11/2020		TLM8	
15.	Design dual processor based System on Chip using Xilinx EDK Tools and Zynq 7000 series FPGA	2	26/11/2020		TLM8	

16.	Hardware Software Codesign using Xilinx EDK Tools	2	26/11/2020		TLM8	
No. of classes required to complete:		32	No. of classes	conducted:		

PART-C

Teach	Teaching Learning Methods				
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD
TLM2	PPT	TLM5	Programming	TLM8	Lab Demo
тьмз	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study

ACADEMIC CALENDAR:

Academic Calendar: B.Tech., VII-Sem., 2020-21						
Description	From	То	Weeks			
Commence	ment of Class work:	17.08.2020	l			
I Phase of Instructions	17-08-2020	03-10-2020	7W			
I MID Examinations	28-09-2020	03-10-2020	7 VV			
II Phase of Instructions	05-10-2020	21-11-2020	7W			
II MID Examinations	16-11-2020	21-11-2020	7 W			
Preparation and Practicals	23-11-2020	28-11-2020	1W			
Semester End Examinations	30-11-2020	14-12-2020	2W			

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Day to Day work	1,2,3	A1=20
Attendance (>95%=5, 90-95%=4,85-90%=3,80-85%=2,75-80%=1)		A2=5
Viva-Voce	1,2,3	A3=5
Internal Lab Examination	1,2,3	B=10
Total Internal Marks(A1+A2+A3+B)		C=40
Semester End Examinations	1,2,3	D=60
Total Marks: C+D	1,2,3	100

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
DO 5	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
100	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
DO 11	clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
PO 12	leader in a team, to manage projects and in multidisciplinary environments. Life-long learning : Recognize the need for, and have the preparation and ability to engage in
10 12	independent and life-long learning in the broadest context of technological change.
	macpendent and me-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
	systems and Implement real time applications in the field of VLSI and Embedded Systems
	using relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Course Instructor (K.V.Ashok)

Course Coordinator (Mr.K.Ravi Kumar)

Module Coordinator (Dr.P.Lachi Reddy)

HOD (Dr.Y.Amar Babu)

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: Smt. K.RANI RUDRAMA, Smt. M.RAMYA HARIKA

Course Name & Code : MICROWAVE AND OPTICAL COMMUNICATIONS LAB-17EC71

L-T-P Structure : 0-0-2 Credit: 1

Program/Sem/Sec : B.Tech., ECE., VII-Sem., Section- A A.Y : 2020-21

Course Educational Objective: This Lab deals with the micro measurements of the signals at micro frequency range. It involves measurement of frequency, wave length, VSWR, Impedance and scattering parameters of various micro wave devices like Circulator, Direction Coupler, and Magic-Tee. Even the latest trend of communication technology i.e. fiber optics is also introduced and propagation conditions will be verified by evaluating the losses.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Understand the various blocks of microwave bench setup
CO 2	Evaluate the frequency, wave length, VSWR, impedance and scattering parameters of various microwave devices
CO 3	Analyze the losses to verify the propagating conditions in the optical fiber.
CO 4	Adapt effective communication, presentation and report writing skills.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	-	1	1	-	-	-	-	-	-	-	1	-	-
CO2	2	2	-	3	2	-	-	-	-	-	-	-	3	-	-
CO3	2	2	-	2	2	-	ı	ı	-	-	-	-	2	-	-
CO4	-	-	-	-	-	-	-	1	2	3	-	1	-	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

PART-B

COURSE DELIVERY PLAN (LESSON PLAN): Section-A

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
CYC	LE I	•	•	•		*
1.	Demonstration	1	17.08.2020		TLM 4	
2.	Reflex Klystron Characteristics	1	24.08.2020		TLM4	
3.	Gunn Diode Characteristics	1	31.08.2020		TLM4	
4.	Attenuation Measurement	1	07.09.2020		TLM4	
5.	Directional Coupler Characteristics.	1	14.09.2020		TLM4	
6.	VSWR Measurement	1	21.09.2020		TLM4	
7.	Impedance ,Frequency Measurement.	1	28.09.2020		TLM4	
CYC	LE 2		1			
8	Scattering Parameters of Circulator.	1	05.10.2020		TLM4	
9	Scattering Parameters of Magic Tee.	1	12.10.2020		TLM4	
10	Characterization of LED,Laser Diode	1	19.10.2020		TLM4	
11	Measurement of Data rate for Digital Optical link.	1	26.10.2020		TLM4	
12	Measurement of Numerical Aperture	1	02.11.2020		TLM4	
13	Measurement of losses for Analog optical link	1	09.11.2020		TLM4	
14	Lab exam	1	16.11.2020			

Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)					
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)					
TLM3	Tutorial	TLM6	Group Discussion/Project					

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Day to Day work	A=20
Internal Lab Examination	B=10
Attendance	C=5
Viva voce	D=5
Cumulative Internal Examination : A+B+C	A+B+C+D=40
Semester End Examinations	E=60
Total Marks: A+B+C+D+E	100

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
104	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
DO (with an understanding of the limitations
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
DO 0	norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
1010	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
DO 12	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.
	independent and me-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
	systems and Implement real time applications in the field of VLSI and Embedded Systems
	using relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Course Instructor	Course Coordinator	Module Coordinator	HOD
(K.RANI RUDRAMA)	((K.RANI RUDRAMA)	(Dr. Y.S.V.RAMAN)	(Dr. Y. Amar Babu)

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF OF ELECTRONICS AND COMMUNICATION ENGINEERING COURSE HANDOUT PART-A

Name of Course Instructor : K.RANI RUDRAMA

Course Name & Code : MICROWAVE ENGINEERING-17EC27

L-T-P Structure : 2-2-0 Credits: 3

Program/Sem/Sec : B.Tech., ECE., VII-Sem., Section- B A.Y : 2020-21

PRE-REQUISITE: Electromagnetics, waveguides

Course Educational Objective: This course provides the knowledge on microwave communications in terms of various bands, advantages, applications. The course will give an idea about microwave active and passive devices. The course also gives the complete information regarding microwave bench setup and microwave measurements

Course Outcomes (COs):

At the end of the course, students will be able to

CO	Understand the operation and use of Microwave solid state devices
CO	Analyze the characteristics of Microwave tubes.
CO	Apply the properties of S-parameters to waveguide components.
CO ₄	Evaluate the various microwave parameters using microwave bench setup

COURSE ARTICULATION MATRIX (Correlation between Cos &POs,PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	1	-	-	-	-	-	-	-	-	1	2	-	-
CO2	2	3	-	-	-	-	-	-	-	-	-	1	3	-	-
CO3	3	3	1	-	ı	1	1	1	-	-	ı	2	3	-	-
CO4	2	3	1	-	-	-	-	-	-	-	-	2	3	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

BOS APPROVED TEXT BOOKS:

- T1 Samuel Y. Liao, "Microwave Devices and Circuits", PHI Publishers, 3rdEdition, 2003.
- T2 David M.Pozar, "Microwave Engineering", John Wiley Publishers, 4thEdition.

REFERENCES:

- 1. G. S. N. Raju," Microwave Engineering", IK International Publishers, New Delhi
- 2. Robert E. Collin "Foundations for microwave engineering" Tata McGraw Hill,2nd edition
- 3. M. Kulakarni, "Microwave and Radar Engineering", Umesh Publications, New Delhi 5 th Edition,
- 4. Peter A. Rizzi, "Microwave Engineering Passive Circuits", Prentice-Hall Publishers.
- 5. G. Sasibhushana Rao, "Microwave and Radar Engineering", Pearson Education India.

Part-BCOURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Microwave Tubes

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to microwave Engineering, Course Outcomes	1	19.08.2020		TLM2	
2.	Introduction, Microwave Spectrum and Bands	1	20.08.2020		TLM2	
3.	Advantages and Applications of Microwaves.	1	26.08.2020		TLM2	
4.	Limitations and Losses of conventional tubes at microwave frequencies	1	27.08.2020		TLM2	
5.	Microwave tubes-O type and M type classifications	1	29.08.2019		TLM2	
6.	Two Cavity Klystron – Structure, Velocity Modulation Process	1	02.09.2020		TLM2	
7.	Applegate Diagram, Bunching Process	1	03.09.2020		TLM2	
8.	Expressions for o/p Power and Efficiency	1	05.09.2020		TLM2	
9.	Reflex Klystron-Structure, Applegate Diagram and Principle of working	1	09.09.2020		TLM2	
10.	Mathematical Theory of Bunching, Power Output, Efficiency, o/p Characteristics	1	10.09.2020		TLM2	
11.	TUTORIAL-1	1	12.09.2020		TLM2	
No. of	classes required to complete UNIT-I:	11	No. of classes	taken:		

UNIT-II: Helix TWT

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
12.	Helix TWT Significance, Types and Characteristics of Slow Wave Structures	1	16.09.2020		TLM2	
13.	Structure of TWT and Amplification Process	1	17.09.2020		TLM2	
14.	Axial Electric Field ,Convection Current	1	19.09.2020		TLM2	
15.	Propagation Constants, Gain Considerations	1	23.09.2020		TLM2	
16.	M-type tubes: Introduction, Cross-field effects, Different Types of Magnetrons	1	24.09.2020		TLM2	
17.	8-Cavity Cylindrical Travelling Wave Magnetron	1	25.09.2020		TLM2	
18.	Hull Cut-off and Hartee Conditions	1	26.09.2020		TLM2	
19.	Modes of Resonance and PI-Mode Operation	1	30.09.2020		TLM2	
20.	o/p characteristics, Frequency Pulling and pushing, Strapping	1	01.10.2020		TLM2	
21.	TUTORIAL-2	1	03.10.2020		TLM2	
No. of	classes required to complete UNIT-II :	10	No. of classes	taken:		

UNIT-III: Microwave Solid State Devices

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
22	Introduction, Classification, Applications	1	07.10.2020		TLM2	
23	Transferred Electron Devices: Introduction, Gunn Diode –Principle	1	08.10.2020		TLM2	
24	Two Valley Model Theory, Characteristics	1	09.10.2020		TLM2	
25	RWH Theory Characteristics, Modes of Operation	1	10.10.2020		TLM2	
26	Avalanche Transit Time Devices: Introduction	1	14.10.2020		TLM2	
27	IMPATT Diodes Principle of Operation	1	15.10.2020		TLM2	
28	Characteristics, related expressions	1	16.10.2020		TLM2	
29	TRAPATT Diodes Principle of Operation	1	17.10.2020		TLM2	
30	Characteristics related expressions TUTORIAL-3	1	21.10.2020		TLM2	
No. of	classes required to complete UNIT-III :	9	No. of classes	taken:	•	

UNIT-IV : Waveguide Components-I

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
31	Waveguide Multiport Junctions	1	22.10.2020		TLM2	
32	Working principle of E plane Tee and H plane Tee,	1	23.10.2020		TLM2	
33	Working principle of Magic Tee	1	28.10.2020		TLM2	
34	Working principle of Hybrid Ring 2 Hole-Directional Couplers	1	29.10.2020		TLM2	
35	Working principle of Bethe Hole Directional Couplers	1	30.10.2020		TLM2	
36	Scattering Matrix- S-parameters Formulation	1	31.10.2020		TLM2	
37	Properties of S Matrix	1	04.11.2020		TLM2	
38	S Matrix Calculations for E plane Tee and H plane Tee	1	05.112020		TLM2	
39	S -Matrix Calculations for Magic Tee, Directional Coupler	1	06.11.2020		TLM2	
No. of	classes required to complete UNIT-IV	9	No. of classes	taken:		

UNIT-V: Waveguide Components-II

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
40	Waveguide Discontinuities, Waveguide irises	1	07.11.2020		TLM2	
41	TuningScrewsandPostsMatched Loads	1	11.11.2020		TLM2	
42	Waveguide Attenuators , Resistive Card, Rotary Vane types	1	12.11.2020		TLM2	
43	Waveguide Phase Shifters : Dielectric, Rotary Vane types	1	13.11.2020		TLM2	
44	Ferrites–Composition and Characteristics, Faraday Rotation	1	14.11.2020		TLM2	
45	Ferrite Components :Gyrator, Isolator, Circulator	1	17.11.2020		TLM2	
46	Description of Microwave Bench Different Blocks and their Features ,Precautions	1	18.11.2020		TLM2	
47	Measurement of Attenuation, Frequency VSWR.	1	19.11.2020		TLM2	
48	Measurement of Cavity Q, Impedance, Power	1	20.11.2020		TLM2	
No. of	classes required to complete UNIT-V	9	No. of classes t	aken		

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	RADAR, RF Microstrip Passive Devices	1	21.11.2020			

Teaching Learning Methods									
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)						
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)						
TLM3	Tutorial	TLM6	Group Discussion/Project						

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10

Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the inter
	disciplinary skills to meet current and future needs of industry.
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or systems
	and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues related to
	real time applications

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE HANDOUT PART-A

Name of Course Instructor : Dr. M. V.Sudhakar

Course Name & Code : Optical Communications – 17EC28

L-T-P Structure : 3-0-0 Credits: 3

Program/Sem/Sec : B.Tech., ECE., VII-Sem., Section- B A.Y : 2020-21

PRE-REQUISITE: Electromagnetic Theory, Analog Communications, Digital Communications.

COURSE OBJECTIVE: This course gives knowledge on optical communication fundamentals, fiber types, and fiber materials. This course also describe about transmission losses in the fiber, optical sources, source to fiber coupling scheme, and optical receivers. This course also provides understanding of digital optical link, analog optical systems, wavelength division multiplexing and optical networks.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO1	Understand the concepts of optical communication systems, WDM systems, and optical								
	networks.								
CO2	Apply knowledge of signal transmission characteristics on fibers, optical sources and								
CO2	detectors.								
CO3	Analyze the optical device characteristics and their signal degradation mechanisms in analog								
CO3	and digital signal transmission.								
CO4	Evaluate the performance of optical fiber communication systems								

COURSE ARTICULATION MATRIX (Correlation between COs &POs. PSOs):

COs	PO	PSO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	-	-	-	-	-	-	-	-	-	1	1	-	-
CO2	3	3	1	-	-	-	-	-	-	-	-	2	3	-	-
CO3	2	3	1	-	-	-	-	-	-	-	-	2	2	-	-
CO4	2	2	1	-	-	-	-	-	-	-	-	2	3	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1-Slight(Low), **2-**Moderate(Medium), **3-**Substantial (High).

TEXT BOOKS:

T1	Gerd Keiser, Optical Fiber Communications, Mc Graw-Hill International edition,4th Edition, 2008.
T2	Joseph C. Palais, Fiber Optic Communications, Pearson Education, 4th Edition, 2004.

REFERENCE BOOKS:

R1	John M. Senior, Optical Fiber Communications, PHI, 2nd Edition, 2002.
R3	Govind P. Agarwal, Fiber Optic Communication Systems, John Wiley, 3rd Edition, 2004
R3	S. C. Gupta, Text Book on Optical Fiber Communication and its Applications, PHI, 2005.

PART-B COURSE DELIVERY PLAN (LESSON PLAN): Section-B

UNIT-I: Overview of Optical Fiber Communications

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Course, COs, POs	1	17.08.2020			
2.	The General System, The Evolution of Fiber Optic Systems	1	18.08.2020			
3.	Elements of Optical Fiber Link, Merits and Demerits of Optical Fiber Communications	1	22.08.2020			
4.	Applications of Optical Fiber Communications, Basic Optical Laws: Refractive Index, Refraction, Reflection	1	24.08.2020			
5.	Critical Angle, Total Internal Reflection,	1	25.08.2020			
6.	Optical Fiber Structure, Step Index Fiber Structure, Graded Index Fiber Structure	1	29.08.2020			
7.	Ray Optic Representation, Acceptance Angle, Numerical Aperture,	1	31.08,2020			
8.	Meridional and Skew Rays, Overview of Modes, Summary of Key Modal Concepts	1	01.09.2020			
9.	Cut-off Wavelength, Mode Field Diameter	1	05.09.2020			
10.	Revision of Unit-I	1	07.09.2020			
No. of	classes required to complete UNIT-I	10	No.	of classes tak	en	

UNIT-II: Fiber Materials and Signal Degradation in Optical Fibers

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-II	1	08.09.2020			
2.	Fiber Materials, Glass Fibers, Active Glass Fibers, Plastic Glass Fibers,	1	12.09.2020			
3.	Attenuation , Attenuation Units, Absorption, Scattering Losses	1	14.09.2020			
4.	Bending Losses, Core-Cladding Losses	1	15.09.2020			
5.	Signal Distortion in Optical Waveguides, Information Capacity Determination, Group delay	1	19.09.2020			
6.	Material Dispersion, Polarization-Mode Dispersion, Intermodal Dispersion, Pulse Broadening in Graded-Index Waveguides	1	21.09.2020			
7.	Mode Coupling, Design Optimization of Single-Mode Fibers, Refractive Index Profiles	1	22.09.2020			
8.	Revision of Unit-II	1	26.09.2020			
No. of	classes required to complete UNIT-I	08	No. o	of classes tak	en	

UNIT-III: Optical Sources, Power Launching and Coupling

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Requirements of Optical Sources, LED Structures, Light Source Materials	1	05.10.2020			
2.	Quantum Efficiency and LED Power, Modulation of LED	1	06.10.2020			
3.	LASER Diodes, Laser Diode Modes and Threshold Conditions	1	10.10.2020			
4.	Semiconductor Laser Diodes, Fabry Perot Lasers	1	12.10.2020			
5.	Distributed Feedback (DFB) Lasers, Laser diode rate equations, External quantum efficiency and resonant frequencies	1	13.10.2020			
6.	Source to fiber launching, Source output pattern, power coupling calculation	1	17.10.2020			
7.	Lensing Schemes for coupling improvement, Laser Diode-to-Fiber Coupling	1	19.10.2020			
No. of	f classes required to complete UNIT- III	07	No. o	of classes take	en	

UNIT-IV: Optical detectors and receivers

	1-1v. Optical detectors and receivers	No of	Tomtotimo	Astrol	Tanahina	HOD
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to unit-IV	1	20.10.2020			
2.	Photo Detectors, Physical Principles of Photodiodes	1	24.10.2020			
3.	PIN Photo Detector, Avalanche Photo Diodes	1	26.10.2020			
4.	Detector Response Time, Temperature Effect on Avalanche Gain, Comparison of Photo Detectors	1	27.10.2020			
5.	Fundamental Receiver Operation, Digital Signal Transmission, Error Sources	1	31.10.2020			
6.	Receiver Configuration, Digital Receiver Performance: Probability of Error, The Quantum Limit, Analog Receivers	1	02.11.2020			
No. o IV	f classes required to complete UNIT-	06	No. c	of classes take	n	

UNIT-V: Digital Transmission Systems and Measurements, WDM and SONET/SDH

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-V, Point to Point Links, System Considerations	1	03.11.2020			
2.	Link Power Budget, Rise Time Budget	1	07.11.2020			
3.	Line Coding- NRZ codes, RZ Codes, Measurement of Attenuation and Dispersion	1	09.11.2020			
4.	WDM Features, Operation Principles of WDM	1	10.11.2020			
5.	Types of WDM, SONET/SDH Networks	1	11.11.2020			

No. of classes required to complete UNIT-V	05	No. of classes taken	
--	----	----------------------	--

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Fabrication of Fibers	1	11.11.2020			

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

ACADEMIC CALENDAR:

Description	From	То	Weeks
I Phase of Instructions-1	17-08-2020	03-10-2020	7 W
I Mid Examinations	28-09-2020	03-10-2020	7 v v
II Phase of Instructions	05-10-2020	21-11-2020	7 W
II Mid Examinations	16-11-2020	21-11-2020	/ W
Preparation and Practical's	23-11-2020	28-11-2020	1 W
Semester End Examinations	30-11-2020	12-12-2020	2 W

PART-C

EVALUATION PROCESS:

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	Q=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PROGRAMME OUTCOMES (POs):

I NOGNAM	INIE OUTCOMES (TOS).
PO 1:	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2:	Problem analysis : Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
PO 3:	Design/development of solutions : Design solutions for complex engineering problems
	and design system components or processes that meet the specified needs with
	appropriate consideration for the public health and safety, and the cultural, societal, and
	environmental considerations.
PO 4:	Conduct investigations of complex problems: Use research-based knowledge and
	research methods including design of experiments, analysis and interpretation of data,
	and synthesis of the information to provide valid conclusions.
PO 5:	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
	modern engineering and IT tools including prediction and modelling to complex
DO (engineering activities with an understanding of the limitations
PO 6:	The engineer and society: Apply reasoning informed by the contextual knowledge to
	assess societal, health, safety, legal and cultural issues and the consequent
PO 7:	responsibilities relevant to the professional engineering practice Environment and sustainability: Understand the impact of the professional
10 /:	engineering solutions in societal and environmental contexts, and demonstrate the
	knowledge of, and need for sustainable development.
PO 8:	Ethics: Apply ethical principles and commit to professional ethics and responsibilities
	and norms of the engineering practice.
PO 9:	Individual and team work : Function effectively as an individual, and as a member or
	leader in diverse teams, and in multidisciplinary settings.
PO 10:	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend
	and write effective reports and design documentation, make effective presentations, and
	give and receive clear instructions.
PO 11:	Project management and finance : Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a
	member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12:	Life-long learning: Recognize the need for, and have the preparation and ability to
	engage in independent and life-long learning in the broadest context of technological
	change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

INUGNAM	IME SPECIFIC OUTCOMES (FSOS):						
PSO 1:	Communication: Design and develop modern communication technologies for						
	building the inter disciplinary skills to meet current and future needs of industry.						
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic						
	Circuits or systems and Implement real time applications in the field of VLSI and						
	Embedded Systems using relevant tools						
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize						
	the issues related to real time applications						

Course InstructorCourse CoordinatorModule CoordinatorHODDr. M.V.SudhakarDr. M.V.SudhakarDr. M.V.SudhakarDr. Y. Amar Babu

OF LAND STORES

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS & COMMUNICATIONS ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor : Mr.M.Sambasiva Reddy

Course Name & Code : Embedded System Design, 17EC29

L-T-P Structure : 3-0-0 Credits : 3

Program/Sem/Sec : B.Tech., ECE., VII-Sem. A.Y : 2020-21

PRE-REQUISITE:

COURSE EDUCATIONAL OBJECTIVES (CEOs):

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Outline the functionality of standard single purpose processors commonly used in embedded
	systems
CO 2	Apply top-down and bottom-up methodologies for embedded system design
CO 3	Analyze state machine and concurrent process models.
CO 4	Design Control unit and data path using computational models, and develop embedded systems
	using IC design technologies.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2		-	-	-	-	-	-	-	-	1	-	1	-
CO2	3	2	1	-	-	-	-	1	-	-	-	2	-	2	
CO3	2	3	2	-	ı	-	ı	ı	ı	-	1	2	-	3	-
CO4	3	3	3	-	-	-			1	-		3	-	3	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

T1 Frank Vahid/Tony Givargis, "Embedded Sytem Design A Unified Hardware/Software Introduction" Jhon Wiley & Sons,Inc.

REFERENCE BOOKS:

- **R1** James K Peckol," Embedded Systems- A Cntemporary Design Tool" Jhon Wiley, 2008.
- **R2** Joseph Yiu,"The Definitive Guide to the ARM Cortex-M3", Newnes, Elsevier, 2008.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Embedded System Introduction

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-1	1	17.08.2020			
2.	Embedded System overview	1	17.08.2020			
3.	Design Challenge	1	18.08.2020			
4.	Processor Technology	1	24.08.2020			
5.	IC Technology	1	24.08.2020			
6.	Design Technology	1	25.08.2020			
7.	Trade-offs	1	29.08.2020			
8.	Single Purpose Proccessors	1	31.08.2020			
9.	RT Level Cmbinational Logic, Sequential Logic	1	31.08.2020			
10.	Custom Single Purpose processor design	1	01.09.2020			
11.	Optimizing custom single Purpose processors	1	05.09.2020			
12.	Assignment-1	1	07.09.2020			
No. o	f classes required to complete UN	IT-I: 12		No. of class	sses taken:	

UNIT-II: State Machine and Concurrent Process Models

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-II	1	07.09.2020			
2.	Models vs Languages	1	08.09.2020			
3.	Finite State machines with data path models(FSMD)	1	12.09.2020			
4.	FSMD using state machines	2	14.09.2020			
5.	Program State machine model	2	14.09.2020			
6.	Concurrent Process Model, Concurrent Processes	1	15.09.2020			
7.	Communication among processes, Synchronization among processes	2	19.09.2020			
8.	Implementation, Data flow models	1	21.09.2020			
9.	Real-time Systems	1	22.09.2020			
10.	Assignment-2	1	26.09.2020			
No. of	f classes required to complete UNIT	Γ-II:10	1	No. of clas	ses taken:	

UNIT-III: Standard Single-purpose Processors

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-III	1	05.10.2020			
2.	Timers, Counters, Watchdog Timers	1	05.10.2020			
3.	UART, LCD Controllers	1	06.10.2020			
4.	Stepper Motor Controllers	1	10.10.2020			
5.	Analog to digital Converters, Real Time Clocks	1	12.10.2020			
6.	Common memory types, Memory hierarchy and cache	1	12.10.2020			
7.	Advanced RAM	1	13.10.2020			
8.	Assignment-3	1	17.10.2020			
No. o	f classes required to complete UN	IT-III: 08		No. of clas	sses taken:	

UNIT-IV: Interfacing

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introductin to Unit-IV	1	19.10.2020			
2.	Communication Basics, Microprocessor Interfacing	1	19.10.2020			
3.	I/O Addressing,Interrupts, Direct Memory Access	1	20.09.2020			
4.	Arbitration, Multilevelbus architectures	1	26.10.2020			
5.	Advanced Communication principles, Serial Protocols, Parallel Protocols	1	26.10.2020			
6.	Wireless Protocols	1	27.10.2020			
7.	Assignment-4	1	27.10.2020			
No. of	f classes required to complete UNI	T-IV: 07		No. of class	sses taken:	

$\label{eq:UNIT-V} \textbf{UNIT-V}: \textbf{IC} \ \textbf{and} \ \textbf{Design} \ \textbf{Technology}$

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-V	1	31.10.2020			
2.	IC Technology, Full- Custom(VLSI) IC technology	1	02.11.2020			
3.	Programmable logic devices(PLD) IC technology	1	02.11.2020			
4.	Design technology: Automation, Systhesis, Verification	1	03.11.2020			
5.	Hardware/Software Co-simulation	1	07.11.2020			
6.	Reuse:Intellectual Property cores	1	09.11.2020			
7.	Design Process Models	1	09.11.2020			
8.	Assignment-5	1	10.11.2020			
No. of	f classes required to complete U	NIT-V: 08	3	No. of clas	ses taken:	

Teaching I	Learning Methods		
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

PART-C

EVALUATION PROCESS (R14 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	30
Semester End Examination (SEE)	70
Total Marks = CIE + SEE	100

Academic Calendar: B.Tech., VII-Sem., 2020-21									
Description	From	То	Weeks						
Commencement of Class work: 17.08.2020									
I Phase of Instructions	17-08-2020	03-10-2020	7337						
I MID Examinations	28-09-2020	03-10-2020	7W						
II Phase of Instructions	05-10-2020	21-11-2020	7337						
II MID Examinations	16-11-2020	21-11-2020	7W						
Preparation and Practicals	23-11-2020	28-11-2020	1W						
Semester End Examinations	30-11-2020	14-12-2020	2W						

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering					
	fundamentals, and an engineering specialization to the solution of complex engineering					
	problems.					
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex					
	engineering problems reaching substantiated conclusions using first principles of mathematics,					
PO 3	natural sciences, and engineering sciences.					
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate					
	consideration for the public health and safety, and the cultural, societal, and environmental					
	considerations.					
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research					
	methods including design of experiments, analysis and interpretation of data, and synthesis of					
	the information to provide valid conclusions.					
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern					
	engineering and IT tools including prediction and modelling to complex engineering activities					
DO (with an understanding of the limitations					
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess					
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice					
PO 7	Environment and sustainability : Understand the impact of the professional engineering					
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need					
	for sustainable development.					
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and					
	norms of the engineering practice.					
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in					
70.10	diverse teams, and in multidisciplinary settings.					
PO 10	Communication: Communicate effectively on complex engineering activities with the					
	engineering community and with society at large, such as, being able to comprehend and write					
	effective reports and design documentation, make effective presentations, and give and receive clear instructions.					
PO 11	Project management and finance : Demonstrate knowledge and understanding of the					
	engineering and management principles and apply these to one's own work, as a member and					
	leader in a team, to manage projects and in multidisciplinary environments.					
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in					
	independent and life-long learning in the broadest context of technological change.					

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the						
	inter disciplinary skills to meet current and future needs of industry.						
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or						
	systems and Implement real time applications in the field of VLSI and Embedded Systems						
	using relevant tools						
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues						
	related to real time applications						

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE HANDOUT PART-A

Name of Course Instructor : Mrs. B.Rajeswari

Course Name & Code : Digital Image Processing – 17EC33

L-T-P Structure : 3-0-0 Credits: 3

Program/Sem/Sec : B.Tech., ECE., VII-Sem., Section- B A.Y : 2020-21

PRE-REQUISITE: Signals and Systems, Digital Signal Processing, Transform Techniques.

COURSE OBJECTIVE: This course provides the fundamental concepts of Image Processing.

Image enhancement which is the most prominent preprocessing step will be learnt in both time and spectral domain. The course also gives the basics of color images and their processing. Knowledge about compression as well as segmentation will also be given

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO ₁	Summarize the fundamentals of Digital Image Processing. (L2)					
CO2	Apply the concepts of filtering, Fourier transforms for image enhancement and restoration.(L3)					
CO3	Illustrate the compression of an image using loss less and lossy models. (L3)					
CO4	Analyze the segmentation and color image processing techniques.(L4)					

COURSE ARTICULATION MATRIX (Correlation between COs &POs, PSOs):

COs	PO	PSO	PSO	PSO											
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	1	-	-	-	-	-	-	-	-	-	1	-	-	3
CO2	2	3	2	1	-	-	-	-	-	-	-	1	-	-	3
CO3	3	3	2	2	-	-	-	-	-	-	-	1	2	-	3
CO4	3	3	3	2	-	1	-	-	-	-	-	1	-	-	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1-Slight(Low), **2-**Moderate(Medium), **3-**Substantial (High).

TEXT BOOKS:

T1 R. C. Gonzalez and R. E. Woods, "Digital Image Processing", Addison Wesley/ Pearson education, 3rd Edition, 2002

REFERENCE BOOKS:

R1	William J Pratt, "Digital Image Processing", John Wiley & Sons					
R2	S.Jayaraman, E.Esakkirajan, T.Veerakumar, "Digital Image Processing", TMH edition,					
	2011					
R3	Anil K. Jain, "Fundamentals of Digital Image Processing", PHI Publications.					

PART-B COURSE DELIVERY PLAN (LESSON PLAN): Section-B

UNIT-I: Introduction

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to the course, Course Objective and Course outcomes	1	19.08.2020			
2.	2D function & Basic definitions & Digital image definition	1	20.08.2020			
3.	Fundamental steps in image processing	1	21.08.2020			
4.	Components of Image processing system	1	26.08.2020			
5.	Applications of Image Processing	1	27.08.2020			
6.	Structure of Human Eye & Image formation in the eye	1	28.08.2020			
7.	Sampling & Quantization, Digital image representation, Spatial Resolution, Intensity Resolution.	1	02.09.2020			
8.	Relationships between Pixels, Adjacency, Connectivity, Regions, Boundaries & Distance measures	1	03.09.2020			
No. of	classes required to complete UNIT-I	08	No.	of classes tak	en	

UNIT-II: Image Enhancement in Spatial and Frequency Domain

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Image Enhancement, Spatial Domain Enhancement - Introduction	1	04.09.2020			•
2.	Gray Level Transformation functions & Piecewise linear Transformation functions	1	09.09.2020			
3.	Histogram Processing, Histogram Equalization	1	10.09.2020			
4.	Histogram Specification & Examples	1	11.09.2020			
5.	Smoothing spatial filters & Sharpening spatial filters	1	16.09.2020			
6.	Introduction to Filtering in frequency domain, Image smoothing in frequency domain	1	17.09.2020			
7.	Image sharpening in frequency domain, Laplacian in the frequency domain	1	18.09.2020			
8.	Unsharp masking & High boost filtering	1	23.09.2020			
No. of	f classes required to complete UNIT-I	08	No. o	of classes tak	en	

UNIT-III: Image Restoration and Image Compression

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Image restoration & degradation model, Noise Models	1	24.09.2020			
2.	Restoration in the presence of noise using spatial filtering	1	25.09.2020			
3.	Inverse Filtering, MMSE filtering & Constrained least square filtering	1	07.10.2020			
4.	Introduction, Coding, Inter pixel, Psychovisual Redundancy, Fidelity Criteria	1	08.10.2020			
5.	Image compression model	1	09.10.2020			
6.	Huffman & Arithmetic coding	1	14.10.2020			
7.	LZW, Bit plane and run length coding	1	15.10.2020			
8.	Lossless & Lossy predictive coding, JPEG	1	16.10.2020			
N	No. of classes required to complete UNI		08	No. of clas	ses taken	

UNIT-IV: Image Segmentation

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Detection of discontinuities : Point, Line & Edge Detection	1	21.10.2020			
2.	Edge Linking, Boundary Detection: Local processing	1	22.10.2020			
3.	Global Processing via Hough transformation	1	23.10.2020			
4.	Global Processing via Graph theoretic techniques	1	28.10.2020			
5.	Thresholding	1	29.10.2020			
6.	Region Growing, Region splitting & merging	1	30.10.2020			
No. of classes required to complete UNIT-IV		06	No. of classes taken			

UNIT-V: Color Image Processing

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Color fundamentals	1	04.11.2020			
2.	Color Models	1	05.11.2020			
3.	Pseudo Color Image processing	1	06.11.2020			
4.	Full color image processing	1	11.11.2020			
5.	Histogram Processing	1	12.11.2020			
No. of classes required to complete UNIT-V			No. of classes taken			

Contents beyond the Syllabus

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Multirate Signal Processing	1	13.11.2020			

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

PART-C

EVALUATION PROCESS:

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	Q=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PROGRAMME OUTCOMES (POs):

KOOKAN	TWIE OUTCOMES (I OS).
PO 1:	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2:	Problem analysis : Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
PO 3:	Design/development of solutions : Design solutions for complex engineering problems
	and design system components or processes that meet the specified needs with
	appropriate consideration for the public health and safety, and the cultural, societal, and
PO 4:	environmental considerations.
PO 4:	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data,
	and synthesis of the information to provide valid conclusions.
PO 5:	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
	modern engineering and IT tools including prediction and modelling to complex
	engineering activities with an understanding of the limitations
PO 6:	The engineer and society: Apply reasoning informed by the contextual knowledge to
	assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice
PO 7:	Environment and sustainability: Understand the impact of the professional
	engineering solutions in societal and environmental contexts, and demonstrate the
PO 8:	knowledge of, and need for sustainable development.
10 8:	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9:	Individual and team work: Function effectively as an individual, and as a member or
	leader in diverse teams, and in multidisciplinary settings.
PO 10:	Communication : Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend
	and write effective reports and design documentation, make effective presentations, and
	give and receive clear instructions.
PO 11:	Project management and finance : Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a
DO 12:	member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12:	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological
	change.
	Change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

I KUGKAM	IME SPECIFIC OUTCOMES (FSOS):						
PSO 1:	Communication: Design and develop modern communication technologies for						
	building the inter disciplinary skills to meet current and future needs of industry.						
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic						
	Circuits or systems and Implement real time applications in the field of VLSI and						
	Embedded Systems using relevant tools						
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize						
	the issues related to real time applications						

Course InstructorCourse CoordinatorModule CoordinatorHODMrs. B RajeswariMr. M K Linga MurthyDr. G L N MurthyDr. Y. Amar Babu

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

COURSE HANDOUT

PART-A

Name of Course Instructor : V.V.Rama Krishna

Course Name & Code : DSP PROCESSORS - 17EC37

L-T-P Structure : 3-0-0 Credits : 3 Program/Sem/Sec : B.Tech., ECE., VII-Sem., Sections- B A.Y : 2020-21

PRE-REQUISITE: Digital Signal Processing, Microprocessor

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course provides the knowledge on digital computational accuracy of systems and Architecture of various digital signal processors. The course will give an idea how memory and I/O devices can be interfaced to digital signal processors.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Remembering basic concepts of Digital signal processing techniques in both time and
	frequency domain
CO 2	Apply different parameters of computational accuracy in DSP implementation.
CO 3	Analysebasic architectural requirements of programmable digital signal processors.
CO 4	Design architectural aspects of TMS320C54XX and Analog devices family DSPs

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	-	-	-	-	-	-	-	-	1	-	-	1
CO2	3	2	2	-	-	-	-	-	-	-	-	2	-	-	2
CO3	2	3	2	1	ı		ı	ı	ı	-	-	2	-	-	3
CO4	2	2	3	2								3	-	-	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

T1 Digital Signal Processing Implementations. Avatar Singh and S. Srinivasan, Thomson Publications

REFERENCE BOOKS:

- **R1** Digital Signal Processors, Architecture, Programming and Applications, B.Venkataramani and M. Bhaskar, 2002, TMH.
- **R2** Digital Signal Processing Jonatham Stein, 2005, John Wiley.
- R3 DSP Processor Fundamentals, Architecture & Features- Lapsley et al. 2000, S. Chand & Co. Press

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction To Digital Signal Processing

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
1.	Course Objectives	1	17-08-2020		TLM2			
2.	Introduction	1	18-08-2020		TLM2			
3.	A Digital signal-processing system	1	20-08-2020		TLM2			
4.	The sampling process	1	24-08-2020		TLM2			
5.	Discrete time sequences	1	25-08-2020		TLM2			
6.	Discrete Fourier Transform (DFT)	1	27-08-2020		TLM2			
7.	Fast Fourier Transform	1	31-08-2020		TLM2			
8.	linear time-invariant systems	1	01-09-2020		TLM2			
9.	Digital filters- FIR	1	03-09-2020		TLM2			
10.	Digital filters- IIR	1	07-09-2020		TLM2			
11.	Decimation, interpolation	1	08-09-2020		TLM2			
No. o	No. of classes required to complete UNIT-I:11 No. of classes taken:							

UNIT-II: Computational Accuracy in DSP Implementations

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Number formats for signals and coefficients in DSP systems	1	10-09-2020		TLM2	
2.	Number formats for signals and coefficients in DSP systems	1	14-09-2020		TLM2	
3.	Dynamic Range and Precision	1	15-09-2020		TLM2	
4.	Sources of error in DSP implementations	1	17-09-2020		TLM2	
5.	A/D Conversion errors	1	21-09-2020		TLM2	
6.	D/A Conversion Errors	1	22-09-2020		TLM2	
7.	DSP Computational errors	1	24-09-2020		TLM2	
8.	Compensating filter	1	28-09-2020		TLM2	
No. o	f classes required to complete UN	IT-II:8		No. of class	ses taken:	

UNIT-III: Architectures for Programmable DSP Devices

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Basic Architectural features	1	05-10-2020		TLM2	
2.	DSP Computational Building Blocks, Bus Architecture and Memory	1	06-10-2020		TLM2	
3.	Data Addressing Capabilities	1	08-10-2020		TLM2	
4.	Address Generation Unit	1	12-10-2020		TLM2	
5.	Programmability and Program Execution	1	13-10-2020		TLM2	
6.	Speed Issues, Features for External interfacing	1	15-10-2020		TLM2	
No. o	f classes required to complete UN	IT-III:6		No. of class	ses taken:	

UNIT-IV: Programmable Digital Signal Processors

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
1.	Commercial Digital signal- processing Devices	1	19-10-2020		TLM2		
2.	Data Addressing modes of TMS320C54XX DSPs	1	20-10-2020		TLM2		
3.	Memory space of TMS320C54XX Processors, Program Control	1	22-10-2020		TLM2		
4.	TMS320C54XX instructions and Programming	1	26-10-2020		TLM2		
5.	On-Chip Peripherals, Interrupts of TMS320C54XX processors	1	27-10-2020		TLM2		
6.	Pipeline Operation of TMS320C54XX Processors	1	29-10-2020		TLM2		
No. o	No. of classes required to complete UNIT-IV:6 No. of classes taken:						

UNIT-V: Analog Devices Family of DSP Devices

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Analog Devices Family of DSP Devices, ALU and MAC block diagram, Shifter Instruction	1	02-11-2020		TLM2	
2.	Base Architecture of ADSP2100	1	03-11-2020		TLM2	
3.	ADSP-2181 high performance Processor	1	05-11-2020		TLM2	
4.	Introduction to Blackfin Processor – The Blackfin Processor	1	09-11-2020		TLM2	
5.	Introduction to Micro Signal Architecture	1	10-11-2020		TLM2	
6.	Overview of Hardware Processing Units and Register files, Address Arithmetic Unit	1	12-11-2020		TLM2	
7.	Control Unit, Bus Architecture and Memory, Basic Peripherals	1	14-11-2020		TLM2	
No. of class	ses required to complete UN	IT-V:7		No. of class	ses taken:	

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
104	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
70.1	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering
10.	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in
DO 10	diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the									
	inter disciplinary skills to meet current and future needs of industry.									
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits									
	systems and Implement real time applications in the field of VLSI and Embedded Systems									
	using relevant tools									
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues									
	related to real time applications									

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF Electronics & Communication Engineering

COURSE HANDOUT

PART-A

PROGRAM: B. Tech. ECE – B, VII Sem.

ACADEMIC YEAR : 2020-21

COURSE NAME & CODE : Communication Networks - 17EC92

L-T-P STRUCTURE : 3-0-0

COURSE CREDITS : 3

COURSE INSTRUCTOR: Dr. P. Lachi Reddy, Professor

COURSE COORDINATOR: Dr. A. Narendra Babu, Professor

PRE-REQUISITE: Telecommunication Switching Systems and Networks

COURSE EDUCATIONAL OBJECTIVES (**CEOs**): This course provides knowledge on Communication Networks and various protocols used in different layers

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Understand the layered architecture of OSI and TCP/IP Reference models.
CO 2	Analyze the Protocols of OSI and TCP/IP Reference models
CO 3	Evaluate routing algorithms, congestion control Algorithms, IP addressing used in Network layer.
CO 4	Apply the knowledge of protocols in networking applications.

COURSE ARTICULATION MATRIX(Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	-	-	-	-	-	-	-	-	-	1	1	-	-
CO2	2	3	1	1	1	-	-	-	-	-	-	1	3	-	-
CO3	3	3	2	1	1	-	ı	-	-	-	-	1	3	-	-
CO4	2	3	2	1	1	-	-	-	-	-	-	1	3	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'
1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS

- 1. Tanenbaum and Wetherall, "Computer Networks", Pearson Education, Fifth Edition.
- 2. Behrouz. A. Forouzan, "Data Communication and Networking", Fourth Edition, Tata McGraw-hill, New Delhi, 2006

REFERENCES

- 1. S.Keshav," An Engineering Approach to Computer Networks", Pearson Education, 2nd Edition.
- 2. W.A.Shay,"Understanding communications and Networks", Cengage Learning, 3rd Edition

- 3. Chwan-Hwa (John) Wu, J. David Irwin," Introduction to Computer Networks and Cyber Security", CRC Press.
- 4. L.L.Peterson and B.S.Davie," Computer Networks", ELSE VIER, 4th edition.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction, Cross bar Switching, Electronic Space Division Switching

UNIT-I	JNIT-1: Introduction, Cross bar Switching, Electronic Space Division Switching					
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	CO discussion and overview of Syllabus	1	19-08-20			•
2.	Introduction to Communication Networks	1	21-08-20			
3.	Network Hardware , Network software	1	26-08-20			
4.	Network models LAN, WAN, MAN, Network software-protocols, layer issues	1	28-08-20			
5.	connection oriented and connection less services, Reference models-OSI	1	29-08-20			
6.	TCP/IP, Comparison between OSI and TCP/IP	1	02-09-20			
7.	Critics of OSI and TCP/IP model	1	04-09-20			
8.	Physical Layer- Guided Transmission Medium	1	05-09-20			
9.	Wireless Transmission Media, EM Spectrum, Radio, Light, Infrared and Microwave Transmission	1	09-09-20			
10.	Digital Modulation and Multiplexing, Bassband and Passband, FDM, TDM and Code Division Multiplexing	1	11-09-20			
No. o	f classes required to complete UNI	IT-I:10		No. of clas	ses taken:	

UNIT-II: Data Link Layer

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction of DLL, Design Issues	1	12-09-20			
2.	Services provided to Network Layer Farming Methods, Error control and Flow Control	1	16-09-20			
3.	Error Detection and Correction, , Hamming codes, CRC, Checksum	1	18-09-20			
4.	Stop & wait , Sliding window, one bit, go-back -n, Selective repeat protocols	1	19-09-20			
5.	Medium Access control sub layer, channel allocation problem	1	22-09-20			
6.	Multiple Access protocols- ALOHA, CSMA protocols, CSMA with collision detection, Collision free protocols	1	23-09-20			
7.	Ethernet	1	25-09-20			
8.	Wireless Lans-Infrastructure, Protocol stack, MAC frame, 802.11 services	1	26-09-20			
9.	Bluetooth-Architecture, Protocol stack, Frame structure	1	29-09-20			
No. o	f classes required to complete UN	IT-II:9				

UNIT-III: Network Layer

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Network Layer Design Issues- store and forward, datagrams and virtual circuits	1	30-09-20			
2.	Routing algorithms- Optimality Principle, Shortest Path	1	03-10-20			
3.	Flooding, Distance vector routing,	1	06-10-20			
4.	Link state routing	1	07-10-20			
5.	Hierarchical routing		09-10-20			
6.	Board cast routing & Multicast Routing	1	10-10-20			
7.	Congestion control in data subnets, warning bits	1	13-10-20			
8.	Load shedding, choke packets	1	14-10-20			
9.	Jitter control, RED	1	16-10-20			
No. o	f classes required to complete UN	IT-III: 09		No. of class	sses taken:	

UNIT-IV: Transport Layer

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Internetworking	1	17-10-20			
2.	Tunneling, Packet Fragmentation	1	20-10-20			
3.	IPV4	1	21-10-20			
4.	IPV6, comparision between IPV4 and IPV6	1	23-10-20			
5.	Internet control protocols	1	27-10-20			
6.	OSPF BGP	1	28-10-20			
7.	Transport layer services to the upward Layers	1	30-10-20			
8.	Addressing Address connection establishment	1	31-10-20			
9.	Connection release, Crash Recvoery	1	03-11-20			
No. o	No. of classes required to complete UNIT-IV: 09 No. of classes taken:					

UNIT-V: The Internet Transport Protocols & Application Layer

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Internet transport protocols: UDP- RPC,	1	04-11-20			
2.	Real Time Transport Protocols	1	06-11-20			
3.	Internet transport protocols: TCP-I,	1	07-11-20			
4.	TCP service model	1	10-11-20			
5.	TCP Segment Header	1	11-11-20			
6.	Domain Name system	1	13-11-20			
7.	Email Architecture and services	1	17-11-20			
8.	SMTP	1	18-11-20			
9.	WWW and its architecture	1	20-11-20			
No. of c	No. of classes required to complete UNIT-V: 09 No. of cl					

Content beyond the syllabus

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Encryption		21-11-20			
2.						
No. of classes required to complete UNIT-V:5			•	No. of clas	ses taken:	

Teaching I	Learning Methods		
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project

ACADEMIC CALENDAR:

Description	From	То	Weeks
I Phase of Instructions-1	17-08-2020	03-10-2020	7 W
I Mid Examinations	28-10-2020	03-10-2020	1W
II Phase of Instructions	05-10-2020	21-11-2020	7 W
II Mid Examinations	16-11-2020	21-11-2020	1W
Preparation and Practical examinations	23-11-2020	28-11-2020	1W
Semester End Examinations	30-11-2020	14-12-2020	2 W

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
	systems and Implement real time applications in the field of VLSI and Embedded Systems
	using relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Course Instructor Course Coordinator Module Coordinator HOD (Dr. P. Lachi Reddy) (Dr. A. Narendra Babu) (Dr. M. Venkata Sudhakar) (Dr. Y. Amar Babu)

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS & COMMUNICATIONS ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor : Michael Sadgun Rao Kona

Course Name & Code : Introduction to Database & 17IT80

L-T-P Structure : 3-0-0 Credits : 3

Program/Sem/Sec : B.Tech., ECE., VII-Sem., A,B,C A.Y : 2020-21

PRE-REQUISITE: Elementary set theory, concepts of relations and functions, propositional logic data structures (trees, Graphs, dictionaries) & File Concepts.

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course enables the students to know about DBMS basic concepts, Database Languages, Data base Design, Normalization process and Transaction processing and Indexing.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Understand DBMS concepts, architecture
CO 2	Design Entity Relational Model and make them to data model.
CO 3	Understand the usage of keys and constraints for relational data.
CO 4	Apply the normalization process for data base design.
CO 5	Analyze the issues in transaction processing and different recovery strategies.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2	-	-	-	-	-	-	-	-	-	3	2	2
CO2	3	3	-	-	-	-	-	-	-	-	-	-	2	3	2
CO3	3	2	-	-	-	-	-	-	-	-	-	-	2	3	2
CO4	2	1	2	-	-	-	-	-	-	-	-	-	3	2	3
CO4	2	1	2	-	-	-	-	-	-	-	-	-	2	3	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- **T1** Henry F. Korth, Abraham Silberschatz, S. Sudarshan, "Database Concepts", McGraw Hill, 6th edition, 2009.
- **T2** RamezElmasri, Shamkanth B. Navathe, "Fundamentals Of Database Systems", Addision Wesley, 6th edition, 2010.

REFERENCE BOOKS:

- **R1** Raghu Ramakrishna, Johannese Gehrke, "Database Management System", McGraw Hill 3rd edition, 2000.
- R2 Date C. J, "An Introduction to Database System", Pearson Education, 8th edition, 2003.
- **R3** Shara Maheshwari, Ruchi Jain, "DBMS: Complete Practical Approach", Firewall Media, New Delhi, 2005.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Course and COs	1	17.08.2020		TLM2	
2.	Introduction, An overview of database management system, Database system Vs file system	1	19.08.2020		TLM2	
3.	Database system Vs file system	1	21.08.2020		TLM2	
4.	Database system concepts and architecture	1	24.08.2020		TLM2	
5.	Data models schema and instances	1	26.08.2020		TLM2	
6.	Data independence and data base language and interfaces	1	28.08.2020		TLM2	
7.	Data definitions language, DML	1	31.08.2020		TLM2	
8.	Overall Database Structure	1	2.09.2020		TLM2	
9.	Revision on Unit-1& Assignment-I	1	4.09.2020		TLM2	
	No. of classes required to comp	lete UNIT	T-I: 9	No.	of classes ta	aken:

UNIT-II: Data Modelling using the Entity Relationship Model

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	ER model concepts - attributes, entity, Relationships	1	07/09/20, 09/09/20		TLM2	
2.	notation for ER diagram	1	11/09/20		TLM2	
3.	Mapping constraints	1	14/09/20		TLM2	
4.	keys -Concepts of Super Key, and identity key, primary key, Generalization	1	16/09/20		TLM2	
5.	Aggregation	1	18/09/20		TLM2	
6.	Reduction of an ER diagrams to tables,	1	21/09/20		TLM2	
7.	Relationships of higher degree	1	23/09/20		TLM2	
8.	Revision on Unit - II & Assignment-II	1	25/09/20		TLM2	
No. o	f classes required to complete U	NIT-II: 09		No. of class	ses taken:09)

UNIT-III: Relational Data Model and Language

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Relational data model concepts	1	05/10/20		TLM2	
2.	Integrity constraints: entity integrity, referential integrity, Keys constraints, Domain constraints	1	07/10/20		TLM2	
3.	Relational algebra	1	09/10/20		TLM2	
4.	Characteristics of SQL, Advantage of SQL SQL data types and literals, Types of SQL commands SQL operators and their procedure	1	12/10/20		TLM2	
5.	Tables, views and indexes, Queries and sub queries, Aggregate functions Insert, update and delete operations	1	14/10/20		TLM2	
6.	Unions, Intersection, Minus, Cursors in SQL, Revision of UNIT- 3&Assignment-III f classes required to complete UN	1 NIT-III: 6	16/10/20	No. of clas	TLM2	

UNIT-IV: Normalization

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Functional Dependencies	1	19/10/20		TLM2	
2.	Normal Forms: First, Second, Third Normal Forms	1	21/10/20		TLM2	
3.	BCNF, Inclusion Dependences Loss Less Join Decompositions	1	23/10/20		TLM2	
4.	Normalization Using FD,MVD Normalization Using JD	1	26/10/20		TLM2	
5.	Normalization Using FD,MVD Normalization Using JD		28/10/20		TLM2	
6.	Alternative Approaches to Database Design Revision of Unit-4&Assignment-IV	1	30/10/20		TLM2	
No. o	f classes required to complete UN	NIT-IV: 6		No. of class	sses taken:	

UNIT-V: Transaction Processing Concepts

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Transaction System	1	02/11/20		TLM2	
2.	Testing Of Serializability, Serializability of Schedules Conflict & View Serializable Schedule	1	04/11/20		TLM2	
3.	Recoverability, Log Based Recovery, Checkpoints, ARIES Algorithm, Deadlock Handling	1	06/11/20		TLM2	
4.	Concurrency Control Techniques For Concurrency Control	1	09/11/20		TLM2	
5.	Time Stamping Protocols for Concurrency Control	1	11/11/20		TLM2	
6.	Locking, Validation Based Protocol, Multiple Granularity	1	13/11/20		TLM2	
7.	Recovery With Concurrent Transactions ,Revision of UNIT- 5&Assignment-V	1	16/11/20		TLM2	
No. of	f classes required to complete UNI	T-V: 7		No. of classes taken:		

Teaching Learning Methods									
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)						
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)						
TLM3	Tutorial	TLM6	Group Discussion/Project						

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
104	methods including design of experiments, analysis and interpretation of data, and synthesis of the
	information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for
700	sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms
DO 0	of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
1010	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the inter
	disciplinary skills to meet current and future needs of industry.
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
	systems and Implement real time applications in the field of VLSI and Embedded Systems using
	relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to INTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor: , Mr. V.RAVI SEKHAR REDDY, Smt. K.RANI RUDRAMA

Course Name & Code : MICROWAVE AND OPTICAL COMMUNICATIONS LAB-17EC71

L-T-P Structure : 0-0-2 Credit: 1

Program/Sem/Sec : B.Tech., ECE., VII-Sem., Section- B A.Y : 2020-21

Course Educational Objective: This Lab deals with the micro measurements of the signals at micro frequency range. It involves measurement of frequency, wave length, VSWR, Impedance and scattering parameters of various micro wave devices like Circulator, Direction Coupler, and Magic-Tee. Even the latest trend of communication technology i.e. fiber optics is also introduced and propagation conditions will be verified by evaluating the losses.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Understand the various blocks of microwave bench setup
CO 2	Evaluate the frequency, wave length, VSWR, impedance and scattering parameters of various microwave devices
CO 3	Analyze the losses to verify the propagating conditions in the optical fiber.
CO 4	Adapt effective communication, presentation and report writing skills.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	-	1	1	-	-	-	-	-	-	-	1	-	-
CO2	2	2	-	3	2	-	-	-	-	-	-	-	3	-	-
CO3	2	2	-	2	2	-	ı	ı	-	-	-	-	2	-	-
CO4	-	-	-	-	-	-	-	1	2	3	-	1	-	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

PART-B

COURSE DELIVERY PLAN (LESSON PLAN): Section-B

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
CYC	LE I	•	•	•		*
1.	Demonstration	1	18.08.2020		TLM 4	
2.	Reflex Klystron Characteristics	1	25.08.2020		TLM4	
3.	Gunn Diode Characteristics	1	01.09.2020		TLM4	
4.	Attenuation Measurement	1	08.09.2020		TLM4	
5.	Directional Coupler Characteristics.	1	15.09.2020		TLM4	
6.	VSWR Measurement	1	22.09.2020		TLM4	
7.	Impedance ,Frequency Measurement.	1	29.09.2020		TLM4	
CYC	LE 2	1		<u> </u>	<u>l</u>	
8	Scattering Parameters of Circulator.	1	06.10.2020		TLM4	
9	Scattering Parameters of Magic Tee.	1	13.10.2020		TLM4	
10	Characterization of LED,Laser Diode	1	20.10.2020		TLM4	
11	Measurement of Data rate for Digital Optical link.	1	27.10.2020		TLM4	
12	Measurement of Numerical Aperture	1	03.11.2020		TLM4	
13	Measurement of losses for Analog optical link	1	10.11.2020		TLM4	
14	Lab exam	1	17.11.2020			

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Day to Day work	A=20
Internal Lab Examination	B=10
Attendance	C=5
Viva voce	D=5
Cumulative Internal Examination : A+B+C	A+B+C+D=40
Semester End Examinations	E=60
Total Marks: A+B+C+D+E	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
DO 4	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
PO 3	natural sciences, and engineering sciences. Design/development of solutions : Design solutions for complex engineering problems and
PO 3	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
DO (with an understanding of the limitations
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering
10.	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in
70.10	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the					
	inter disciplinary skills to meet current and future needs of industry.					
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or					
	systems and Implement real time applications in the field of VLSI and Embedded Systems					
	using relevant tools					
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues					
	related to real time applications					

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

COURSE HANDOUT

PART-A

: B.Tech., VII-Sem., ECE - B Section **PROGRAM**

ACADEMIC YEAR : 2020 - 21

: Embedded System Design Lab - 17EC72 COURSE NAME & CODE

L-T-P STRUCTURE : 0-0-2

COURSE CREDITS : 2

COURSE INSTRUCTOR : Mr. K. Ravi Kumar

COURSE COORDINATOR :

COURSE OBJECTIVE:

This course provides practical exposure on

Course Outcomes: At the end of the course, student will be able to:

		The state of the s						
(CO1	Evaluate Inter Process Communication applications using ARM based processors						
(CO2	Develop the Hardware platform using soft processors and applications using C on Xilinx FPGA Zynq 7000 series						
1	CO3	Adapt effective communication, presentation and report writing skills.						

COURSE ARTICULATION MATRIX(Correlation between Cos & POs, PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	2	3	-	-	-	-	-	-	-	-	3	-
CO2	2	2	3	2	3	-	-	-	-	-	-	-	-	3	-
CO3	-	-	1	1	1	1	1	1	2	3	ı	1	ı	1	-
CO4	2	2	3	2	3	1	-	1	1	-	1	-	-	3	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

PART-B

LAB SCHEDULE (LESSON PLAN): Section-B
LIST OF EXPERIMENTS (Minimum 12 Experiments to be conducted)

S.No	Experiments to be conducted	No. of Classes Require d	Tentative Date of Completion	Actual Date of Completio n	Teaching Learning Methods	HOD Sign Weekly
		CYCLE-1				
1.	Introduction to Lab	2	21.08.2020		TLM2	
2.	ARM Assembly Language Programming-I	2	28.08.2020		TLM8	
3.	ARM Assembly Language Programming-II	2	04.09.2020		TLM8	
4.	Program to Interface 8-bit LED	2	11.09.2020		TLM8	
5.	Program to demonstrate Time Delay Program using built in Timer/Counter feature	2	18.09.2020		TLM8	
6.	Program to displaying a message in a 2line x 16 Characters LCD display and verify the result in debug terminal	2	18.09.2020		TLM8	
7.	Program to implement Generation of PWM signal on IDE environment	2	25.09.2020		TLM8	
8.	Program to demonstrate serial communication on IDE environment	2	25.09.2020		TLM8	
		CYCLE-2	2			
9.	Program to implement Traffic light controller on IDE environment	2	02.10.2020		TLM8	
10.	Program to implement Stepper motor controller on IDE environment	2	09.10.2020		TLM8	
11.	Basic Audio Processing on IDE environment	2	16.10.2020		TLM8	
12.	Program to demonstrate I2C Interface on IDE environment	2	16.10.2020		TLM8	
13.	Program to implement Buzzer Interface on IDE environment	2	23.10.2020		TLM8	
14.	Design of System on Chip platform using Xilinx FPGAs and Embedded Development Kit Tools	2	30.10.2020		TLM8	
15.	Design dual processor based System on Chip using Xilinx EDK Tools and Zynq 7000 series FPGA	2	06.11.2020		TLM8	
16.	Hardware Software Co- design using Xilinx EDK Tools	2	13.11.2020		TLM8	

17.	Internal Exam	2	20.11.2020			
No. of classes required to complete:		32	No. of classes	conducted	l :	

PART-C

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD		
TLM2	PPT	TLM5	Programming	TLM8	Lab Demo		
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study		

ACADEMIC CALENDAR:

Academic Calendar: B.Tech., VII-Sem., 2020-21									
Description	From	То	Weeks						
Commencement of Class work: 17.08.2020									
I Phase of Instructions	17-08-2020	03-10-2020	7W						
I MID Examinations	28-09-2020	03-10-2020							
II Phase of Instructions	05-10-2020	21-11-2020	7W						
II MID Examinations	16-11-2020	21-11-2020							
Preparation and Practicals	23-11-2020	28-11-2020	1W						
Semester End Examinations	30-11-2020	14-12-2020	2W						

EVALUATION PROCESS:

EVALUATION I ROCESS.		
Evaluation Task	COs	Marks
Day to Day work	1,2,3	A1=20
Attendance (>95%=5, 90-95%=4,85-90%=3,80-85%=2,75-80%=1)		A2=5
Viva-Voce	1,2,3	A3=5
Internal Lab Examination	1,2,3	B=10
Total Internal Marks(A1+A2+A3+B)		C=40
Semester End Examinations	1,2,3	D=60
Total Marks: C+D	1,2,3	100

PART-D

PROGRAMME OUTCOMES (POs):

INOUN	ANNUE OUTCONES (1 Os).
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and

	design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.					
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.					
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations					
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice					
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.					
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.					
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.					
PO 10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.					
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.					
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.					

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO	Communication: Design and develop modern communication technologies for building the					
1	inter disciplinary skills to meet current and future needs of industry.					
PSO	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or					
2	systems and Implement real time applications in the field of VLSI and Embedded Systems					
	using relevant tools					
PSO	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues					
3	related to real time applications					

Course Instructor (Mr. K. Ravi Kumar)

Course Coordinator

Module Coordinator (Dr.P.Lachi Reddy)

HOD (Dr.Y.Amar Babu)

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

COURSE HANDOUT

PART-A

Name of Course Instructor : M.Ramya Harika

Course Name & Code : Microwave Engineering- 17EC27

L-T-P Structure : 3-0-0 Credits : 3 Program/Sem/Sec : B.Tech., ECE., VII-Sem., Sections- C A.Y : 2020-21

PRE-REQUISITE: Electromagnetics, Waveguides

COURSE EDUCATIONAL OBJECTIVES (**CEOs**): This course provides the knowledge on microwave communication in terms of various bands, advantages, applications. The course will give an idea about microwave active and passive devices. The course also gives the complete information regarding microwave bench setup and microwave measurements

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Understand the operation and use of Microwave solid state devices
CO 2	Analyze the characteristics of Microwave tubes
CO 3	Apply the properties of S-parameters to waveguide components
CO 4	Evaluate the various microwave parameters using microwave bench setup.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	-	-	-	-	-	-	-	-	1	-	-	1
CO2	3	2	2	-	-	-	-	-	-	-	-	2	-	-	2
CO3	2	3	2	1	ı		ı	ı	1	1	1	2	-	1	3
CO4	2	2	3	2								3	-	-	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- T1 Samuel Y. Liao, "Microwave Devices and Circuits", PHI Publishers, 3rdEdition, 2003.
- T2 David M.Pozar, "Microwave Engineering", John Wiley Publishers, 4thEdition.

REFERENCE BOOKS:

- R1 G. S. N. Raju, "Microwave Engineering", IK International Publishers, New Delhi.
- **R2** Robert E. Collin "Foundations for microwave engineering" Tata McGraw Hill,2nd edition.
- **R3** M Kulakarni, "Microwave and Radar Engineering", Umesh Publications, New Delhi 5 thEdition.
- **R4** Peter A. Rizzi, "Microwave Engineering Passive Circuits", Prentice-Hall Publishers.
- R5 G. Sasibhushana Rao, "Microwave and Radar Engineering", Pearson Education India

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
1.	Course Objectives and Introduction to Unit- 1	1	18-08-2020		TLM2		
2.	Microwave Spectrum and Bands, Advantages of Microwaves.	1	20-08-2020		TLM2		
3.	Applications of Microwaves and Limitations of Conventional tubes	1	25-08-2020		TLM2		
4.	Microwave Tubes: Limitations and Losses of conventional tubes at microwave frequencies. O type and M type classifications	1	27-08-2020		TLM2		
5.	Two Cavity Klystron Structure and velocity modulation process	1	29-08-2020		TLM2		
6.	Two Cavity Klystron : Applegate Diagram, Bunching Process	1	01-09-2020		TLM2		
7.	Two Cavity Klystron: Expressions for o/p Power and Efficiency	1	03-09-2020		TLM2		
8.	Reflex Klystrons – Structure, Applegate Diagram and Principle of working	1	05-09-2020		TLM2		
9.	Reflex Klystron - Mathematical Theory of Bunching	1	08-09-2020		TLM2		
10.	Reflex Klystron - Power Output, Efficiency, o/p Characteristics.	1	10-09-2020		TLM2		
No. o	No. of classes required to complete UNIT-I:11 No. of classes taken:						

UNIT-II:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Helix TWT: Significance, Types and Characteristics of Slow Wave Structures; Structure of TWT	1	16-09-2020		TLM2	
2.	Amplification Process, Axial Electric Field, Convection Current	1	18-09-2020		TLM2	
3.	Propagation Constants, Gain Considerations.	1	19-09-2020		TLM2	
4.	M-Type Tubes : Introduction, Cross-field effects, Magnetrons – Different Types	1	23-09-2020		TLM2	
5.	8-Cavity Cylindrical Travelling Wave Magnetron	1	24-09-2020		TLM2	
6.	Hull Cut-off and Hartee Conditions	1	25-09-2020		TLM2	
7.	Modes of Resonance and PI- Mode Operation	1	26-09-2020		TLM2	
8.	O/p characteristics, Frequency Pulling and Frequency Pushing, Strapping.	1	26-09-2020		TLM2	
No. o	f classes required to complete UN		No. of clas	ses taken:		

UNIT-III:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
1.	Microwave Solid State Devices: Introduction, Classification, Applications.	1	29-09-2020		TLM2		
2.	Transferred Electron Devices: Introduction, Gunn Diode – Principle	1	29-09-2020		TLM2		
3.	Two Valley Model Theory	1	01-10-2020		TLM2		
4.	Transferred Electron Devices: RWH Theory, Characteristics, Modes of Operation	1	03-10-2020		TLM2		
5.	Avalanche Transit Time Devices: Introduction	1	06-10-2020		TLM2		
6.	IMPATT Diode - Principle of Operation	1	06-10-2020		TLM2		
7.	TRAPATT Diode - Principle of Operation	1	08-10-2020		TLM2		
8.	Characteristics of Diodes	1	10-10-2020		TLM2		
9.	Related expressions of IMPATT and TRAPATT Diodes	1	13-10-2020		TLM2		
No. o	No. of classes required to complete UNIT-III : 09 No. of classes taken:						

UNIT-IV:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Waveguide Components-I: Waveguide Multiport Junctions	1	13-10-2020		TLM2	
2.	E plane and H plane Tees	1	15-10-2020		TLM2	
3.	Magic Tee, Hybrid Ring	1	17-10-2020		TLM2	
4.	Directional Couplers – 2 Hole, Bethe Hole types.	1	20-10-2020		TLM2	
5.	Scattering Matrix – Significance,	1	20-10-2020		TLM2	
6.	Scattering Matrix—Formulation and Properties.	1	22-10-2020		TLM2	
7.	S Matrix Calculations for E plane	1	27-10-2020		TLM2	
8.	S Matrix Calculations for H plane Tees	1	27-10-2020		TLM2	
9.	Magic Tee, Directional Coupler.	1	29-10-2020		TLM2	
No. o	f classes required to complete UN	T-IV : 0	9	No. of class	ses taken:	

UNIT-V:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Waveguide Discontinuities – Waveguide irises	1	31-10-2020		TLM2	
2.	Tuning Screws and Posts, Matched Loads	1	03-11-2020		TLM2	
3.	Waveguide Attenuators – Resistive Card, Rotary Vane types	1	03-11-2020		TLM2	
4.	Waveguide Phase Shifters –	1	05-11-2020		TLM2	

	Dielectric, Rotary Vane types;				
5.	Ferrites – Composition and Characteristics	1	07-11-2020	TLM2	
6.	Faraday Rotation	1	10-11-2020	TLM2	
7.	Ferrite Components – Gyrator, Isolator	1	10-11-2020	TLM2	
8.	Circulator.	1	12-11-2020	TLM2	
9.	Microwave Measurements: Description of Microwave Bench	1	17-11-2020	TLM2	
10.	Different Blocks and their Features	1	17-11-2020	TLM2	
11.	Precautions; Measurement of Attenuation, Frequency, VSWR	1	19-11-2020	TLM2	
12.	Cavity Q, Impedance, Power.	1	21-11-2020	TLM2	
No. of	f classes required to complete UNI	2	No. of classes taken:		

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering								
	fundamentals, and an engineering specialization to the solution of complex engineering								
	problems.								
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex								
	engineering problems reaching substantiated conclusions using first principles of mathematics,								
	natural sciences, and engineering sciences.								
PO 3	Design/development of solutions: Design solutions for complex engineering problems and								
	design system components or processes that meet the specified needs with appropriate								
	consideration for the public health and safety, and the cultural, societal, and environmental								
	considerations.								
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research								
	methods including design of experiments, analysis and interpretation of data, and synthesis of								
	the information to provide valid conclusions.								
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern								
	engineering and IT tools including prediction and modelling to complex engineering activities								
PO 6	with an understanding of the limitations								
POO	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to								
	the professional engineering practice								
PO 7	Environment and sustainability : Understand the impact of the professional engineering								
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need								
	for sustainable development.								
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and								
	norms of the engineering practice.								
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in								
	diverse teams, and in multidisciplinary settings.								
PO 10	Communication: Communicate effectively on complex engineering activities with the								
	engineering community and with society at large, such as, being able to comprehend and write								
	effective reports and design documentation, make effective presentations, and give and receive								
	clear instructions.								
PO 11	Project management and finance: Demonstrate knowledge and understanding of the								
	engineering and management principles and apply these to one's own work, as a member and								
DO 15	leader in a team, to manage projects and in multidisciplinary environments.								
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in								
	independent and life-long learning in the broadest context of technological change.								

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
	systems and Implement real time applications in the field of VLSI and Embedded Systems
	using relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Course Instructor Course Coordinator Module Coordinator HOD

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE HANDOUT PART-A

Name of Course Instructor : Dr. M. V.Sudhakar

Course Name & Code : Optical Communications – 17EC28

L-T-P Structure : 3-0-0 Credits: 3

Program/Sem/Sec : B.Tech., ECE., VII-Sem., Section- C A.Y : 2020-21

PRE-REQUISITE: Electromagnetic Theory, Analog Communications, Digital Communications.

COURSE OBJECTIVE: This course gives knowledge on optical communication fundamentals, fiber types, and fiber materials. This course also describe about transmission losses in the fiber, optical sources, source to fiber coupling scheme, and optical receivers. This course also provides understanding of digital optical link, analog optical systems, wavelength division multiplexing and optical networks.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO1	Understand the concepts of optical communication systems, WDM systems, and optical
COI	networks.
CO2	Apply knowledge of signal transmission characteristics on fibers, optical sources and
CO2	detectors.
CO3	Analyze the optical device characteristics and their signal degradation mechanisms in analog
COS	and digital signal transmission.
CO4	Evaluate the performance of optical fiber communication systems

COURSE ARTICULATION MATRIX (Correlation between COs &POs. PSOs):

CO	PO	PSO	PSO	PSO											
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	2	1	-	-	-	-	-	-	-	-	-	1	1	-	-
CO2	3	3	1	-	-	-	-	-	-	-	-	2	3	-	-
CO3	2	3	1	-	-	-	-	-	-	-	-	2	2	-	-
CO4	2	2	1	-	-	-	-	-	-	-	-	2	3	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1-Slight(Low), **2-**Moderate(Medium), **3-**Substantial (High).

TEXT BOOKS:

T1	Gerd Keiser, Optical Fiber Communications, Mc Graw-Hill International edition,4th Edition, 2008.
T2	Joseph C. Palais, Fiber Optic Communications, Pearson Education, 4th Edition, 2004.

REFERENCE BOOKS:

R1	John M. Senior, Optical Fiber Communications, PHI, 2nd Edition, 2002.
R3	Govind P. Agarwal, Fiber Optic Communication Systems, John Wiley, 3rd Edition, 2004
R3	S. C. Gupta, Text Book on Optical Fiber Communication and its Applications, PHI, 2005.

PART-B COURSE DELIVERY PLAN (LESSON PLAN): Section-C

UNIT-I: Overview of Optical Fiber Communications

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Course, COs, POs	1	17.08.2020			
2.	The General System, The Evolution of Fiber Optic Systems	1	21.08.2020			
3.	Elements of Optical Fiber Link, Merits and Demerits of Optical Fiber Communications	1	22.08.2020			
4.	Applications of Optical Fiber Communications, Basic Optical Laws: Refractive Index, Refraction, Reflection	1	24.08.2020			
5.	Critical Angle, Total Internal Reflection,	1	28.08.2020			
6.	Optical Fiber Structure, Step Index Fiber Structure, Graded Index Fiber Structure	1	29.08.2020			
7.	Ray Optic Representation, Acceptance Angle, Numerical Aperture,	1	31.08,2020			
8.	Meridional and Skew Rays, Overview of Modes, Summary of Key Modal Concepts	1	04.09.2020			
9.	Cut-off Wavelength, Mode Field Diameter	1	05.09.2020			
10.	Revision of Unit-I	1	07.09.2020			
No. of	classes required to complete UNIT-I	10	No.	of classes tak	en	

UNIT-II: Fiber Materials and Signal Degradation in Optical Fibers

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-II	1	11.09.2020			
2.	Fiber Materials, Glass Fibers, Active Glass Fibers, Plastic Glass Fibers,	1	12.09.2020			
3.	Attenuation , Attenuation Units, Absorption, Scattering Losses	1	14.09.2020			
4.	Bending Losses, Core-Cladding Losses	1	18.09.2020			
5.	Signal Distortion in Optical Waveguides, Information Capacity Determination, Group delay	1	19.09.2020			
6.	Material Dispersion, Polarization-Mode Dispersion, Intermodal Dispersion, Pulse Broadening in Graded-Index Waveguides	1	21.09.2020			
7.	Mode Coupling, Design Optimization of Single-Mode Fibers, Refractive Index Profiles	1	25.09.2020			
8.	Revision of Unit-II	1	26.09.2020			
No. of	classes required to complete UNIT-I	08	No. o	of classes tak	en	

UNIT-III: Optical Sources, Power Launching and Coupling

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Requirements of Optical Sources, LED Structures, Light Source Materials	1	05.10.2020			
2.	Quantum Efficiency and LED Power, Modulation of LED	1	09.10.2020			
3.	LASER Diodes, Laser Diode Modes and Threshold Conditions	1	10.10.2020			
4.	Semiconductor Laser Diodes, Fabry Perot Lasers	1	12.10.2020			
5.	Distributed Feedback (DFB) Lasers, Laser diode rate equations, External quantum efficiency and resonant frequencies	1	16.10.2020			
6.	Source to fiber launching, Source output pattern, power coupling calculation	1	17.10.2020			
7.	Lensing Schemes for coupling improvement, Laser Diode-to-Fiber Coupling	1	19.10.2020			
No. of classes required to complete UNIT- III		07	No. o	of classes take	en	

UNIT-IV: Optical detectors and receivers

	1-1v. Optical detectors and receivers					
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to unit-IV	1	23.10.2020			
2.	Photo Detectors, Physical Principles of Photodiodes	1	24.10.2020			
3.	PIN Photo Detector, Avalanche Photo Diodes	1	26.10.2020			
4.	Detector Response Time, Temperature Effect on Avalanche Gain, Comparison of Photo Detectors	1	30.10.2020			
5.	Fundamental Receiver Operation, Digital Signal Transmission, Error Sources	1	31.10.2020			
6.	Receiver Configuration, Digital Receiver Performance: Probability of Error, The Quantum Limit, Analog Receivers	1	02.11.2020			
No. o	of classes required to complete UNIT-	06	No. c	of classes take	n	

UNIT-V: Digital Transmission Systems and Measurements, WDM and SONET/SDH

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-V, Point to Point Links, System Considerations	1	06.11.2020			
2.	Link Power Budget, Rise Time Budget	1	07.11.2020			
3.	Line Coding- NRZ codes, RZ Codes, Measurement of Attenuation and Dispersion	1	09.11.2020			
4.	WDM Features, Operation Principles of WDM	1	12.11.2020			
5.	Types of WDM, SONET/SDH Networks	1	13.11.2020			

No. of classes required to complete UNIT-V	05	No. of classes taken	
--	----	----------------------	--

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Fabrication of Fibers	1	13.11.2020			

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

ACADEMIC CALENDAR:

Description	From	To	Weeks	
I Phase of Instructions-1	17-08-2020	03-10-2020	7 W	
I Mid Examinations	28-09-2020	03-10-2020	7 VV	
II Phase of Instructions	05-10-2020	21-11-2020	7 111	
II Mid Examinations	16-11-2020	21-11-2020	7 W	
Preparation and Practical's	23-11-2020	28-11-2020	1 W	
Semester End Examinations	30-11-2020	12-12-2020	2 W	

PART-C

EVALUATION PROCESS:

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	Q=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

I NOGNAM	INIE OUTCOMES (TOS).
PO 1:	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2:	Problem analysis : Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
PO 3:	Design/development of solutions : Design solutions for complex engineering problems
	and design system components or processes that meet the specified needs with
	appropriate consideration for the public health and safety, and the cultural, societal, and
	environmental considerations.
PO 4:	Conduct investigations of complex problems: Use research-based knowledge and
	research methods including design of experiments, analysis and interpretation of data,
	and synthesis of the information to provide valid conclusions.
PO 5:	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
	modern engineering and IT tools including prediction and modelling to complex
DO (engineering activities with an understanding of the limitations
PO 6:	The engineer and society: Apply reasoning informed by the contextual knowledge to
	assess societal, health, safety, legal and cultural issues and the consequent
PO 7:	responsibilities relevant to the professional engineering practice Environment and sustainability: Understand the impact of the professional
10 /:	engineering solutions in societal and environmental contexts, and demonstrate the
	knowledge of, and need for sustainable development.
PO 8:	Ethics: Apply ethical principles and commit to professional ethics and responsibilities
	and norms of the engineering practice.
PO 9:	Individual and team work : Function effectively as an individual, and as a member or
	leader in diverse teams, and in multidisciplinary settings.
PO 10:	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend
	and write effective reports and design documentation, make effective presentations, and
	give and receive clear instructions.
PO 11:	Project management and finance : Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a
	member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12:	Life-long learning: Recognize the need for, and have the preparation and ability to
	engage in independent and life-long learning in the broadest context of technological
	change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

INUGNAM	IME SPECIFIC OUTCOMES (FSOS):							
PSO 1:	Communication: Design and develop modern communication technologies for							
	building the inter disciplinary skills to meet current and future needs of industry.							
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic							
	Circuits or systems and Implement real time applications in the field of VLSI and							
	Embedded Systems using relevant tools							
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize							
	the issues related to real time applications							

Course InstructorCourse CoordinatorModule CoordinatorHODDr. M.V.SudhakarDr. M.V.SudhakarDr. M.V.SudhakarDr. Y. Amar Babu

OPT COLLEGE OF STREET

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS & COMMUNICATIONS ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor : Mr.M.Sambasiva Reddy

Course Name & Code : Embedded System Design, 17EC29

L-T-P Structure : 3-0-0 Credits : 3

Program/Sem/Sec : B.Tech., ECE., VII-Sem., Sec-C A.Y : 2020-21

PRE-REQUISITE:

COURSE EDUCATIONAL OBJECTIVES (CEOs):

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Outline the functionality of standard single purpose processors commonly used in embedded
	systems
CO 2	Apply top-down and bottom-up methodologies for embedded system design
CO 3	Analyze state machine and concurrent process models.
CO 4	Design Control unit and data path using computational models, and develop embedded systems
	using IC design technologies.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2		-	-	-	-	-	-	-	-	1	-	1	-
CO2	3	2	1	-	-	-	-	1	-	-	-	2	-	2	
CO3	2	3	2	-	ı	-	ı	ı	ı	-	1	2	-	3	-
CO4	3	3	3	-	-	-			1	-		3	-	3	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

T1 Frank Vahid/Tony Givargis, "Embedded Sytem Design A Unified Hardware/Software Introduction" Jhon Wiley & Sons,Inc.

REFERENCE BOOKS:

- **R1** James K Peckol," Embedded Systems- A Cntemporary Design Tool" Jhon Wiley, 2008.
- **R2** Joseph Yiu,"The Definitive Guide to the ARM Cortex-M3", Newnes, Elsevier, 2008.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Embedded System Introduction

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
1.	Introduction to Unit-1	1	18.08.2020					
2.	Embedded System overview	1	18.08.2020					
3.	Design Challenge	1	20.08.2020					
4.	Processor Technology	1	21.08.2020					
5.	IC Technology	1	25.08.2020					
6.	Design Technology	1	25.08.2020					
7.	Trade-offs	1	27.08.2020					
8.	Single Purpose Processors	1	28.08.2020					
9.	RT Level Combinational Logic	1	01.09.2020					
10.	RT Level Sequential Logic	1	01.09.2020					
11.	Custom Single Purpose processor design	1	03.10.2020					
12.	Optimizing custom single Purpose processors	1	04.10.2020					
13.	Assignment-1	1	08.10.2020					
No. o	No. of classes required to complete UNIT-I: 13 No. of classes taken:							

UNIT-II: State Machine and Concurrent Process Models

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
1.	Introduction to Unit-II	1	08.10.2020					
2.	Models vs Languages	1	10.09.2020					
3.	Finite State machines with data path models(FSMD)	1	11.09.2020					
4.	FSMD using state machines	1	15.09.2020					
5.	Program State machine model	1	15.09.2020					
6.	Concurrent Process Model, Concurrent Processes	1	17.09.2020					
7.	Communication among processes	1	18.09.2020					
8.	Synchronization among processes	1	22.09.2020					
9.	Implementation, Data flow models	1	22.09.2020					
10.	Real-time Systems	1	24.09.2020					
11.	Assignment-2	1	25.09.2020					
No. of	No. of classes required to complete UNIT-II:11 No. of classes taken:							

UNIT-III: Standard Single-purpose Processors

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
1.	Introduction to Unit-III	1	06.10.2020				
2.	Timers, Counters, Watchdog Timers	1	06.10.2020				
3.	UART, LCD Controllers	1	08.10.2020				
4.	Stepper Motor Controllers	1	09.10.2020				
5.	Analog to digital Converters, Real Time Clocks	1	13.10.2020				
6.	Common memory types, Memory hierarchy and cache	1	13.10.2020				
7.	Advanced RAM	1	15.10.2020				
8.	Assignment-3	1	16.10.2020				
No. of classes required to complete UNIT-III: 08 No. of classes taken:							

UNIT-IV: Interfacing

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introductin to Unit-IV	1	20.10.2020			
2.	Communication Basics, Microprocessor Interfacing	1	20.10.2020			
3.	I/O Addressing,Interrupts, Direct Memory Access	1	22.10.2020			
4.	Arbitration, Multilevelbus architectures	1	23.10.2020			
5.	Advanced Communication principles, Serial Protocols, Parallel Protocols	1	27.09.2020			
6.	Wireless Protocols	1	27.10.2020			
7.	Assignment-4	1	29.10.2020			
No. o	f classes required to complete UNI	T-IV: 07		No. of class	ses taken:	

$\label{eq:UNIT-V} \textbf{UNIT-V}: \textbf{IC} \ \textbf{and} \ \textbf{Design} \ \textbf{Technology}$

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-V	1	03.11.2020			
2.	IC Technology, Full- Custom(VLSI) IC technology	1	03.11.2020			
3.	Programmable logic devices(PLD) IC technology	1	05.11.2020			
4.	Design technology: Automation, Systhesis, Verification	1	06.11.2020			
5.	Hardware/Software Co-simulation	1	10.11.2020			
6.	Reuse:Intellectual Property cores	1	10.11.2020			
7.	Design Process Models	1	12.11.2020			
8.	Assignment-5	1	13.11.2020			
No. of	f classes required to complete U	NIT-V: 0	8	No. of clas	ses taken:	

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

PART-C

EVALUATION PROCESS (R14 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	30
Semester End Examination (SEE)	70
Total Marks = CIE + SEE	100

Academic Calendar: B.Tech., VII-Sem., 2020-21								
Description	Description From To							
Commencement of Class work: 17.08.2020								
I Phase of Instructions	17-08-2020	03-10-2020	7337					
I MID Examinations	28-09-2020	03-10-2020	7W					
II Phase of Instructions	05-10-2020	21-11-2020	7W					
II MID Examinations	16-11-2020	21-11-2020] /w					
Preparation and Practicals	23-11-2020	28-11-2020	1W					
Semester End Examinations	30-11-2020	14-12-2020	2W					

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
DO (with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering
107	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or systems and Implement real time applications in the field of VLSI and Embedded Systems using relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues related to real time applications

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE HANDOUT PART-A

Name of Course Instructor : Mr. M K Linga Murthy

Course Name & Code : Digital Image Processing – 17EC33

L-T-P Structure : 3-0-0 Credits: 3

Program/Sem/Sec : B.Tech., ECE., VII-Sem., Section- C A.Y : 2020-21

PRE-REQUISITE: Signals and Systems, Digital Signal Processing, Transform Techniques.

COURSE OBJECTIVE: This course provides the fundamental concepts of Image Processing.

Image enhancement which is the most prominent preprocessing step will be learnt in both time and spectral domain. The course also gives the basics of color images and their processing. Knowledge about compression as well as segmentation will also be given

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO1	Summarize the fundamentals of Digital Image Processing. (L2)
CO2	Apply the concepts of filtering, Fourier transforms for image enhancement and restoration.(L3)
CO3	Illustrate the compression of an image using loss less and lossy models. (L3)
CO4	Analyze the segmentation and color image processing techniques.(L4)

COURSE ARTICULATION MATRIX (Correlation between COs &POs, PSOs):

COs	PO	PSO	PSO	PSO											
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	1	-	-	-	-	-	-	-	-	-	1	-	-	3
CO2	2	3	2	1	-	-	-	-	-	-	-	1	-	-	3
CO3	3	3	2	2	-	-	-	-	-	-	-	1	2	-	3
CO4	3	3	3	2	-	1	-	-	-	-	-	1	-	-	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1-Slight(Low), **2-**Moderate(Medium), **3-**Substantial (High).

TEXT BOOKS:

T1 R. C. Gonzalez and R. E. Woods, "Digital Image Processing", Addison Wesley/ Pearson education, 3rd Edition, 2002

REFERENCE BOOKS:

R1	William J Pratt, "Digital Image Processing", John Wiley & Sons
R2	S.Jayaraman, E.Esakkirajan, T.Veerakumar, "Digital Image Processing", TMH edition,
	2011
R3	Anil K. Jain, "Fundamentals of Digital Image Processing", PHI Publications.

PART-B COURSE DELIVERY PLAN (LESSON PLAN): Section-C

UNIT-I: Introduction

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to the course, Course Objective and Course outcomes	1	17.08.2020			
2.	2D function & Basic definitions & Digital image definition	1	18.08.2020			
3.	Fundamental steps in image processing	1	20.08.2020			
4.	Components of Image processing system	1	24.08.2020			
5.	Applications of Image Processing	1	25.08.2020			
6.	Structure of Human Eye & Image formation in the eye	1	27.08.2020			
7.	Sampling & Quantization, Digital image representation, Spatial Resolution, Intensity Resolution.	1	31.08.2020			
8.	Relationships between Pixels, Adjacency, Connectivity, Regions, Boundaries & Distance measures	1	01.09.2020			
No. of	classes required to complete UNIT-I	08	No.	of classes tak	en	

UNIT-II: Image Enhancement in Spatial and Frequency Domain

·		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
		Required	Completion	Completion	Methods	Weekly
	Introduction to Image Enhancement,					
1.	Spatial Domain Enhancement -	1	03.09.2020			
	Introduction					
	Gray Level Transformation functions &					
2.	Piecewise linear Transformation	1	07.09.2020			
	functions					
3.	Histogram Processing, Histogram	1	08.09.2020			
٥.	Equalization	1	00.07.2020			
4.	Histogram Specification & Examples	1	10.09.2020			
	0 1	_				
5.	Smoothing spatial filters & Sharpening	1	14.09.2020			
	spatial filters					
_	Introduction to Filtering in frequency		4500000			
6.	domain, Image smoothing in frequency	1	15.09.2020			
	domain					
7.	Image sharpening in frequency domain,	1	17.09.2020			
	Laplacian in the frequency domain	1	17.03.2020			
8.	Unsharp masking & High boost filtering	1	21.09.2020			
No. of	f classes required to complete UNIT-I	08	No. o	of classes tak	en	

UNIT-III: Image Restoration and Image Compression

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Image restoration & degradation model, Noise Models	1	22.09.2020			
2.	Restoration in the presence of noise using spatial filtering	1	24.09.2020			
3.	Inverse Filtering, MMSE filtering & Constrained least square filtering	1	05.10.2020			
4.	Introduction, Coding, Inter pixel, Psychovisual Redundancy, Fidelity Criteria	1	06.10.2020			
5.	Image compression model	1	08.10.2020			
6.	Huffman & Arithmetic coding	1	12.10.2020			
7.	LZW, Bit plane and run length coding	1	13.10.2020			
8.	Lossless & Lossy predictive coding, JPEG	1	15.10.2020			
No. of classes required to complete UNIT		T-III	08	No. of clas	ses taken	

UNIT-IV: Image Segmentation

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Detection of discontinuities : Point, Line & Edge Detection	1	19.10.2020			
2.	Edge Linking, Boundary Detection: Local processing	1	20.10.2020			
3.	Global Processing via Hough transformation	1	22.10.2020			
4.	Global Processing via Graph theoretic techniques	1	26.10.2020			
5.	Thresholding	1	27.10.2020			
6.	Region Growing, Region splitting & merging	1	29.10.2020			
No. of classes required to complete UNIT-IV		06	No. of classes taken			

UNIT-V: Color Image Processing

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Color fundamentals	1	02.11.2020			
2.	Color Models	1	03.11.2020			
3.	Pseudo Color Image processing	1	05.11.2020			
4.	Full color image processing	1	09.11.2020			
5.	Histogram Processing	1	10.11.2020			
No. of classes required to complete UNIT-V		05	No. o	of classes take	en	

Contents beyond the Syllabus

S.No	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to video processing	1	12.11.2020			

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

ACADEMIC CALENDAR:

Description	From	То	Weeks	
I Phase of Instructions-1	17-08-2020	03-10-2020	7 W	
I Mid Examinations	28-09-2020	03-10-2020	7 W	
II Phase of Instructions	05-10-2020	21-11-2020	7.11	
II Mid Examinations	16-11-2020	21-11-2020	7 W	
Preparation and Practical's	23-11-2020	28-11-2020	1 W	
Semester End Examinations	30-11-2020	12-12-2020	2 W	

PART-C

EVALUATION PROCESS:

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	Q=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PROGRAMME OUTCOMES (POs):

I NOGNAM	INIE OUTCOMES (TOS).
PO 1:	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2:	Problem analysis : Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
PO 3:	Design/development of solutions : Design solutions for complex engineering problems
	and design system components or processes that meet the specified needs with
	appropriate consideration for the public health and safety, and the cultural, societal, and
	environmental considerations.
PO 4:	Conduct investigations of complex problems: Use research-based knowledge and
	research methods including design of experiments, analysis and interpretation of data,
DO 5	and synthesis of the information to provide valid conclusions.
PO 5:	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
	modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6:	The engineer and society: Apply reasoning informed by the contextual knowledge to
100.	assess societal, health, safety, legal and cultural issues and the consequent
	responsibilities relevant to the professional engineering practice
PO 7:	Environment and sustainability : Understand the impact of the professional
	engineering solutions in societal and environmental contexts, and demonstrate the
	knowledge of, and need for sustainable development.
PO 8:	Ethics: Apply ethical principles and commit to professional ethics and responsibilities
	and norms of the engineering practice.
PO 9:	Individual and team work : Function effectively as an individual, and as a member or
	leader in diverse teams, and in multidisciplinary settings.
PO 10:	Communication : Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend
	and write effective reports and design documentation, make effective presentations, and
70.11	give and receive clear instructions.
PO 11:	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a
DO 12	member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12:	Life-long learning : Recognize the need for, and have the preparation and ability to
	engage in independent and life-long learning in the broadest context of technological change.
	Change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

INUGNAM	IME SPECIFIC OUTCOMES (PSOS):					
PSO 1:	Communication: Design and develop modern communication technologies for					
	building the inter disciplinary skills to meet current and future needs of industry.					
PSO 2:	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic					
	Circuits or systems and Implement real time applications in the field of VLSI and					
	Embedded Systems using relevant tools					
PSO 3:	Signal Processing: Apply the Signal processing techniques to synthesize and realize					
	the issues related to real time applications					

Course InstructorCourse CoordinatorModule CoordinatorHODMr. M K Linga MurthyMr. M K Linga MurthyDr. G L N MurthyDr. Y. Amar Babu

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION

COURSE HANDOUT

PART-A

Name of Course Instructor : V.V.Rama Krishna

Course Name & Code : DSP PROCESSORS - 17EC37

L-T-P Structure : 3-0-0 Credits : 3 Program/Sem/Sec : B.Tech., ECE., VII-Sem., Sections- C A.Y : 2020-21

PRE-REQUISITE: Digital Signal Processing, Microprocessor

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course provides the knowledge on digital computational accuracy of systems and Architecture of various digital signal processors. The course will give an idea how memory and I/O devices can be interfaced to digital signal processors.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Remembering basic concepts of Digital signal processing techniques in both time and
	frequency domain
CO 2	Apply different parameters of computational accuracy in DSP implementation.
CO 3	Analysebasic architectural requirements of programmable digital signal processors.
CO 4	Design architectural aspects of TMS320C54XX and Analog devices family DSPs

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	1	-	-	-	-	-	-	-	-	1	-	-	1
CO2	3	2	2	-	-	-	-	-	-	-	-	2	-	-	2
CO3	2	3	2	1	ı		ı	ı	ı	-	-	2	-	-	3
CO4	2	2	3	2								3	-	-	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

T1 Digital Signal Processing Implementations. Avatar Singh and S. Srinivasan, Thomson Publications

REFERENCE BOOKS:

- **R1** Digital Signal Processors, Architecture, Programming and Applications, B.Venkataramani and M. Bhaskar, 2002, TMH.
- **R2** Digital Signal Processing Jonatham Stein, 2005, John Wiley.
- R3 DSP Processor Fundamentals, Architecture & Features- Lapsley et al. 2000, S. Chand & Co. Press

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction To Digital Signal Processing

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
1.	Course Objectives	1	19-08-2020		TLM2		
2.	Introduction	1	21-08-2020		TLM2		
3.	A Digital signal-processing system	1	26-08-2020		TLM2		
4.	The sampling process	1	28-08-2020		TLM2		
5.	Discrete time sequences	1	29-08-2020		TLM2		
6.	Discrete Fourier Transform (DFT)	1	02-09-2020		TLM2		
7.	Fast Fourier Transform	1	04-09-2020		TLM2		
8.	linear time-invariant systems	1	05-09-2020		TLM2		
9.	Digital filters- FIR	1	09-09-2020		TLM2		
10.	Digital filters- IIR	1	11-09-2020		TLM2		
11.	Decimation, interpolation	1	12-09-2020		TLM2		
No. o	No. of classes required to complete UNIT-I:11 No. of classes taken:						

UNIT-II: Computational Accuracy in DSP Implementations

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
1.	Number formats for signals and coefficients in DSP systems	1	16-09-2020		TLM2		
2.	Number formats for signals and coefficients in DSP systems	1	18-09-2020		TLM2		
3.	Dynamic Range and Precision	1	19-09-2020		TLM2		
4.	Sources of error in DSP implementations	1	23-09-2020		TLM2		
5.	A/D Conversion errors	1	24-09-2020		TLM2		
6.	D/A Conversion Errors	1	25-09-2020		TLM2		
7.	DSP Computational errors	1	26-09-2020		TLM2		
8.	Compensating filter	1	26-09-2020		TLM2		
No. o	No. of classes required to complete UNIT-II:8 No. of classes taken:						

UNIT-III: Architectures for Programmable DSP Devices

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Basic Architectural features	1	07-10-2020		TLM2	
2.	DSP Computational Building Blocks, Bus Architecture and Memory	1	09-10-2020		TLM2	
3.	Data Addressing Capabilities	1	10-10-2020		TLM2	
4.	Address Generation Unit	1	14-10-2020		TLM2	
5.	Programmability and Program Execution	1	16-10-2020		TLM2	
6.	Speed Issues, Features for External interfacing	1	17-10-2020		TLM2	
No. o	No. of classes required to complete UNIT-III:6 No. of classes taken:					

UNIT-IV: Programmable Digital Signal Processors

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Commercial Digital signal- processing Devices	1	21-10-2020		TLM2	
2.	Data Addressing modes of TMS320C54XX DSPs	1	23-10-2020		TLM2	
3.	Memory space of TMS320C54XX Processors, Program Control	1	24-10-2020		TLM2	
4.	TMS320C54XX instructions and Programming	1	28-10-2020		TLM2	
5.	On-Chip Peripherals, Interrupts of TMS320C54XX processors	1	30-10-2020		TLM2	
6.	Pipeline Operation of TMS320C54XX Processors	1	31-10-2020		TLM2	
No. of	No. of classes required to complete UNIT-IV:6 No. of classes taken:					

UNIT-V: Analog Devices Family of DSP Devices

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Analog Devices Family of DSP Devices, ALU and MAC block diagram, Shifter Instruction	1	04-11-2020		TLM2	
2.	Base Architecture of ADSP2100	1	06-11-2020		TLM2	
3.	ADSP-2181 high performance Processor	1	07-11-2020		TLM2	
4.	Introduction to Blackfin Processor – The Blackfin Processor	1	11-11-2020		TLM2	
5.	Introduction to Micro Signal Architecture	1	13-11-2020		TLM2	
6.	Overview of Hardware Processing Units and Register files, Address Arithmetic Unit	1	14-11-2020		TLM2	
7.	Control Unit, Bus Architecture and Memory, Basic Peripherals	1	14-11-2020		TLM2	
No. of class	ses required to complete UN	IT-V:7		No. of class	sses taken:	

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
104	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
PO 8	for sustainable development. Ethics : Apply ethical principles and commit to professional ethics and responsibilities and
PU 8	norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in
10)	diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
	systems and Implement real time applications in the field of VLSI and Embedded Systems
	using relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF Electronics & Communication Engineering COURSE HANDOUT

PART-A

Name of Course Instructor : Dr.A.Narendra Babu

Course Name & Code : COMMUNICATION NETWORKS & 17EC92

L-T-P Structure : 3-0-0 Credits : 3 Program/Sem/Sec : B.Tech., ECE., VII-Sem., Section- C A.Y : 2019-20

PRE-REQUISITE: Telecommunication Switching Systems and Networks

COURSE EDUCATIONAL OBJECTIVES (**CEOs**): This course provides knowledge on Communication Networks and various protocols used in different layers

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Understand the layered architecture of OSI and TCP/IP Reference models.
CO 2	Analyze the Protocols of OSI and TCP/IP Reference models
CO 3	Evaluate routing algorithms, congestion control Algorithms, IP addressing used in Network layer
CO 4	Apply the knowledge of protocols in networking applications.

COURSE ARTICULATION MATRIX(Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2	-	-	-	-	-	-	-	-	-	1	1	-	-
CO2	2	3	1	1	1	-	-	-	-	-	-	1	3	-	-
CO3	3	3	2	1	1	ı	ı	-	ı	-	ı	1	3	-	-
CO4	2	3	2	1	1	-	-	-	-	-	-	1	3	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

TEXT BOOKS

- 1. Tanenbaum and Wetherall, "Computer Networks", Pearson Education, Fifth Edition.
- 2. Behrouz. A. Forouzan, "Data Communication and Networking", Fourth Edition, Tata McGraw-hill, New Delhi, 2006

REFERENCES

- 1. S.Keshav," An Engineering Approach to Computer Networks", Pearson Education, 2nd Edition.
- 2. W.A.Shay,"Understanding communications and Networks", Cengage Learning, 3rd Edition
- 3. Chwan-Hwa (John) Wu, J. David Irwin," Introduction to Computer Networks and Cyber Security", CRC Press.
- **4.** L.L.Peterson and B.S.Davie," Computer Networks", ELSE VIER, 4th edition.

¹⁻ Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction, Cross bar Switching, Electronic Space Division Switching

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	CO discussion and overview of Syllabus	1	17-08-20			-
2.	Introduction to Communication Networks	1	18-08-20			
3.	Network Hardware , Network software	1	19-08-20			
4.	Network models LAN, WAN, MAN, Network software-protocols, layer issues	1	24-08-20			
5.	connection oriented and connection less services, Reference models-OSI	1	25-08-20			
6.	TCP/IP, Comparison between OSI and TCP/IP	1	26-08-20			
7.	Critics of OSI and TCP/IP model	1	31-08-20			
8.	Physical Layer- Guided Transmission Medium	1	01-09-20			
9.	Wireless Transmission Media, EM Spectrum, Radio, Light, Infrared and Microwave Transmission	1	02-09-20			
10.	Digital Modulation and Multiplexing, Bassband and Passband, FDM, TDM and Code Division Multiplexing	1	07-09-20			
No. o	f classes required to complete UN	IT-I:10		No. of clas	sses taken:	

UNIT-II: Data Link Laver

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction of DLL, Design Issues	1	08-09-20			
2.	Services provided to Network Layer Farming Methods, Error control and Flow Control	1	09-09-20			
3.	Error Detection and Correction, , Hamming codes, CRC, Checksum	1	14-09-20			
4.	Stop & wait , Sliding window, one bit, go-back -n, Selective repeat protocols	1	15-09-20			
5.	Medium Access control sub layer, channel allocation problem	1	16-09-20			
6.	Multiple Access protocols- ALOHA, CSMA protocols, CSMA with collision detection, Collision free protocols	1	21-09-20			
7.	Ethernet	1	22-09-20			
8.	Wireless Lans-Infrastructure, Protocol stack, MAC frame, 802.11 services	1	23-09-20			
9.	Bluetooth-Architecture, Protocol stack, Frame structure	1	25-09-20			

UNIT-III: Network Layer

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Network Layer Design Issues- store and forward, datagrams and virtual circuits	1	05-10-20			
2.	Routing algorithms- Optimality Principle, Shortest Path	1	06-10-20			
3.	Flooding, Distance vector routing,	1	07-10-20			
4.	Link state routing, Hierarchical routing	1	09-10-20			
5.	Board cast routing & Multicast Routing	1	12-10-20			
6.	Congestion control in data subnets, warning bits	1	13-10-20			
7.	Load shedding, choke packets	1	14-10-20			
8.	Jitter control, RED	1	16-10-20			
No. of classes required to complete UNIT-III:08 No. of classes taken:						

UNIT-IV: Transport Layer

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Internetworking	1	19-10-20			
2.	Tunneling, Packet Fragmentation	1	20-10-20			
3.	IPV4	1	21-10-20			
4.	IPV6, comparision between IPV4 and IPV6	1	23-10-20			
5.	Internet control protocols, OSPF BGP	1	26-10-20			
6.	Transport layer services to the upward Layers	1	27-10-20			
7.	Addressing Address connection establishment	1	28-10-20			
8.	Connection release, Crash Recvoery	1	02-11-20			
No. o	No. of classes required to complete UNIT-IV:8 No. of classes taken:					

UNIT-V: The Internet Transport Protocols & Application Layer

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Internet transport protocols: UDP- RPC, Real Time Transport	1	03-11-20			
	Protocols					
2.	Internet transport protocols: TCP-I, TCP service model	1	04-11-20			
3.	TCP Segment Header	1	06-11-20			
4.	Domain Name system	1	09-11-20			
5.	Email Architecture and services	1	10-11-20			
6.	SMTP	1	11-11-20			
7.	WWW and its architectue	1	13-11-20			
No. of c	lasses required to complete UNI	T-V:7		No. of class	ses taken:	

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.						
2.						
No. of classes required to complete UNIT-V:5 No. of classes taken:						

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering						
	fundamentals, and an engineering specialization to the solution of complex engineering						
	problems.						
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex						
	engineering problems reaching substantiated conclusions using first principles of mathematics,						
	natural sciences, and engineering sciences.						
PO 3	Design/development of solutions: Design solutions for complex engineering problems and						
	design system components or processes that meet the specified needs with appropriate						
	consideration for the public health and safety, and the cultural, societal, and environmental						
	considerations.						
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research						
	methods including design of experiments, analysis and interpretation of data, and synthesis of						
	the information to provide valid conclusions.						
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern						
	engineering and IT tools including prediction and modelling to complex engineering activities						
DO (with an understanding of the limitations						
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess						
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to						
PO 7	the professional engineering practice Environment and sustainability: Understand the impact of the professional engineering						
107	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need						
	for sustainable development.						
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and						
100	norms of the engineering practice.						
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in						
	diverse teams, and in multidisciplinary settings.						
PO 10	Communication: Communicate effectively on complex engineering activities with the						
	engineering community and with society at large, such as, being able to comprehend and write						
	effective reports and design documentation, make effective presentations, and give and receive						
	clear instructions.						
PO 11	Project management and finance: Demonstrate knowledge and understanding of the						
	engineering and management principles and apply these to one's own work, as a member and						
	leader in a team, to manage projects and in multidisciplinary environments.						
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in						
	independent and life-long learning in the broadest context of technological change.						

PROGRAMME SPECIFIC OUTCOMES (PSOs):

11001	MANUE SI ECHIIC CCI COMES (1808).					
PSO 1	Communication: Design and develop modern communication technologies for building the					
	inter disciplinary skills to meet current and future needs of industry.					
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or					
	systems and Implement real time applications in the field of VLSI and Embedded Systems					
	using relevant tools					
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues					
	related to real time applications					

Course Instructor Course Coordinator Module Coordinator HOD (Dr.A.Narendra Babu) (Dr.A.Narendra Babu) (Dr.M.Venkata Sudhakar) (Dr.Y.Amar Babu)

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS & COMMUNICATIONS ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor : Michael Sadgun Rao Kona

Course Name & Code : Introduction to Database & 17IT80

L-T-P Structure : 3-0-0 Credits : 3

Program/Sem/Sec : B.Tech., ECE., VII-Sem., A,B,C A.Y : 2020-21

PRE-REQUISITE: Elementary set theory, concepts of relations and functions, propositional logic data structures (trees, Graphs, dictionaries) & File Concepts.

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course enables the students to know about DBMS basic concepts, Database Languages, Data base Design, Normalization process and Transaction processing and Indexing.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Understand DBMS concepts, architecture
CO 2	Design Entity Relational Model and make them to data model.
CO 3	Understand the usage of keys and constraints for relational data.
CO 4	Apply the normalization process for data base design.
CO 5	Analyze the issues in transaction processing and different recovery strategies.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	2	-	-	-	-	-	-	-	-	-	3	2	2
CO2	3	3	-	-	-	-	-	-	-	-	-	-	2	3	2
CO3	3	2	-	-	-	-	-	-	-	-	-	-	2	3	2
CO4	2	1	2	-	-	-	-	-	-	-	-	-	3	2	3
CO4	2	1	2	-	-	-	-	-	-	-	-	-	2	3	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- **T1** Henry F. Korth, Abraham Silberschatz, S. Sudarshan, "Database Concepts", McGraw Hill, 6th edition, 2009.
- **T2** RamezElmasri, Shamkanth B. Navathe, "Fundamentals Of Database Systems", Addision Wesley, 6th edition, 2010.

REFERENCE BOOKS:

- **R1** Raghu Ramakrishna, Johannese Gehrke, "Database Management System", McGraw Hill 3rd edition, 2000.
- R2 Date C. J, "An Introduction to Database System", Pearson Education, 8th edition, 2003.
- **R3** Shara Maheshwari, Ruchi Jain, "DBMS: Complete Practical Approach", Firewall Media, New Delhi, 2005.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Course and COs	1	17.08.2020		TLM2	
2.	Introduction, An overview of database management system, Database system Vs file system	1	19.08.2020		TLM2	
3.	Database system Vs file system	1	21.08.2020		TLM2	
4.	Database system concepts and architecture	1	24.08.2020		TLM2	
5.	Data models schema and instances	1	26.08.2020		TLM2	
6.	Data independence and data base language and interfaces	1	28.08.2020		TLM2	
7.	Data definitions language, DML	1	31.08.2020		TLM2	
8.	Overall Database Structure	1	2.09.2020		TLM2	
9.	Revision on Unit-1& Assignment-I	1	4.09.2020		TLM2	
	No. of classes required to comp	T-I: 9	No.	of classes ta	aken:	

UNIT-II: Data Modelling using the Entity Relationship Model

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	ER model concepts - attributes, entity, Relationships	1	07/09/20, 09/09/20		TLM2	
2.	notation for ER diagram	1	11/09/20		TLM2	
3.	Mapping constraints	1	14/09/20		TLM2	
4.	keys -Concepts of Super Key, and identity key, primary key, Generalization	1	16/09/20		TLM2	
5.	Aggregation	1	18/09/20		TLM2	
6.	Reduction of an ER diagrams to tables,	1	21/09/20		TLM2	
7.	Relationships of higher degree	1	23/09/20		TLM2	
8.	Revision on Unit - II & Assignment-II	1	25/09/20		TLM2	
No. o	f classes required to complete U	NIT-II: 09		No. of class	ses taken:09)

UNIT-III: Relational Data Model and Language

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Relational data model concepts	1	05/10/20		TLM2	
2.	Integrity constraints: entity integrity, referential integrity, Keys constraints, Domain constraints	1	07/10/20		TLM2	
3.	Relational algebra	1	09/10/20		TLM2	
4.	Characteristics of SQL, Advantage of SQL SQL data types and literals, Types of SQL commands SQL operators and their procedure	1	12/10/20		TLM2	
5.	Tables, views and indexes, Queries and sub queries, Aggregate functions Insert, update and delete operations	1	14/10/20		TLM2	
6.	Unions, Intersection, Minus, Cursors in SQL, Revision of UNIT- 3&Assignment-III f classes required to complete UN	1 NIT-III: 6	16/10/20	No. of clas	TLM2	

UNIT-IV: Normalization

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Functional Dependencies	1	19/10/20		TLM2	
2.	Normal Forms: First, Second, Third Normal Forms	1	21/10/20		TLM2	
3.	BCNF, Inclusion Dependences Loss Less Join Decompositions	1	23/10/20		TLM2	
4.	Normalization Using FD,MVD Normalization Using JD	1	26/10/20		TLM2	
5.	Normalization Using FD,MVD Normalization Using JD		28/10/20		TLM2	
6.	Alternative Approaches to Database Design Revision of Unit-4&Assignment-IV	1	30/10/20		TLM2	
No. o	No. of classes required to complete UNIT-IV: 6				ses taken:	

UNIT-V: Transaction Processing Concepts

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Transaction System	1	02/11/20		TLM2	
2.	Testing Of Serializability, Serializability of Schedules Conflict & View Serializable Schedule	1	04/11/20		TLM2	
3.	Recoverability, Log Based Recovery, Checkpoints, ARIES Algorithm, Deadlock Handling	1	06/11/20		TLM2	
4.	Concurrency Control Techniques For Concurrency Control	1	09/11/20		TLM2	
5.	Time Stamping Protocols for Concurrency Control	1	11/11/20		TLM2	
6.	Locking, Validation Based Protocol, Multiple Granularity	1	13/11/20		TLM2	
7.	Recovery With Concurrent Transactions ,Revision of UNIT- 5&Assignment-V	1	16/11/20		TLM2	
No. of	No. of classes required to complete UNIT-V: 7 No. of classes taken:					

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE): A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering					
	fundamentals, and an engineering specialization to the solution of complex engineering					
	problems.					
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex					
	engineering problems reaching substantiated conclusions using first principles of mathematics,					
	natural sciences, and engineering sciences.					
PO 3	Design/development of solutions: Design solutions for complex engineering problems and					
	design system components or processes that meet the specified needs with appropriate					
	consideration for the public health and safety, and the cultural, societal, and environmental considerations.					
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research					
104	methods including design of experiments, analysis and interpretation of data, and synthesis of the					
	information to provide valid conclusions.					
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern					
	engineering and IT tools including prediction and modelling to complex engineering activities					
	with an understanding of the limitations					
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess					
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to					
	the professional engineering practice					
PO 7	Environment and sustainability: Understand the impact of the professional engineering					
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for					
700	sustainable development.					
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms					
DO 0	of the engineering practice.					
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.					
PO 10	Communication: Communicate effectively on complex engineering activities with the					
1010	engineering community and with society at large, such as, being able to comprehend and write					
	effective reports and design documentation, make effective presentations, and give and receive					
	clear instructions.					
PO 11	Project management and finance: Demonstrate knowledge and understanding of the					
	engineering and management principles and apply these to one's own work, as a member and					
	leader in a team, to manage projects and in multidisciplinary environments.					
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in					
	independent and life-long learning in the broadest context of technological change.					

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the inter
	disciplinary skills to meet current and future needs of industry.
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
	systems and Implement real time applications in the field of VLSI and Embedded Systems using
	relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

STANKETS TROOPS

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS

Accredited by NAAC & NBA (CSE, IT, ECE, EEE & ME)

Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada

L.B.Reddy Nagar, Mylavaram-521230, Krishna Dist, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor:, Smt.M.Ramya Harika, Mr. V.Ravi Sekhar Reddy

Course Name & Code : Microwave And Optical Communications Lab-17EC71

L-T-P Structure : 0-0-2 Credit : 1

Program/Sem/Sec : B.Tech., ECE., VII-Sem., Section- C

Academic Year : 2020-21

Course Educational Objective: This Lab deals with the micro measurements of the signals at micro frequency range. It involves measurement of frequency, wave length, VSWR, Impedance and scattering parameters of various micro wave devices like Circulator, Direction Coupler, and Magic-Tee. Even the latest trend of communication technology i.e. fiber optics is also introduced and propagation conditions will be verified by evaluating the losses.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Understand the various blocks of microwave bench setup
CO 2	Evaluate the frequency, wave length, VSWR, impedance and scattering parameters of
	various microwave devices
CO 3	Analyze the losses to verify the propagating conditions in the optical fiber.
CO 4	Adapt effective communication, presentation and report writing skills.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	-	-	1	1	-	-	-	-	-	-	-	1	-	-
CO2	2	2	-	3	2	-	-	-	-	-	-	-	3	-	1
CO3	2	2	-	2	2	-	-	-	-	-	-	ı	2	-	1
CO4	-	-	-	-	_	_	_	1	2	3	-	1	-	-	ı

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 - Moderate (Medium), 3 - Substantial (High).

PART-B

COURSE DELIVERY PLAN (LESSON PLAN): Section-C

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
CYC	LE I		•	•		-
1.	Demonstration	1	19.08.2020		TLM 4	
2.	Reflex Klystron Characteristics	1	26.08.2020		TLM4	
3.	Gunn Diode Characteristics	1	02.09.2020		TLM4	
4.	Attenuation Measurement	1	09.09.2020		TLM4	
5.	Directional Coupler Characteristics.	1	16.09.2020		TLM4	
6.	VSWR Measurement	1	23.09.2020		TLM4	
7.	Impedance ,Frequency Measurement.	1	30.09.2020		TLM4	
CYC	LE 2					
8	Scattering Parameters of Circulator.	1	07.10.2020		TLM4	
9	Scattering Parameters of Magic Tee.	1	14.10.2020		TLM4	
10	Characterization of LED,Laser Diode	1	21.10.2020		TLM4	
11	Measurement of Data rate for Digital Optical link.	1	28.10.2020		TLM4	
12	Measurement of Numerical Aperture	1	04.11.2020		TLM4	
13	Measurement of losses for Analog optical link	1	11.11.2020		TLM4	
14	Lab exam	1	18.11.2020			

Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)					
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)					
TLM3	Tutorial	TLM6	Group Discussion/Project					

PART-C

EVALUATION PROCESS (R17 Regulations):

VIII CITTOTT TO CLOS (KIT REGULETORS).						
Evaluation Task	Marks					
Day to Day work	A=20					
Internal Lab Examination	B=10					
Attendance	C=5					
Viva voce	D=5					

Cumulative Internal Examination : A+B+C	A+B+C+D=40
Semester End Examinations	E=60
Total Marks: A+B+C+D+E	100

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering							
	fundamentals, and an engineering specialization to the solution of complex engineering							
	problems.							
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex							
	engineering problems reaching substantiated conclusions using first principles of mathematics,							
	natural sciences, and engineering sciences.							
PO 3	Design/development of solutions: Design solutions for complex engineering problems and							
	design system components or processes that meet the specified needs with appropriate							
	consideration for the public health and safety, and the cultural, societal, and environmental							
	considerations.							
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research							
	methods including design of experiments, analysis and interpretation of data, and synthesis of							
	the information to provide valid conclusions.							
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern							
	engineering and IT tools including prediction and modelling to complex engineering activities							
	with an understanding of the limitations							
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess							
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to							
	the professional engineering practice							
PO 7	Environment and sustainability: Understand the impact of the professional engineering							
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need							
DO 0	for sustainable development.							
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and							
DO 0	norms of the engineering practice.							
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in							
PO 10	diverse teams, and in multidisciplinary settings. Communication: Communicate effectively on complex engineering activities with the							
PO 10	engineering community and with society at large, such as, being able to comprehend and write							
	effective reports and design documentation, make effective presentations, and give and receive							
	clear instructions.							
PO 11	Project management and finance : Demonstrate knowledge and understanding of the							
1011	engineering and management principles and apply these to one's own work, as a member and							
	leader in a team, to manage projects and in multidisciplinary environments.							
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in							
	independent and life-long learning in the broadest context of technological change.							
	1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0							

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
	systems and Implement real time applications in the field of VLSI and Embedded Systems
	using relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Course Instructor Course Coordinator Module Coordinator HOD

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

DEPARTMENT OF MECHANICAL ENGINEERING

Autonomous & Affiliated to JNTUK, Kakinada & Approved by AICTE, New Delhi, Accredited by NBA, Certified by ISO 9001:2015

L B Reddy Nagar, Mylavaram-521 230, Krishna District, Andhra Pradesh.

COURSE HANDOUT

PART-A

PROGRAM : B.Tech., VII-Sem., ECE – C Section

ACADEMIC YEAR : 2020 - 21

COURSE NAME & CODE: Embedded System Design Lab – 17EC72

L-T-P STRUCTURE : 0-0-2

COURSE CREDITS : 2

COURSE INSTRUCTOR : Mr. M. Samba Siva Reddy

COURSE COORDINATOR : Mr. K. Ravi Kumar

COURSE OBJECTIVE:

This course provides practical exposure on

Course Outcomes: At the end of the course, student will be able to:

CO1	Evaluate Inter Process Communication applications using ARM based processors
CO2	Develop the Hardware platform using soft processors and applications using C on Xilinx FPGA Zynq 7000 series
CO3	Adapt effective communication, presentation and report writing skills.

COURSE ARTICULATION MATRIX(Correlation between Cos & POs, PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	3	2	3	-	-	-	-	-	-	-	-	3	-
CO2	2	2	3	2	3	-	-	1	-	-	-	-	-	3	-
CO3	-	-	-	-	-	-	-	1	2	3	-	1	-	-	-
CO4	2	2	3	2	3	-	-	-	-	-	-	-	-	3	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'
1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

PART-B LAB SCHEDULE (LESSON PLAN): Section-C LIST OF EXPERIMENTS (Minimum 12 Experiments to be conducted)

S.No.	Experiments to be conducted	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
		CYCLE-1				
1.	Introduction to Lab	2	29.08.2020		TLM2	
2.	ARM Assembly Language Programming-I	2	05.09.2020		TLM8	
3.	ARM Assembly Language Programming-II	2	05.09.2020		TLM8	
4.	Program to Interface 8-bit LED	2	12.09.2020		TLM8	
5.	Program to demonstrate Time Delay Program using built in Timer/Counter feature	2	19.09.2020		TLM8	
6.	Program to displaying a message in a 2line x 16 Characters LCD display and verify the result in debug terminal	2	19.09.2020		TLM8	
7.	Program to implement Generation of PWM signal on IDE environment	2	26.09.2020		TLM8	
8.	Program to demonstrate serial communication on IDE environment	2	26.09.2020		TLM8	
		CYCLE-2	}			
9.	Program to implement Traffic light controller on IDE environment	2	10.10.2020		TLM8	
10.	Program to implement Stepper motor controller on IDE environment	2	10.10.2020		TLM8	
11.	Basic Audio Processing on IDE environment	2	17.10.2020		TLM8	
12.	Program to demonstrate I2C Interface on IDE environment	2	17.10.2020		TLM8	
13.	Program to implement Buzzer Interface on IDE environment	2	31.10.2020		TLM8	
14.	Design of System on Chip platform using Xilinx FPGAs and Embedded Development Kit Tools	2	31.10.2020		TLM8	
15.	Design dual processor based System on Chip using Xilinx EDK Tools and Zynq 7000 series FPGA	2	07.11.2020		TLM8	
16.	Hardware Software Co- design using Xilinx EDK Tools	2	07.11.2020		TLM8	
No. o	f classes required to complete:	32	No. of classe	s conducted	:	

PART-C

Teaching Learning Methods									
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD				
TLM2	PPT	TLM5	Programming	TLM8	Lab Demo				
ТLМЗ	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study				

ACADEMIC CALENDAR:

Academic Calendar: B.Tech., VII-Sem., 2020-21					
Description	From	То	Weeks		
Commencement of Class work: 17.08.2020					
I Phase of Instructions	17-08-2020	03-10-2020	7W		
I MID Examinations	28-09-2020	03-10-2020	/ W		
II Phase of Instructions	05-10-2020	21-11-2020	7W		
II MID Examinations	16-11-2020	21-11-2020			
Preparation and Practicals	23-11-2020	28-11-2020	1W		
Semester End Examinations	30-11-2020	14-12-2020	2W		

EVALUATION PROCESS:

Evaluation Task	COs	Marks
Day to Day work	1,2,3	A1=20
Attendance (>95%=5, 90-95%=4,85-90%=3,80-85%=2,75-80%=1)		A2=5
Viva-Voce	1,2,3	A3=5
Internal Lab Examination	1,2,3	B=10
Total Internal Marks(A1+A2+A3+B)		C=40
Semester End Examinations	1,2,3	D=60
Total Marks: C+D	1,2,3	100

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering			
	fundamentals, and an engineering specialization to the solution of complex engineering problems.			
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex			
102	engineering problems reaching substantiated conclusions using first principles of mathematics,			
	natural sciences, and engineering sciences.			
PO 3	Design/development of solutions: Design solutions for complex engineering problems and			
	design system components or processes that meet the specified needs with appropriate			
	consideration for the public health and safety, and the cultural, societal, and environmental			
	considerations.			
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research			
	methods including design of experiments, analysis and interpretation of data, and synthesis of			
PO 5	the information to provide valid conclusions. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern			
PU 5	engineering and IT tools including prediction and modelling to complex engineering activities			
	with an understanding of the limitations			
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess			
100	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to			
	the professional engineering practice			
PO 7	Environment and sustainability: Understand the impact of the professional engineering			
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need			
	for sustainable development.			
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and			
	norms of the engineering practice.			
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in			
DO 10	diverse teams, and in multidisciplinary settings.			
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write			
	effective reports and design documentation, make effective presentations, and give and receive			
	clear instructions.			
PO 11	Project management and finance: Demonstrate knowledge and understanding of the			
-	engineering and management principles and apply these to one's own work, as a member and			
	leader in a team, to manage projects and in multidisciplinary environments.			
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in			
	independent and life-long learning in the broadest context of technological change.			

PROGRAMME SPECIFIC OUTCOMES (PSOs):

	(
PSO 1	Communication: Design and develop modern communication technologies for building the		
	inter disciplinary skills to meet current and future needs of industry.		
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or		
	systems and Implement real time applications in the field of VLSI and Embedded Systems		
	using relevant tools		
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues		
	related to real time applications		