

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Mr. P.Deepak Reddy, Mrs.R.Padma (T)		
Course Name & Code	: Analog and Digital Signal Processing & 17EE17		
L-T-P Structure	: 3-1-0	Credits	: 3
Program/Sem/Sec	: B.Tech., EEE., VI-Sem., Sections- A	A.Y	:2021-22

PRE-REQUISITES: Differential Equations and liner algebra (17FE04), Transformation techniques and vector calculus (17FE06), Numerical methods and Fourier analysis (17FE07)

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course enables the student to

- Understand Discrete Fourier Transform and its computation.
- Deal with Discrete Fourier Series, Fast Fourier Series, Z-transforms
- Know the concepts of filter design

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Illustrate properties of continuous and discrete-time signals
CO 2	Analyze DFT and FFT
CO 3	Analyze discrete time signals
CO 4	Design digital filters & wavelet filters using different techniques

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3		2	1	1		1		1	1		2			3	1
CO2	2		3	1	1		1		1	1		2			3	1
CO3		2	3		1										3	1
CO4		2	3		1										3	1

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- **T1** John G. Proakis, Dimitris G. Manolakis, "Digital Signal Processing, Principles, Algorithms, and Applications", Pearson Prentice Hall, illustrated 4th edition, 2007.
- **T2** A.V.Oppenheim and R.W. Schaffer, "Discrete Time Signal Processing", Pearson education, 3rd edition, 2013.

REFERENCE BOOKS:

- **R1** Andreas Antoniou "Digital Signal Processing", TATA McGraw Hill edition, 2006.
- **R2** MH Hayes, Schaum's, "Digital Signal Processing: Outlines", TATA Mc-Graw Hill professional, 1999.
- **R3** C. Britton, Rorabaugh, "DSP Primer", Tata McGraw Hill edition, 2005.
- **R4** Robert J. Schilling, Sandra L.Harris "Fundamentals of Digital Signal Processing using Matlab", Thomson, 2007.
- **R5** Lonnie, C.Ludeman, "Fundamentals of DSP", Wiley India Pvt. Limited, 2009
- **R6** Rao R M and A S Bopardikar, "Wavelet Transofrmations Introduction to theory and Applications", Pearson Education, Asia, 2000.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
		Required	Completion	Completion	Methods	Weekly
1.	Introduction to Course and COs	1	22-02-2022		TLM1	
2.	Introduction to unit-I: Signals, systems and DSP	1	23-02-2022		TLM1	
3.	Continuous time signals (CT signals) and Discrete time signals (DT signals)	1	25-02-2022		TLM1	
4.	Classification of CT and DT signals	1	26-02-2022		TLM1	
5.	TUTORIAL 1	1	01-03-2022		TLM3	
6.	CT and DT systems	1	02-03-2022		TLM1	
7.	Classification of CT and DT systems: static and dynamic, linear and non linear	1	04-03-2022		TLM1	
8.	Time-variant & Time-invariant, Causal & Noncausal, Stable & Unstable systems	1	05-03-2022		TLM1	
9.	TUTORIAL 2	1	08-3-2022		TLM3	
10.	Linear constant coefficient difference equations	1	09-3-2022		TLM1	
11.	Sampling Theorem, Convolution theorem	1	11-3-2022		TLM1	
12.	Review of Z-transforms TUTORIAL 3	1	15-3-2022		TLM1& TLM3	
No. o	f classes required to complete UNI	IT-I:12		No. of class	ses taken:	

UNIT-I: CLASSIFICATION OF SIGNALS AND SYSTEMS

UNIT-II: DISCRETE FOURIER SERIES & FAST FOURIER TRANSFORM

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Properties of discrete Fourier series	1	16-3-2022		TLM2	
2.	TUTORIAL 4	1	22-3-2022		TLM3	
3.	DFS representation of periodic sequences	1	23-3-2022		TLM1	
4.	Discrete Fourier transforms: Properties of DFT, Linear convolution of sequences using DFT	1	25-3-2022		TLM1	
5.	Computation of DFT	1	26-3-2022		TLM1	
6.	TUTORIAL 5	1	29-3-2022		TLM3	
7.	Relation between Z-transform and DFS ,Fast Fourier transforms (FFT)	1	30-3-2022		TLM1	
8.	Radix-2 decimation in time and decimation in frequency	1	01-4-2022		TLM1	
9.	TUTORIAL 6	1	05-4-2022		TLM3	
10.	FFT Algorithms, Inverse FFT ,FFT for composite N	1	06-4-2022		TLM1	
11.	Mid-I Exams		12-4-2022			
12.	Mid-I Exams		13-4-2022			
13.	Mid-I Exams		15-4-2022			
14.	Mid-I Exams		16-4-2022			
No. of	f classes required to complete UN	IT-II: 10		No. of class	sses taken:	

UNIT-III: REALIZATION OF DIGITAL FILTERS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Z – transforms and Applications	1	20-5-2021		TLM1	
2.		1	22-5-2021		TLM3	
3.	Solution of difference equations of digital filters	1	25-5-2021		TLM1	
4.	Block diagram representation of linear constant-coefficient difference equations	1	26-5-2021		TLM1	
5.	Basic structures of IIR systems	1	27-5-2021		TLM1	
6.	TUTORIAL 7	1	29-5-2021		TLM3	
7.	Transposed forms	1	1-6-2021		TLM1	
8.	Basic structures of FIR systems	1	2-6-2021		TLM1	
9.	Continuous Wavelet Transforms – Definition, Properties of Continuous Wavelet Transforms	1	3-6-2021		TLM2	
10.	Concept of scale and wavelet transform relation with Frequency TUTORIAL 8	1	5-6-2021		TLM1& TLM3	
No. of	f classes required to complete UN	IT-III:		No. of clas	ses taken:	

UNIT-IV: IIR DIGITAL FILTERS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Analog filter approximations	1	8-6-2021		TLM1	
2.	Butter worth filters	1	9-6-2021		TLM2	
3.	Chebyshev filters	1	10-6-2021		TLM1	
4.	Design of IIR Digital filters from analog filters	1	15-6-2021		TLM1	
5.	Design of IIR Digital filters from analog filters	1	16-6-2021		TLM1	
6.	Design Examples: Analog-Digital transformations	1	17-6-2021		TLM1	
7.	TUTORIAL 9	1	19-6-2021		TLM3	
8.	Design Examples: Analog-Digital transformations	1	22-6-2021		TLM1& TLM3	
No. of classes required to complete UNIT-IV:				No. of class	ses taken:	

UNIT-V: FIR DIGITAL FILTERS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Characteristics of FIR Digital Filters	1	23-6-2021		TLM1	
2.	Frequency response	1	24-6-2021		TLM1	
3.	TUTORIAL 10	1	26-6-2021		TLM3	
4.	Design of FIR Digital Filters using Window Techniques	1	29-6-2021		TLM1	
5.	Frequency Sampling technique	1	30-6-2021		TLM1	
6.	Comparison of IIR & FIR filters, Wavelet Filters	1	1-7-2021		TLM1	
7.	TUTORIAL 11	1	3-7-2021		TLM3	
8.	Inverse discrete wavelets transform computation by filter banks	1	6-7-2021		TLM1	
9.	Basic properties of filter coefficients, Choice of wavelet function coefficients	1	7-7-2021		TLM1	
10.	Mid-II Exams		8-7-2021			
11.	Mid-II Exams		10-7-2021			
No. of	f classes required to complete UN	IT-V:		No. of class	ses taken:	

Contents beyond the Syllabus:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign
1.	Applications of DSP processors	1	7-7-2021		TLM2	

Teaching l	Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)					
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)					
TLM3	Tutorial	TLM6	Group Discussion/Project					

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

ACADEMIC CALENDAR:

Description	From	То	Weeks
I Phase of Instructions-1	21-02-2022	09-04-2022	7W
I Mid Examinations	11-04-2022	16-04-2022	1W
II Phase of Instructions	18-04-2022	04-06-2022	7W
II Mid Examinations	06-06-2022	11-06-2022	1W
Preparation and Practicals	13-06-2022	18-06-2022	1W
Semester End Examinations	20-06-2022	02-07-2022	2W

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
D O A	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components of processes that meet the specified needs with appropriate
	considerations for the public health and safety, and the cultural, societal, and environmental
PO 4	Conduct investigations of complex problems: Use research based knowledge and research
104	methods including design of experiments, analysis and interpretation of data and synthesis of
	the information to provide valid conclusions
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and
DO 0	norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in
DO 10	diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the
	effective reports and design documentation make effective presentations, and give and receive
	clear instructions
PO 11	Project management and finance : Demonstrate knowledge and understanding of the
1011	engineering and management principles and apply these to one's own work as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME OUTCOMES (POs):

PSO 1	Specify, design and analyze systems that efficiently generate, transmit and distribute electrical power
PSO 2	Design and analyze electrical machines, modern drive and lighting systems
PSO 3	Specify, design, implement and test analog and embedded signal processing electronic systems
PSO 4	Design controllers for electrical and electronic systems to improve their performance.

Course Instructor	Course Coordinator	Module Coordinator	HOD
Mr. P.Deepak Reddy	Mr. P.Deepak Reddy	Mr. P. Deepak Reddy	Dr. J.Siva Vara Prasad

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor Course Name & Code	: Mrs.R.Padma, Mr.B.Pangedaiah (T) : Analog and Digital Signal Processing & 17EE17		
L-T-P Structure	: 3-1-0	Credits	: 3
Program/Sem/Sec	: B.Tech., EEE., VI-Sem., Sections- B	A.Y	:2021-22

PRE-REQUISITES: Differential Equations and liner algebra (17FE04), Transformation techniques and vector calculus (17FE06), Numerical methods and Fourier analysis (17FE07)

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course enables the student to

- Understand Discrete Fourier Transform and its computation.
- Deal with Discrete Fourier Series, Fast Fourier Series, Z-transforms
- Know the concepts of filter design

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Illustrate properties of continuous and discrete-time signals
CO 2	Analyze DFT and FFT
CO 3	Analyze discrete time signals
CO 4	Design digital filters & wavelet filters using different techniques

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3		2	1	1		1		1	1		2			3	1
CO2	2		3	1	1		1		1	1		2			3	1
CO3		2	3		1										3	1
CO4		2	3		1										3	1

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- **T1** John G. Proakis, Dimitris G. Manolakis, "Digital Signal Processing, Principles, Algorithms, and Applications", Pearson Prentice Hall, illustrated 4th edition, 2007.
- **T2** A.V.Oppenheim and R.W. Schaffer, "Discrete Time Signal Processing", Pearson education, 3rd edition, 2013.

REFERENCE BOOKS:

- **R1** Andreas Antoniou "Digital Signal Processing", TATA McGraw Hill edition, 2006.
- **R2** MH Hayes, Schaum's, "Digital Signal Processing: Outlines", TATA Mc-Graw Hill professional, 1999.
- **R3** C. Britton, Rorabaugh, "DSP Primer", Tata McGraw Hill edition, 2005.
- **R4** Robert J. Schilling, Sandra L.Harris "Fundamentals of Digital Signal Processing using Matlab", Thomson, 2007.
- **R5** Lonnie, C.Ludeman, "Fundamentals of DSP", Wiley India Pvt. Limited, 2009
- **R6** Rao R M and A S Bopardikar, "Wavelet Transofrmations Introduction to theory and Applications", Pearson Education, Asia, 2000.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
		Required	Completion	Completion	Methods	Weekly
1.	Introduction to Course and COs	1	22-02-2022		TLM1	
2.	Introduction to unit-I: Signals, systems and DSP	1	23-02-2022		TLM1	
3.	Continuous time signals (CT signals) and Discrete time signals (DT signals)	1	25-02-2022		TLM1	
4.	Classification of CT and DT signals	1	26-02-2022		TLM1	
5.	TUTORIAL 1	1	01-03-2022		TLM3	
6.	CT and DT systems	1	02-03-2022		TLM1	
7.	Classification of CT and DT systems: static and dynamic, linear and non linear	1	04-03-2022		TLM1	
8.	Time-variant & Time-invariant, Causal & Noncausal, Stable & Unstable systems	1	05-03-2022		TLM1	
9.	TUTORIAL 2	1	08-03-2022		TLM3	
10.	Linear constant coefficient difference equations	1	09-03-2022		TLM1	
11.	Sampling Theorem, Convolution theorem	1	11-03-2022		TLM1	
12.	Review of Z-transforms TUTORIAL 3	1	15-03-2022		TLM1& TLM3	
No. o	f classes required to complete UNI	IT-I:12		No. of class	ses taken:	

UNIT-I: CLASSIFICATION OF SIGNALS AND SYSTEMS

UNIT-II: DISCRETE FOURIER SERIES & FAST FOURIER TRANSFORM

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Properties of discrete Fourier series	1	16-03-2022		TLM2	
2.	TUTORIAL 4	1	22-03-2022		TLM3	
3.	DFS representation of periodic sequences	1	23-03-2022		TLM1	
4.	Discrete Fourier transforms: Properties of DFT, Linear convolution of sequences using DFT	1	25-03-2022		TLM1	
5.	Computation of DFT	1	26-03-2022		TLM1	
6.	TUTORIAL 5	1	29-03-2022		TLM3	
7.	Relation between Z-transform and DFS ,Fast Fourier transforms (FFT)	1	30-03-2022		TLM1	
8.	Radix-2 decimation in time and decimation in frequency	1	01-04-2022		TLM1	
9.	TUTORIAL 6	1	05-04-2022		TLM3	
10.	FFT Algorithms, Inverse FFT ,FFT for composite N	1	06-04-2022		TLM1	
11.	Mid-I Exams		12-04-2022			
12.	Mid-I Exams		13-04-2022			
13.	Mid-I Exams		16-04-2022			
No. of	f classes required to complete UN	IT-II: 10		No. of class	sses taken:	

UNIT-III: REALIZATION OF DIGITAL FILTERS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	TUTORIAL 7 Z – transforms and Applications	1	19-04-2022		TLM1 &TLM3	
2.	Solution of difference equations of digital filters	1	20-04-2022		TLM1	
3.	Block diagram representation of linear constant-coefficient difference equations	1	22-04-2022		TLM1	
4.	Block diagram representation of linear constant-coefficient difference equations	1	23-04-2022		TLM1	
5.	TUTORIAL 8	1	26-04-2022		TLM3	
6.	Basic structures of IIR systems	1	27-04-2022		TLM1	
7.	Transposed forms	1	29-04-2022		TLM1	
8.	Basic structures of FIR systems	1	30-04-2022		TLM1	
9.	Continuous Wavelet Transforms – Definition, Properties of Continuous Wavelet Transforms	1	04-05-2022		TLM2	
10.	Concept of scale and wavelet transform relation with Frequency	1	04-05-2022		TLM1& TLM3	
No. o	f classes required to complete UN	IT-III:10		No. of class	sses taken:	

UNIT-IV: IIR DIGITAL FILTERS

	S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly		
	1.	Analog filter approximations	1	07-05-2022	•	TLM1	*		
	2.	TUTORIAL 9	1	10-05-2022		TLM3			
	3.	Butter worth filters	1	11-05-2022		TLM1			
	4.	Chebyshev filters	1	13-05-2022		TLM1			
	5.	TUTORIAL 10	1	17-05-2022		TLM3			
	6.	Design of IIR Digital filters from analog filters	1	18-05-2022		TLM1			
	7.	Design Examples: Analog-Digital transformations	1	20-05-2022		TLM1			
	8.	Design Examples: Analog-Digital transformations	1	21-05-2022		TLM1			
	No. of	f classes required to complete UN		No. of class	ses taken:				
UNI	IT-V: FIR DIGITAL FILTERS								

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Characteristics of FIR Digital Filters	1	21-05-2022		TLM1	
2.	TUTORIAL 11	1	24-05-2022		TLM3	
3.	Frequency response	1	25-05-2022		TLM1	
4.	Design of FIR Digital Filters using Window Techniques	1	27-05-2022		TLM1	
5.	Frequency Sampling technique	1	28-05-2022		TLM1	
6.	TUTORIAL 12	1	31-05-2022		TLM3	
7.	Comparison of IIR & FIR filters, Wavelet Filters	1	01-06-2022		TLM1	
8.	Inverse discrete wavelets transform computation by filter banks	1	03-06-2022		TLM1	
9.	Basic properties of filter coefficients, Choice of wavelet function coefficients	1	04-06-2022		TLM1	
10.	Mid-II Exams		07-06-2022			
11.	Mid-II Exams		08-06-2022			
12.	Mid-II Exams		10-06-2022			

13.	Mid-II Exams		11-06-2022			
No. of	f classes required to complete UN	T-V:09		No. of clas	sses taken:	

Contents beyond the Syllabus:

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign
1.	Applications of DSP processors	1	06-04-2022		TLM2	

Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)					
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)					
TLM3	Tutorial	TLM6	Group Discussion/Project					

<u>PART-C</u> (EVALUATION PROCESS (R17 Regulations):)

Evaluation Task	Marks						
Assignment-I (Unit-I)	A1=5						
Assignment-II (Unit-II)	A2=5						
I-Mid Examination (Units-I & II)	M1=20						
I-Quiz Examination (Units-I & II)	Q1=10						
Assignment-III (Unit-III)	A3=5						
Assignment-IV (Unit-IV)	A4=5						
Assignment-V (Unit-V)	A5=5						
II-Mid Examination (Units-III, IV & V)	M2=20						
II-Quiz Examination (Units-III, IV & V)							
Attendance	B=5						
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5						
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20						
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10						
Cumulative Internal Examination (CIE) : A+B+M+Q							
Semester End Examination (SEE)							
Total Marks = $CIE + SEE$	100						

ACADEMIC CALENDAR:

Description	From	То	Weeks
I Phase of Instructions-1	21-02-2022	09-04-2022	7W
I Mid Examinations	11-04-2022	16-04-2022	1W
II Phase of Instructions	18-04-2022	04-06-2022	7W
II Mid Examinations	06-06-2022	11-06-2022	1W
Preparation and Practicals	13-06-2022	18-06-2022	1W
Semester End Examinations	20-06-2022	02-07-2022	2W

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
DO 3	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that most the specified peeds with enpropriate
	consideration for the public health and safety and the cultural societal and environmental
	considerations
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research
104	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
DO 0	for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
DO 0	norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidiscipling settings
DO 10	Green and a multidisciplinary settings.
1010	engineering community and with society at large such as being able to comprehend and write
	effective reports and design documentation make effective presentations and give and receive
	clear instructions
PO 11	Project management and finance : Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME OUTCOMES (POs):

PSO 1	Specify, design and analyze systems that efficiently generate, transmit and distribute electrical
	power
PSO 2	Design and analyze electrical machines, modern drive and lighting systems
PSO 3	Specify, design, implement and test analog and embedded signal processing electronic systems
PSO 4	Design controllers for electrical and electronic systems to improve their performance.

Course Instructor	Course Coordinator	Module Coordinator	HOD
Mrs.R.Padma	Mr. P.Deepak Reddy	Mr. P. Deepak Reddy	Dr. J.Siva Vara Prasad

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Dr.M.S.Giridhar		
Course Name & Code	: Power System Analysis (17EE18)		Credits : 3
L-T-P Structure	: 3-0-0	A.Y	: 2021-22
Program/Sem/Sec	: B.Tech., EEE., VI-Sem., Sections- A		

PRE-REQUISITE: None

Course Educational Objective: This course enables the student to

- Model and analyze large power systems
- ➢ Familiarize with the calculation of power flow in a power system network using various techniques COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Formulate the network matrices required for power flow and short circuit studies
CO 2	Apply appropriate power flow method to power system problems
CO 3	Analyze the various faults occurring in power systems
CO 4	Illustrate the power system stability problem

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

	Mappings of course outcomes (COs) with programme outcomes (POs) & PSOs –															
	17EE52 – POWER SYSTEM ANALYSIS															
POs									PS	Os						
a b c d e f g h i j k l PSO1 PSO2 PSO3 PSO						PSO4										
	CO1	3	2	2	2	3		1					2	2		1
Os	CO2	3	3	2	2	3						2	3	2		1
Ŭ	CO3	3	2	3	2	3	2	1					2	2		1
	CO4	2	2										1			1
1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High)																

TEXT BOOKS

- 1. W.D.Stevenson Jr., "Power System Analysis", TMH Publication, 4th Edition, 1982.
- 2. D.P Kothari, I.J.Nagarath, "Modern Power System Analysis", TMH Publication, 4th Edition, 2011. **REFERENCES**
- 1. G.W.Stagg and A.H.El-Abiad, "Computer methods in power system analysis", 1983.
- 2. Prabha Kundur, "Power system Stability and Control, TMH, 10th Reprint, 2010.
- 3. M.A.Pai, "Computer Techniques in Power system Analysis" TMH Publication, 3rd Edition, 2014.
- 4. Hadi Saadat, "Power System Analysis" TMH Publication, 3rd Edition, 2011.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT – I: POWER SYSTEM NETWORK MATRICES

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Graph Theory Definitions	1	21.02.2022		TLM1	
2.	Graph Theory relevant concepts in graph theory	1	22.02.2022		TLM1	
3.	Network matrices	1	23.02.2022		TLM1	
4.	Ybus formation by Direct Inspection	1	24.02.2022		TLM1	
5.	Ybus formation by Direct Inspection Simple Numerical Problems	1	02.03.2022		TLM1	
6.	Ybus formation Singular Transformation method	1	03.03.2022		TLM1	
7.	Ybus formation Singular Transformation methods - Problem	1	07.03.2022		TLM1	
8.	Zbus Building Algorithm	1	08.03.2022		TLM1	
9.	Addition of Branch and Links, modification of Zbus Matrix	1	09.03.2022		TLM1	
10.	Numerical Problems.	1	10.03.2022		TLM1	
No. of	classes required to complete UNIT-I	: 10		No. of class	ses taken:	

UNIT – II: POWER FLOW METHODS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Review of per unit system	1	14.03.2022		TLM1	
2.	power flow problem formulation	1	15.03.2022		TLM1	
3.	solution of non-linear algebraic equations by Gauss-Seidal Methods	1	16.03.2022		TLM1	
4.	solution of non-linear algebraic equations by Newton Raphson Methods	1	21.03.2022		TLM1	
5.	Numerical Problems	1	22.03.2022		TLM1	
6.	Power flow solution by Newton's method in polar coordinates	1	23.03.2022		TLM1	
7.	Power Flow GS methods - flow charts	1	24.03.2022		TLM1	
8.	Power Flow NR methods - flow charts	1	28.03.2022		TLM1	
9.	Power flow Solution of small systems.	1	29.03.2022		TLM1	
10.	Power flow Solution of small systems.	1	30.03.2022		TLM1	
No. of	f classes required to complete UNIT	-II: 10		No. of class	ses taken:	

UNIT – III: POWER FLOW METHODS CONTINUED

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Sensitivity of system operating parameters	1	04.04.2022		TLM1	
2.	Derivation of fast decoupled load flow	1	06.04.2022		TLM1	

3.	Simple numerical Problem	1	07.04.2022	TLM1	
4.	comparison of power flow methods with newton-raphson method	1	18.04.2022	TLM1	
5.	DC load flow formulation	1	19.04.2022	TLM1	
6.	DC load flow applications	1	20.04.2022	TLM1	
7.	Simple numerical problem	1	21.04.2022	TLM1	
8.	Introduction to optimal ordering of system of equations	1	25.04.2022	TLM1	
9.	Computation of power flow matrices - triangular factors.	1	26.04.2022	TLM1	
10.	Computation of power flow matrices - sparcity.	1	27.04.2022	TLM1	
No. of	classes required to complete UNIT-	III: 10		No. of classes taken:	

UNIT-IV: NETWORK FAULTS AND FAULT CALCULATIONS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1	Symmetrical Fault Analysis	1	28.04.2022		TLM1	
1.	synchronous machine unloaded	1			1 12/011	
2.	short circuit of loaded synchronous machine	1	02.05.2022		TLM1	
3.	Calculation of symmetrical short circuit currents for simple systems		04.05.2022		TLM1	
4.	Short circuit computation through Thevenin's Theorem,	1	05.05.2022		TLM1	
5.	Numerical problem on a simple systems		09.05.2022		TLM1	
6.	Symmetrical components transformation	1	10.05.2022		TLM1	
7.	Phase shift in Y/Δ Transformers, Sequence impedance of transmission lines, sequence impedance and networks of power system	1	11.05.2022		TLM1	
8.	sequence impedance and networks of synchronous machine, sequence impedance and networks of transformers	1	12.05.2022		TLM1	
9.	construction of sequence networks of a power system	1	16.05.2022		TLM1	
10.	computation of circuit breaker capacities, short circuit currents and MVA calculations	1	17.05.2022		TLM1	
11.	Procedure for Unsymmetrical fault analysis – LG, LL, LLG faults with and without fault impedance	1	18.05.2022		TLM1	
12.	Unsymmetrical fault analysis – LG, LL, LLG faults without fault impedance, Numerical Problems	1	19.05.2022		TLM1	
13.	Unsymmetrical fault analysis – LG, LL, LLG faults with fault impedance, Numerical Problems		23.05.2022		TLM1	

No. of classes required to complete UNIT-IV: 13 No. of classes taken: **INIT – V: POWER SYSTEM STABILITY**

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Elementary concepts of steady state, Dynamic and Transient Stabilities	1	24.05.2022		TLM1	
2.	Description of steady state Stability power limit, Transfer reactance, Synchronizing power coefficient	1	25.05.2022		TLM1	
3.	Power angle curve and Determination of steady state Stability	1	26.05.2022		TLM1	
4.	Formulation of swing equation and its solution	1	30.05.2022		TLM1	
5.	Determination of Transient stability by equal area criterion	1	31.05.2022		TLM1	
6.	Application of equal area criterion	1	01.06.2022		TLM1	
7.	Stability calculations for Loss of one parallel line	1	02.06.2022		TLM1	
8.	critical clearing angle calculation	1	02.06.2022		TLM1	
9.	Methods to improve steady state and Transient stability	1	04.06.2022		TLM1	

Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)					
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)					
TLM3	Tutorial	TLM6	Group Discussion/Project					

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks						
Assignment-I (Unit-I)	A1=5						
Assignment-II (Unit-II)							
I-Mid Examination (Units-I & II)	M1=20						
I-Quiz Examination (Units-I & II)							
Assignment-III (Unit-III)							
Assignment-IV (Unit-IV)							
Assignment-V (Unit-V)	A5=5						
II-Mid Examination (Units-III, IV & V)							
II-Quiz Examination (Units-III, IV & V)	Q2=10						

Attendance	B=5					
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5						
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20					
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)						
Cumulative Internal Examination (CIE) : A+B+M+Q						
Semester End Examination (SEE)						
Total Marks = $CIE + SEE$	100					

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering								
	fundamentals, and an engineering specialization to the solution of complex engineering								
	problems.								
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex								
	engineering problems reaching substantiated conclusions using first principles of mathematics,								
	natural sciences, and engineering sciences.								
PO 3	Design/development of solutions: Design solutions for complex engineering problems and								
	design system components or processes that meet the specified needs with appropriate								
	consideration for the public health and safety, and the cultural, societal, and environmental								
	considerations.								
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research								
	methods including design of experiments, analysis and interpretation of data, and synthesis of								
	the information to provide valid conclusions.								
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern								
	engineering and IT tools including prediction and modelling to complex engineering activities								
D O (with an understanding of the limitations								
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess								
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to								
DO 5	the professional engineering practice								
PO 7	Environment and sustainability: Understand the impact of the professional engineering								
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need								
	for sustainable development.								
PUð	Etnics: Apply etnical principles and commit to professional etnics and responsibilities and								
	norms of the engineering practice.								
PO 9	diverse terms, and in multidicainlinery settings								
DO 10	Communication: Communicate effectively on complex engineering estivities with the								
PU 10	communication. Communicate effectively on complex engineering activities with the								
	effective reports and design documentation, make effective presentations, and give and receive								
	clear instructions								
DO 11	Project management and finance: Demonstrate knowledge and understanding of the								
гоп	engineering and management principles and apply these to one's own work as a member and								
	leader in a team to manage projects and in multidisciplinary environments								
PO 12	Life long learning: Recognize the need for and have the preparation and ability to appage in								
1012	independent and life-long learning in the broadest context of technological change								
	independent and me-tong learning in the broadest context of technological change.								

PSO 1	Specify, design and analyze systems that efficiently generate, transmit and distribute electrical
	power
PSO 2	Design and analyze electrical machines, modern drive and lighting systems
PSO 3	Specify, design, implement and test analog and embedded signal processing electronic systems
PSO 4	Design controllers for electrical and electronic systems to improve their performance

DEPARTMENT OF Electrical and Electronics Engineering <u>COURSE HANDOUT</u>

PART-A

Name of Course Instructor	: Dr.P.Sobha Rani	
Course Name & Code	: Power System Analysis 17EE18	
L-T-P Structure	: 2-2-0	Credits : 3
Program/Sem/Sec	: B.Tech., EEE., VI-Sem., Section- B	A.Y : 2021-22

PRE-REQUISITE

: Electrical Power Transmission

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course enables the student to

- Model and analyze large power systems
- Familiarize with calculation of power flow in a power system network using various techniques

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Formulate the network matrices required for power flow and short circuit studies.
CO 2	Apply appropriate power flow method to power system problems
CO 3	Analyze the various faults occurring on power systems
CO 4	Illustrate the power system stability problem

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	2	2	3								2	2	1
CO2	3	3	2	2	3							2	3	2	1
CO3	3	2	3	2	3	2	1						2	2	1
CO4	2	2											1		1

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- **T1** W D Stevenson Jr., "Power System Analysis", T M H, 4thedition,1982.
- **T2** D.P. Kothari, I.J. Nagrath, "Modern Power System Analysis", T M H New Delhi,4th Edition 2011

REFERENCE BOOKS:

- R1 G.W. Stagg & A.H. El-Abiad, "Computer Methods in Power System Analysis", 1983.
- **R2** Prabha Kundur, "Power System Stability and Control", T M H, 10th reprint 2010.
- **R3** M.A. Pai, "Computer Techniques in Power System Analysis", TMH, 3rd edition, 2014
- **R4** Hadi Saadat, "Power System Analysis"– TMH , 3rd Edition, 2011.
- **R5** Abhijit Chakraborty, Sunita, Halder, "Power System Analysis: Operation and Control", PHI Learning Pvt Ltd., New Delhi, III Edition., 2010.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):B/S

UNIT-I: POWER SYSTEM NETWORK MATRICES

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Course and COs	1	22-02-2022		TLM1	
2.	Introduction to Unit-I	1	23-02-2022		TLM1	
3.	relevant concepts in graph theory	1	24-02-2022		TLM1	
4.	Network Matrices	1	26-02-2022		TLM1	
5.	Y _{bus} formation by Direct Inspection	1	2-03-2022		TLM1	
6.	Y _{bus} formation by Singular Transformation Method	1	3-03-2022		TLM2	
7.	Tutorial-1	1	5-03-2022		TLM3	
8.	Z _{bus} building algorithm	2	8-03-2022 9-03-2022		TLM1	
9.	Tutorial-2	1	10-03-2022		TLM3	
No. of	f classes required to complete UN	IT-I:10		No. of class	ses taken:	

UNIT-II: POWER FLOW METHODS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Review of per-unit system	1	15-03-2022		TLM1	
2.	power flow problem formulation	1	16-03-2022		TLM1	
3.	solution of non-linear algebraic equations by Gauss-Seidel	1	17-03-2022		TLM1	
4.	Tutorial-1	1	19-03-2022		TLM3	
5.	Newton-Raphson method	2	22-03-2022 23-03-2022		TLM1	
6.	Newton-Raphson method	1	24-03-2022		TLM1	
7.	Tutorial-2	1	26-03-2022		TLM3	
8.	Power flow solution by Newton's method in polar coordinates	1	29-03-2022		TLM2	
9.	Flow charts	1	30-03-2022		TLM2	
10.	Solution of small systems.	1	31-03-2022		TLM3	
11.	I-Mid		12-04-2022			
12.	I-Mid		13-04-2022			
13.	I-Mid		16-04-2022			
No. of	f classes required to complete UN	IT-II:11		No. of class	sses taken:	

UNIT-III: POWER FLOW METHODS CONTINUED

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Sensitivities of system operating parameters	1	6-04-2022		TLM1	
2.	derivation of Fast Decoupled Load flow	1	7-04-2022		TLM1	
3.	comparison with Newton-	1	19-04-2022		TLM1	

	Raphson method					
4.	DC Load flow and applications	1	20-04-2022		TLM1	
	Introduction to optimal					
5.	ordering of system of	1	21-04-2022		TLM1	
	equations					
6.	Tutorial-1	1	23-04-2022		TLM3	
7.	triangular factors	1	26-04-2022		TLM1	
8.	sparcity	1	27-04-2022		TLM2	
No. of classes required to complete UNIT-III:8				No. of class	ses taken:	

UNIT-IV : NETWORK FAULTS AND FAULT CALCULATIONS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Short circuit of synchronous machine unloaded and loaded	1	28-04-2022		TLM1	
2.	Calculation of symmetrical short circuit currents for simple systems	1	30-04-2022		TLM3	
3.	short circuit current computation through Thevenin's theorem	1	4-05-2022		TLM1	
4.	Symmetrical components transformation	1	5-05-2022		TLM1	
5.	Tutorial-2	1	7-05-2022		TLM3	
6.	phase shift in Y/Δ transformers	1	10-05-2022		TLM1	
7.	sequence impedance and networks of power system	1	11-05-2022		TLM1	
8.	computation of circuit breaker capacities	1	12-05-2022		TLM1	
9.	Short Circuit Current and MVA Calculations	1	14-05-2022		TLM3	
10.	LG, LL, LLG faults with and without fault impedance	2	17-05-2022 18-05-2022		TLM1	
No. of	f classes required to complete UNI	T-IV:11		No. of class	sses taken:	

UNIT-V : POWER SYSTEM STABILITY

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Elementary concepts of Steady State, Dynamic and Transient Stabilities	1	19-05-2022		TLM1	
2.	Description of Steady State Stability Power Limit,	1	21-05-2022		TLM1	
3.	Transfer Reactance, Synchronizing Power Coefficient	1	24-05-2022		TLM1	
4.	Power Angle Curve and Determination of Steady State Stability	1	25-05-2022		TLM1	
5.	Formulation of Swing Equation and its solution	1	26-05-2022		TLM1	
6.	Tutorial-1	1	28-05-2022		TLM3	
7.	determination of Transient Stability by Equal Area Criterion	1	31-05-2022		TLM1	
8.	Application of Equal	1	1-06-2022		TLM1	

	Area Criterion					
9	Critical Clearing Angle	1	2-06-2022		TLM1	
2.	Calculation	1	2 00 2022		T LIVIT	
	Methods to improve					
10.	Steady State and	1	4-06-2022		TLM1	
	Transient Stability					
11.	II Mid		7-06-2022			
12.	II Mid		8-06-2022			
13.	II Mid		9-06-2022			
14.	II Mid		11-06-2022			
No. of classes required to complete UNIT-V:10				No. of class	sses taken:	

Teaching Learning Methods				
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)	
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)	
TLM3	Tutorial	TLM6	Group Discussion/Project	
PART-C				

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and design system components on processes that must the specified peeds with appropriate
	consideration for the public health and safety and the cultural societal and environmental
	considerations
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research
10.	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PU 8	Etnics: Apply etnical principles and commit to professional etnics and responsibilities and
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in
107	diverse teams and in multidisciplinary settings
PO 10	Communication : Communicate effectively on complex engineering activities with the
1010	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

Specify, design and analyze systems that efficiently generate, transmit and distribute
electrical power
Design and analyze electrical machines, modern drive and lighting systems
Specify, design, implement and test analog and embedded signal processing electronic
systems
Design controllers for electrical and electronic systems to improve their performance

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Dr. K. Harinadha Reddy	
Course Name & Code	: Power Electronics	
L-T-P Structure	: 3-1-0	Credits : 3
Program/Sem/Sec	: B.Tech., EEE., VI-Sem., Section- A	A.Y : 2021-22

PRE-REQUISITE: Electronics circuits and Devices (17EE01), Network Theory-II(17EE07)

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course enables the student to

- ➤ Make use of different power converters & their enhancement in performance of power transmission, distribution and utilization systems.
- Analyze the performance of various power electronic converters by applying different control mechanisms

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Illustrate the operation of various power semiconductor devices.
CO 2	Evaluate the performance of power converters.
CO 3	Design the protection and control circuits for various converters.
CO 4	Analyze different firing and commutation circuits.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3											2	2	2	1	
CO2	3	3	3				2					2	3	3	1	3
CO3	3	3	3				2					2	3	3	1	3
CO4	3	3					2					2	2	2	1	2

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- 1. Md.H.Rashid "Power Electronics", Pearson Education fourth Edition, first Indian Reprint- 2014.
- 2. Dr.P.S. Bhimbra, "Power Electronics", Khanna Publishers, 5th Edition, 2012.

REFERENCES:

- 1. Ned Mohan, T.M. Undeland and William P.Robbins, "Power Electronic Converters- Applications", John Wiley & Sons, 3rd Edition, , 2009
- 2. M D Singh, K B Khanchandani "Power Electronics", Tata MC Graw Hill Publishers,2nd edition 2006.

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I:POWER SEMI-CONDUCTOR DEVICES

S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign
2		Required	Completion	Completion	Methods	Weekly
1.	Introduction to Course and COs	1	21.02.2022		TLM1	
2.	Introduction to Power semiconductor switches, Thyristor family	1	22.02.2022		TLM1	
3.	SCR operation& Characteristics of SCR	1	24.02.2022		TLM2	
4.	Two transistor model	1	26.02.2022		TLM1	
5.	Static and dynamic characteristics	1	28.02.2022		TLM1	
6.	Turn on and Turn off methods	2	03.03.2022		TLM2	
7.	TUTORIAL-1	1	05.03.2022		TLM3	
8.	Series and Parallel operation of thyristors	2	07.03.2022		TLM1	
9.	Gate triggering circuits	1	08.03.2022		TLM1	
10.	Rating and protection	1	10.03.2022		TLM1	
11.	Snubber circuits, Characteristics of GTO & IGBT	1	12.03.2022		TLM1	
12.	TUTORIAL-2	1	14.03.2022		TLM3	
No. of a	classes required to complete UNIT-I:14			No. of classes	taken:	

UNIT-II: COMMUTATIONS & PHASE-CONTROLLED RECTIFIERS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Natural commutation, Forced commutation circuits	1	15.03.2022		TLM1	
2.	Impulse, Resonant pulse, Numerical	1	17.03.2022		TLM1	
3.	complimentary and external pulse commutation	1	19.03.2022		TLM1	
4.	Single phase Half wave bridge controlled rectifiers with R and RL loads– continuous and discontinuous modes	1	21.03.2022		TLM2	
5.	Numericals on single phase half wave bridge controlled rectifiers	1	22.03.2022		TLM1	
6.	TUTORIAL-3	1	24.03.2022		TLM3	
7.	Full wave bridge controlled rectifiers with R and RL loads-continuous and discontinuous modes	1	26.03.2022		TLM2	
8.	Numericals on full wave bridge controlled rectifiers	1	28.03.2022		TLM1	
9.	effect of freewheeling diode	1	29.03.2022		TLM1	
10.	Dual converters-single phase	1	31.03.2022		TLM1	
11.	Dual converters- three phase Effect of Source impedance	1	04.04.2022		TLM1	
12.	TUTORIAL-4	1	05.04.2022		TLM3	
13.	Problems	2	07.04.2022 09-04-2022		TLM1	
No. of a	classes required to complete UNIT-II:14			No. of classes	taken:	

UNIT-III: AC VOLTAGE CONTROLLERS & CYCLO CONVERTERS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Single phase ac voltage controller with R and RL loads continuous and discontinuous modes	1	18.04.2022		TLM1	
2.	Problems on single phase ac voltage controller with R and RL loads	1	19.04.2022		TLM2	
3.	Three phase ac voltage controller with R and RL loads continuous and discontinuous modes	1	21.04.2022		TLM1	
4.	Problems on Three phase ac voltage controller with R and RL loads	1	23.04.2022		TLM2	
5.	TUTORIAL-5	1	25.04.2022		TLM3	
6.	Principle of operation of Cyclo-converter	1	26.04.2022		TLM1	
7.	Single phase to single phase cyclo converters	1	28.04.2022		TLM1	
8.	Problems on Single phase to single phase cyclo converters	1	30.04.2022		TLM1	
9.	Content beyond syllabus	1	02.05.2022			
No. of	No. of classes required to complete UNIT-III:9 No. of classes taken:					

UNIT-IV : DC TO DC CONVERTERS

G N		No. of	Tentative	Actual	Teaching	HOD	
S.No.	Topics to be covered	Classes Required	Date of Completion	Date of Completion	Learning Methods	Sign Weekly	
1.	Principle of operation dc to dc converters	1	05.05.2022	Compression	TLM1		
2.	Step-up and step-down chopper	1	07.05.2022		TLM2		
3.	Control Strategies of dc to dc converters	1	09.05.2022		TLM1		
4.	Derivation of average load voltage, load current for continuous current operation	1	10.05.2022		TLM1		
5.	Numericals on step up chopper	1	12.05.2022		TLM1		
6.	TUTORIAL-6	1	14.05.2022		TLM3		
7.	Derivation of average load voltage, load current for discontinuous current operation	1	16.05.2022		TLM1		
8.	Analysis of Class A chopper	1	17.05.2022		TLM2		
9.	TUTORIAL-7	1	19.05.2022		TLM3		
No. of	No. of classes required to complete UNIT-IV:9 No. of classes taken:						

UNIT-V : INVERTERS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
1.	Single phase Voltage Source Inverter	1	21.05.2022		TLM1	,, collig	
2.	Single phase Current source inverters	1	23.05.2022		TLM1		
3.	Comparison between VSI and CSI	1	24.05.2022		TLM1		
4.	Analysis with R & RL loads	1	26.05.2022		TLM2		
5.	3-phase inverters–180 and 120 degree mode of operation	1	28.05.2022		TLM1		
6.	TUTORIAL-8	1	30.05.2022		TLM3		
7.	Single Pulse Width Modulation	1	31.05.2022		TLM1		
8.	Multiple Pulse Width Modulation	1	02.06.2022		TLM1		
9.	Sinusoidal & Modified Sinusoidal PWM	1	04.06.2022		TLM2		
No. of classe	No. of classes required to complete UNIT-V:09 No. of classes taken:						

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = $CIE + SEE$	100

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering						
	problems.						
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex						
	engineering problems reaching substantiated conclusions using first principles of mathematics,						
	natural sciences, and engineering sciences.						
PO 3	Design/development of solutions: Design solutions for complex engineering problems and						
	design system components or processes that meet the specified needs with appropriate						
	consideration for the public health and safety, and the cultural, societal, and environmental considerations						
PO 4	Conduct investigations of complex problems. Use research based knowledge and research						
104	methods including design of experiments analysis and interpretation of data and synthesis of						
	the information to provide valid conclusions.						
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern						
	engineering and IT tools including prediction and modelling to complex engineering activities						
	with an understanding of the limitations						
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess						
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to						
	the professional engineering practice						
PO 7	Environment and sustainability: Understand the impact of the professional engineering						
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need						
DO 9	for sustainable development.						
PU 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and						
PO 0	Individual and team work: Function effectively as an individual and as a member or leader in						
109	diverse teams and in multidisciplinary settings						
PO 10	Communication : Communicate effectively on complex engineering activities with the						
1010	engineering community and with society at large, such as, being able to comprehend and write						
	effective reports and design documentation, make effective presentations, and give and receive						
	clear instructions.						
PO 11	Project management and finance: Demonstrate knowledge and understanding of the						
	engineering and management principles and apply these to one's own work, as a member and						
	leader in a team, to manage projects and in multidisciplinary environments.						
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in						
	independent and life-long learning in the broadest context of technological change.						

PSO 1	Communication: Design and develop modern communication technologies for building the						
	inter disciplinary skills to meet current and future needs of industry.						
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or						
	systems and Implement real time applications in the field of VLSI and Embedded Systems						
	using relevant tools						
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues						
	related to real time applications						

Dr. K. Harinadha Reddy	Dr.J.S.V.Prasad	Mr P.Deepak Reddy	Dr.J.S.V.Prasad
Course Instructor	Course Coordinator	Module Coordinator	HOD

DEPARTMENT OF ELECTRICAL & ELECTRONICS ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Dr. J.Sivavara Prasad	
Course Name & Code	: Power Electronics	
L-T-P Structure	: 3-1-0	Credits : 3
Program/Sem/Sec	: B.Tech., EEE., VI-Sem., Section- B	A.Y : 2021-22

PRE-REQUISITE: Electronics circuits and Devices (17EE01), Network Theory-II(17EE07)

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course enables the student to

- Make use of different power converters & their enhancement in performance of power transmission, distribution and utilization systems.
- Analyze the performance of various power electronic converters by applying different control mechanisms

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Illustrate the operation of various power semiconductor devices.
CO 2	Evaluate the performance of power converters.
CO 3	Design the protection and control circuits for various converters.
CO 4	Analyze different firing and commutation circuits.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3											2	2	2	1	
CO2	3	3	3				2					2	3	3	1	3
CO3	3	3	3				2					2	3	3	1	3
CO4	3	3					2					2	2	2	1	2

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- 3. Md.H.Rashid "Power Electronics", Pearson Education fourth Edition, first Indian Reprint- 2014.
- 4. Dr.P.S. Bhimbra, "Power Electronics", Khanna Publishers, 5th Edition, 2012.

REFERENCES:

- 1. Ned Mohan, T.M. Undeland and William P.Robbins, "Power Electronic Converters- Applications", John Wiley & Sons, 3rd Edition, , 2009
- 2. M D Singh, K B Khanchandani "Power Electronics", Tata MC Graw Hill Publishers,2nd edition 2006.

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I:POWER SEMI-CONDUCTOR DEVICES

S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign
5.1.10.		Required	Completion	Completion	Methods	Weekly
1.	Introduction to Course and COs	1	21.02.2022		TLM1	
2.	Introduction to Power semiconductor switches, Thyristor family	1	22.02.2022		TLM1	
3.	SCR operation& Characteristics of SCR	1	24.02.2022		TLM2	
4.	Two transistor model	1	25.02.2022		TLM1	
5.	Static and dynamic characteristics	1	28.02.2022		TLM1	
6.	Turn on and Turn off methods	2	03.03.2022		TLM2	
7.	TUTORIAL-1	1	04.03.2022		TLM3	
8.	Series and Parallel operation of thyristors	2	07.03.2022		TLM1	
9.	Gate triggering circuits	1	08.03.2022		TLM1	
10.	Rating and protection	1	10.03.2022		TLM1	
11.	Snubber circuits, Characteristics of GTO & IGBT	1	11.03.2022		TLM1	
12.	TUTORIAL-2	1	14.03.2022		TLM3	
No. of a	classes required to complete UNIT-I:14			No. of classes	taken:	

UNIT-II: COMMUTATIONS & PHASE-CONTROLLED RECTIFIERS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Natural commutation, Forced commutation circuits	1	15.03.2022		TLM1	
2.	Impulse, Resonant pulse, complimentary and external pulse commutation	1	17.03.2022		TLM1	
3.	Single phase Half wave bridge controlled rectifiers with R and RL loads– continuous and discontinuous modes	1	21.03.2022		TLM2	
4.	Numericals on single phase half wave bridge controlled rectifiers	1	22.03.2022		TLM1	
5.	TUTORIAL-3	1	24.03.2022		TLM3	
6.	Full wave bridge controlled rectifiers with R and RL loads-continuous and discontinuous modes	1	25.03.2022		TLM2	
7.	Numericals on full wave bridge controlled rectifiers	1	28.03.2022		TLM1	
8.	effect of freewheeling diode	1	29.03.2022		TLM1	
9.	Dual converters-single phase	1	31.03.2022		TLM1	
10.	Dual converters- three phase	1	01.04.2022		TLM1	
11.	Effect of Source impedance	1	04.04.2022		TLM1	
12.	TUTORIAL-4	1	07.04.2022		TLM3	
13.	Problems	1	08.04.2022		TLM1	
No. of c	classes required to complete UNIT-II:13			No. of classes	taken:	

UNIT-III: AC VOLTAGE CONTROLLERS & CYCLO CONVERTERS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Single phase ac voltage controller with R and RL loads continuous and discontinuous modes	1	18.04.2022		TLM1	
2.	Problems on single phase ac voltage controller with R and RL loads	1	19.04.2022		TLM2	
3.	Three phase ac voltage controller with R and RL loads continuous and discontinuous modes	1	21.04.2022		TLM1	
4.	Problems on Three phase ac voltage controller with R and RL loads	1	22.04.2022		TLM2	
5.	TUTORIAL-5	1	25.04.2022		TLM3	
6.	Principle of operation of Cyclo-converter	1	26.04.2022		TLM1	
7.	Single phase to single phase cyclo converters	1	28.04.2022		TLM1	
8.	Problems on Single phase to single phase cyclo converters	1	29.04.2022		TLM1	
9.	Content beyond syllabus	1	02.05.2022			
No. o	f classes required to complete UN	IT-III:9		No. of clas	sses taken:	

UNIT-IV : DC TO DC CONVERTERS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Principle of operation dc to dc converters	1	05.05.2022		TLM1	
2.	Step-up and step-down chopper	1	06.05.2022		TLM2	
3.	Control Strategies of dc to dc converters	1	09.05.2022		TLM1	
4.	Derivation of average load voltage, load current for continuous current operation	1	10.05.2022		TLM1	
5.	Numericals on step up chopper	1	12.05.2022		TLM1	
6.	TUTORIAL-6	1	13.05.2022		TLM3	
7.	Derivation of average load voltage, load current for discontinuous current operation	1	16.05.2022		TLM1	
8.	Analysis of Class A chopper	1	17.05.2022		TLM2	
9.	TUTORIAL-7	1	19.05.2022		TLM3	
No. of	f classes required to complete UNI	No. of clas	ses taken:			

UNIT-V : INVERTERS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Single phase Voltage Source Inverter	1	20.05.2022		TLM1	
2.	Single phase Current source inverters	1	23.05.2022		TLM1	
3.	Comparison between VSI and CSI	1	24.05.2022		TLM1	
4.	Analysis with R & RL loads	1	26.05.2022		TLM2	
5.	3-phase inverters–180 and 120 degree mode of operation	1	27.05.2022		TLM1	
6.	TUTORIAL-8	1	30.05.2022		TLM3	
7.	Single Pulse Width Modulation	1	31.05.2022		TLM1	

8.	Multiple Pulse Width Modulation	1	02.06.2022		TLM1	
9.	Sinusoidal & Modified Sinusoidal PWM	1	03.06.2022		TLM2	
No. of classe		No. of clas	ses taken:			

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = $CIE + SEE$	100

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
DO 3	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental considerations
PO 4	Conduct investigations of complex problems: Use research based knowledge and research
104	methods including design of experiments analysis and interpretation of data and synthesis of
	the information to provide valid conclusions
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
D O 0	for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in
DO 10	diverse teams, and in multidisciplinary settings.
PO 10	communication. Communicate effectively on complex engineering activities with the
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PSO 1	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
	systems and Implement real time applications in the field of VLSI and Embedded Systems
	using relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Dr.J.S.V.Prasad	Dr.J.S.V.Prasad	Mr P.Deepak Reddy	Dr.J.S.V.Prasad
Course Instructor	Course Coordinator	Module Coordinator	HOD

DEPARTMENT OF Electrical and Electronics Engineering <u>COURSE HANDOUT</u>

PART-A

Name of Course Instructor	: Mr. A.V.RAVIKUMAR		
Course Name & Code	: Measurements and Instrumentation&17EE	20	
L-T-P Structure	: 3-0-0		Credits : 3
Program/Sem/Sec	: B.Tech., EEE., VI-Sem., Section-A	A.Y	: 2021-22

PRE-REQUISITE: Network Theory-I,II, Applied Physics

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course enables the student to

- Understand the construction and working principle of different types of meters
- Provide knowledge to design and create novel products and solutions for real life problems

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Compare the performance of MC, MI and Dynamometer types of measuring instruments
	and Energy meters
CO 2	Determine the circuit parameters using AC and DC bridges
CO 3	Compute the errors in CTs and PTs
CO 4	Identify suitable transducers for the measurement of temperature, displacement and
	Strain
CO 5	Illustrate operating principles of electronic measuring instruments

COURSE ARTICULATION MATRIX(Correlation between COs, POs & PSOs):

COs	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	2										1	1	1		2
CO2	2	2	2										1	1		
CO3	2	2	2										2	1		1
CO4	2	2														1
CO5	2	2	2													1

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- **T1** A K Sawhaney, DhanpatRai& Sons., "A course in Electrical and Electronic measurements & Instrumentation", Education & Technical publishers New Delhi, 4thedition, 2015.
- T2 U A Bakshi& A V Bakshi, "Electrical measurement", Technicalpublications, Pune, second edition, 2010

REFERENCE BOOKS:

- **R1** Nakra& Chaudhari, "Instrumentation, Measurement and Analysis", TMH, 4thedition 2006.
- **R2** D V S Murthy, "TransducersandInstrumentation", PHI Ltd, New Delhi, 2nd edition 2011

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):A/S

UNIT-I: Measuring Instruments

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Functional elements of an instrument- static and dynamic characteristics	1	21-02-2022		TLM2	
2.	Errors in measurement-statistical evaluation of measurement data	1	24-02-2022		TLM2	
3.	Standards and calibration, classification of measuring instruments	1	25-02-2022		TLM2	
4.	Essentials of indicating instruments, deflecting, controlling and damping systems	1	28-02-2022		TLM1	
5.	Construction, working, torque equation of MI instrument	1	03-03-2022		TLM1	
6.	Construction, working, torque equation of PMMC instrument	1	04-03-2022		TLM1	
7.	Extension of range of ammeters and voltmeters using shunt, multiplier	1	07-03-2022		TLM1	
8.	Universal shunt, universal multiplier	1	10-03-2022		TLM1	
9.	Problems	1	11-03-2022		TLM1	
No. o	f classes required to complete UN		No. of clas	ses taken:		

UNIT-II: MEASUREMENT OF R, L, C

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Measurement of Resistance: voltmeter – Ammeter method	1	14-03-2022		TLM1	
2.	Kelvin's Double bridge	1	17-03-2022		TLM1	
3.	Megger	1	18-03-2022		TLM1	
4.	A.C. Bridges : Sources and Detectors for A.C. Bridges	1	21-03-2022		TLM1	
5.	General equation for bridge at balance	1	24-03-2022		TLM1	
6.	Measurement of Inductance: Maxwell's Inductance-capacitance bridge	1	25-03-2022		TLM1	
7.	Anderson's bridge	1	28-03-2022		TLM1	
8.	Measurement of Capacitance: Schering bridge	1	31-03-2022		TLM1	
No. o	f classes required to complete U	No. of class	sses taken:			

UNIT-III: SPECIAL PURPOSE MEASURING INSTRUMENTS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Instrument Transformers: construction	1	01-04-2022		TLM1	
2.	Connection of CT &PT in the circuit	1	04-04-2022		TLM1	
3.	Advantages of CT/PT over shunt and multiplier for range extension	1	07-04-2022		TLM1	
4.	Transformation ratio, turns ratio, Nominal ratio, burden ,Ratio and phase angle error	1	08-04-2022		TLM1	
5.	Power factor meter	1	18-04-2022		TLM1	
6.	Frequency meter Resonance type and Weston type	1	21-04-2022		TLM1	
7.	Principle of AC Potentiometer	1	22-04-2022		TLM2	
8.	DC Potentiometer(Crompton)	1	25-04-2022		TLM2	
9.	Standardization & applications, Grounding techniques	1	28-04-2022		TLM2	
No. of	f classes required to complete UN	IT-III:9		No. of class	sses taken:	

UNIT-IV :MEASUREMENT OF POWER AND ENERGY

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Wattmeter: construction, working, Torque equation	1	29-04-2022		TLM1	
2.	Errors and their compensation in dynamometer type	1	02-05-2022		TLM1	
3.	Low power factor wattmeter	1	05-05-2022		TLM1	
4.	Polyphase wattmeter	1	06-05-2022		TLM1	
5.	Measurement of reactive power	1	09-05-2022		TLM1	
6.	Determination of power factor by two wattmeter method	1	12-05-2022		TLM1	
7.	Energy meter: construction,working, torque equation	1	13-05-2022		TLM1	
8.	Errors and adjustments of single phase conventional energy meter	1	16-05-2022		TLM2	
9.	Three phase energy meters	1	29-04-2022		TLM2	
No. of classes required to complete UNIT-IV:8 No. of classes taken:						

UNIT-V :INSTRUMENTATION

S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign
		Required	Completion	Completion	Methods	Weekly
1.	Transducers, classification and selection of transducers	1	19-05-2022		TLM1	
2.	Strain gauges	1	20-05-2022		TLM1	
3.	Inductive transducers, LVDT	1	23-05-2022		TLM1	
4.	Capacitive transducers, Piezo electric and Hall effect transducers	1	26-05-2022		TLM1	
5.	Photo voltaic and photo conductive cells Measurement practices in substation	1	27-05-2022		TLM1	
6.	Optical and digital transducers- elements of data acquisition system	1	30-05-2022		TLM1	
7.	A/D, D/A converters	1	02-06-2022		TLM2	
8.	Smart sensors	1	03-06-2022		TLM2	
No. of classes required to complete UNIT-V:8No. of classes taken:						

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

PART-C
EVALUATION PROCESS (R17 Regulations)

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering										
	problems.										
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex										
	engineering problems reaching substantiated conclusions using first principles of mathematics,										
	natural sciences, and engineering sciences.										
PO 3	Design/development of solutions : Design solutions for complex engineering problems and										
	design system components or processes that meet the specified needs with appropriate										
	considerations										
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research										
	methods including design of experiments, analysis and interpretation of data, and synthesis of										
	the information to provide valid conclusions.										
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern										
	engineering and IT tools including prediction and modelling to complex engineering activities										
D O (with an understanding of the limitations										
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess										
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to										
PO 7	Environment and sustainability : Understand the impact of the professional engineering										
107	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need										
	for sustainable development.										
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and										
	norms of the engineering practice.										
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in										
	diverse teams, and in multidisciplinary settings.										
PO 10	Communication: Communicate effectively on complex engineering activities with the										
	engineering community and with society at large, such as, being able to comprehend and write										
	clear instructions										
PO 11	Project management and finance . Demonstrate knowledge and understanding of the										
1011	engineering and management principles and apply these to one's own work, as a member and										
	leader in a team, to manage projects and in multidisciplinary environments.										
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in										
	independent and life-long learning in the broadest context of technological change.										

onic
e
- -

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Mr A.V.RAVIKUMAR	Mr A.V.RAVIKUMAR		DrJ.S.V.PRASAD
Signature				

DEPARTMENT OF Electrical and Electronics Engineering <u>COURSE HANDOUT</u>

PART-A

Name of Course Instructor	: Mrs. T. Naga Durga	
Course Name & Code	: Measurements and Instrumentation17EE20	
L-T-P Structure	: 3-0-0	Credits : 3
Program/Sem/Sec	: B.Tech., EEE., VI-Sem., Section- B	A.Y : 2021-22

PRE-REQUISITE : Network Theory-I,II, Applied Physics

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course enables the student to

- Understand the construction and working principle of different types of meters
- Provide knowledge to design and create novel products and solutions for real life problems
- COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Compare the performance of MC, MI and Dynamometer types of measuring instruments									
	and Energy meters									
CO 2	Determine the circuit parameters using AC and DC bridges									
CO 3	Compute the errors in CTs and PTs									
CO 4	Identify suitable transducers for the measurement of temperature, displacement and									
	Strain									
CO 5	Illustrate operating principles of electronic measuring instruments									

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	2	2										1	1	1		2
CO2	2	2	2										1	1		
CO3	2	2	2										2	1		1
CO4	2	2														1
CO5	2	2	2													1

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- **T1** A K Sawhaney, DhanpatRai& Sons., "A course in Electrical and Electronic measurements & Instrumentation", Education & Technical publishers New Delhi, 4th edition, 2015.
- T2 U A Bakshi & A V Bakshi, "Electrical measurement", Technical publications, Pune, second edition, 2010

REFERENCE BOOKS:

- **R1** Nakra & Chaudhari, "Instrumentation, Measurement and Analysis", TMH, 4thedition 2006.
- **R2** D V S Murthy, "Transducers and Instrumentation", PHI Ltd, New Delhi, 2nd edition 2011
PART-B

COURSE DELIVERY PLAN (LESSON PLAN):B/S

UNIT-I: Measuring Instruments

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction, Course outcomes	1	21/2/2022			
2.	Functional elements of an instrument- static and dynamic characteristics	1	22/2/2022			
3.	Errors in measurement-statistical evaluation of measurement data	1	25/2/2022			
4.	Standards and calibration, classification of measuring instruments	1	28/2/2022			
5.	Essentials of indicating instruments, deflecting, controlling and damping systems	1	4/3/2022			
6.	Construction, working ,torque equation of MI instrument	1	7/3/2022			
7.	Construction, working ,torque equation of PMMC instrument	1	8/3/2022			
8.	Extension of range of ammeters and voltmeters using shunt, multiplier	1	11/3/2022			
9.	Universal shunt, universal multiplier	1	14/3/2022			
No. of	No. of classes required to complete UNIT-I: 9 No. of classes taken:					

UNIT-II: MEASUREMENT OF R, L, C

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Measurement of Resistance: voltmeter – Ammeter method	1	15/3/2022		TLM2	
2.	Kelvin's Double bridge	1	21/3/2022		TLM2	
3.	Megger	1	22/3/2022		TLM2	
4.	A.C. Bridges : Sources and Detectors for A.C. Bridges	1	25/3/2022		TLM2	
5.	General equation for bridge at balance	1	28/3/2022		TLM2	
6.	Measurement of Inductance: Maxwell's Inductance-capacitance bridge	1	29/3/2022		TLM2	
7.	Anderson's bridge	1	1/4/2022		TLM2	
8.	Measurement of Capacitance: Schering bridge	1	4/4/2022		TLM2	
9.	I-Mid					
No. o	No. of classes required to complete UNIT-II:8 No. of classes taken:					

UNIT-III: SPECIAL PURPOSE MEASURING INSTRUMENTS

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Instrument Transformers: construction	1	18/4/2022		TLM2	
2.	Connection of CT &PT in the circuit	1	19/4/2022		TLM2	
3.	Advantages of CT/PT over shunt and multiplier for range extension	1	22/4/2022		TLM2	

4.	Transformation ratio, turns ratio, Nominal ratio, burden ,Ratio and phase angle error	1	25/4/2022	TLM2	
5.	Power factor meter	1	26/4/2022	TLM2	
6.	Frequency meter Resonance type and Weston type	1	29/4/2022	TLM2	
7.	Potentiometers: Principle of AC Potentiometer (polar and coordinate type)	1	2/5/2022	TLM2	
8.	DC Potentiometer(Crompton)	1	6/5/2022	TLM2	
9.	Standardization & applications, Grounding techniques	1	9/5/2022	TLM2	
No. of	f classes required to complete UN	IT-III:9		No. of classes taken:	

UNIT-IV : MEASUREMENT OF POWER AND ENERGY

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Wattmeter: construction, working, Torque equation	1	10/5/2022		TLM2	•
2.	Errors and their compensation in dynamometer type	1	13/5/2022		TLM2	
3.	Low power factor wattmeter, Polyphase wattmeter	1	16/5/2022		TLM2	
4.	Measurement of reactive power, Determination of power factor by two wattmeter method	1	17/5/2022		TLM2	
5.	Energy meter: construction, working, torque equation	1	20/5/2022		TLM2	
6.	Errors and adjustments of single phase conventional energy meter	1	23/5/2022		TLM2	
7.	Three phase energy meters				TLM2	
No. of	f classes required to complete UNI	T-IV:6	1	No. of class	sses taken:	
'-V : I	NSTRUMENTATION					

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Transducers, classification and selection of transducers	1	24/5/2022		TLM2	
2.	Strain gauges	1	27/5/2022		TLM2	
3.	Inductive transducers, LVDT	1	30/5/2022		TLM2	
4.	Capacitive transducers, Piezo electric and Hall effect transducers	1	31/5/2022		TLM2	
5.	Photo voltaic and photo conductive cells Measurement practices in substation	1	3/6/2022		TLM2	
6.	Optical and digital transducers-elements of data acquisition system	1			TLM2	
7.	A/D, D/A converters ,Smart sensors (elementary treatment)	1	4/6/2022			
8.	II Mid					
No. of clas	ses required to complete UN	[T-V:7		No. of clas	sses taken:	

Teaching I	Learning Methods		
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)
TLM3	Tutorial	TLM6	Group Discussion/Project
	<u>PA</u>	RT-C	

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = $CIE + SEE$	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering					
	fundamentals, and an engineering specialization to the solution of complex engineering					
	problems.					
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex					
	engineering problems reaching substantiated conclusions using first principles of mathematics,					
DO A	natural sciences, and engineering sciences.					
PO 3	Design/development of solutions: Design solutions for complex engineering problems and					
	design system components or processes that meet the specified needs with appropriate					
	consideration for the public health and safety, and the cultural, societal, and environmental considerations					
PO 4	Conduct investigations of complex problems: Use research based knowledge and research					
104	methods including design of experiments analysis and interpretation of data and synthesis of					
	the information to provide valid conclusions.					
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern					
	engineering and IT tools including prediction and modelling to complex engineering activities					
	with an understanding of the limitations					
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess					
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to					
	the professional engineering practice					
PO 7	Environment and sustainability: Understand the impact of the professional engineering					
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need					
DO 0	for sustainable development.					
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and					
	norms of the engineering practice.					
PO 9	diverse teams, and in multidisciplinery settings					
PO 10	Communication: Communicate effectively on complex engineering activities with the					
1010	engineering community and with society at large such as being able to comprehend and write					
	effective reports and design documentation, make effective presentations, and give and receive					
	clear instructions.					
PO 11	Project management and finance: Demonstrate knowledge and understanding of the					
	engineering and management principles and apply these to one's own work, as a member and					
	leader in a team, to manage projects and in multidisciplinary environments.					
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in					
	independent and life-long learning in the broadest context of technological change.					

PROGRAMME SPECIFIC OUTCOMES (PSOs):

Specify, design and analyze systems that efficiently generate, transmit and distribute
electrical power
Design and analyze electrical machines, modern drive and lighting systems
Specify, design, implement and test analog and embedded signal processing electronic
systems
Design controllers for electrical and electronic systems to improve their performance

DEPARTMENT OF ELECTRONICS & COMMUNICATIONS ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Mr.M.Sambasiva Reddy		
Course Name & Code	: Embedded System Design, 17EC29		
L-T-P Structure	: 3-0-0	Credits	: 3
Program/Sem/Sec	: B.Tech., EEE., VI-Sem, A Sec	A.Y	: 2021-22

PRE-REQUISITE: Microprocessors and Microcontrollers, Computer Organization.

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course provides the knowledge on typical embedded system design methodologies, characteristics and design metrics, computational models for describing embedded system behavior, standard single purpose processors, various communication protocols and design technology for implementing embedded system.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Outline the functionality of standard single purpose processors commonly used in embedded
	systems
CO 2	Apply top-down and bottom-up methodologies for embedded system design
CO 3	Analyze state machine and concurrent process models.
CO 4	Design Control unit and data path using computational models, and develop embedded systems
	using IC design technologies.

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2		-	-	-	-	-	-	-	-	1	-	1	-
CO2	3	2	1	-	-	-	-	-	-	-	-	2	-	2	
CO3	2	3	2	-	-	-	-	-	-	-	-	2	-	3	-
CO4	3	3	3	-	-	-	-	-	-	-	-	3	-	3	-

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

T1 Frank Vahid/Tony Givargis, "Embedded Sytem Design A Unified Hardware/Software Introduction" Jhon Wiley & Sons,Inc.

REFERENCE BOOKS:

- **R1** James K Peckol," Embedded Systems- A Cntemporary Design Tool" Jhon Wiley, 2008.
- **R2** Joseph Yiu,"The Definitive Guide to the ARM Cortex-M3", Newnes, Elsevier, 2008.

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Embedded System Introduction

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Embedded systems	1	22-02-2022			
2.	Introduction to Unit-1	1	24-02-2022			
3.	Embedded System overview, Design Challenge	1	26-02-2022			
4.	Processor Technology	1	03-03-2022			
5.	IC Technology, Design Technology, Trade-offs	1	05-03-2022			
6.	Single Purpose Processors	1	08-03-2022			
7.	RT Level Combinational Logic	1	10-03-2022			
8.	RT Level Sequential Logic	1	12-03-2022			
9.	Custom Single Purpose processor design	1	15-03-2022			
10.	Optimizing custom single Purpose processors	1	17-03-2022			
No. of	f classes required to complete UN	IT-I: 10		No. of class	ses taken:	

UNIT-II: State Machine and Concurrent Process Models

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-II	1	19-03-2022			
2.	Models vs Languages, Finite State machines with data path models(FSMD)	1	22-03-2022			
3.	FSMD using state machines, Program State machine model	1	24-03-2022			
4.	Concurrent Process Model, Concurrent Processes	1	26-03-2022			
5.	Communication among processes, Synchronization among processes	1	29-03-2022			
6.	Implementation	1	31-03-2022			
7.	Data flow models	1	07-04-2022			
8.	Real-time Systems	1	09-04-2022			
No. of classes required to complete UNIT-II:08				No. of clas	ses taken:	

UNIT-III: Standard Single-purpose Processors

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-III	1	19-04-2022			
2.	Timers, Counters, Watchdog Timers	1	21-04-2022			
3.	UART, LCD Controllers	1	23-04-2022			
4.	Stepper Motor Controllers	1	26-04-2022			
5.	Analog to digital Converters, Real-Time Clocks	1	28-04-2022			
6.	Common memory types	1	30-04-2022			
7.	Memory hierarchy and cache, Advanced RAM	1	05-05-2022			
No. of classes required to complete UNIT-III: 07			No. of class	ses taken:		

UNIT-IV: Interfacing

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introductin to Unit-IV	1	07-05-2022			
2.	Communication Basics, Microprocessor Interfacing	1	10-05-2022			
3.	I/O Addressing,Interrupts, Direct Memory Access	1	12-05-2022			
4.	Arbitration, Multilevelbus architectures	1	14-05-2022			
5.	Advanced Communication principles: Serial Protocols	1	17-05-2022			
6.	Parallel Protocols, Wireless Protocols	1	19-04-2022			
No. of classes required to complete UNIT-IV: 06			No. of class	ses taken:		

UNIT-V : IC and Design Technology

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-V	1	21-05-2022			
2.	IC Technology, Full- Custom(VLSI) IC technology	1	24-05-2022			
3.	Semi-custom IC Technology, Programmable logic devices(PLD) IC technology	1	26-05-2022			
4.	Design technology: Automation	1	28-05-2022			
5.	Synthesis, Verification	1	31-05-2022			
6.	Reuse:Intellectual Property cores	1	02-06-2022			
7.	Hardware/Software Co- simulation, Design Process Models	1	04-06-2022			
No. of classes required to complete UNIT-V: 07			No. of class	ses taken:		

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

PART-C

EVALUATION PROCESS (R14 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	30
Semester End Examination (SEE)	70
Total Marks = $CIE + SEE$	100

Academic Calendar: B.Tech., VI-Sem., 2021-22							
Description	From	То	Weeks				
Commencement of Class work: 21.02.2022							
I Phase of Instructions	21.02.2022	09.04.2022	7 W				
I MID Examinations	11.04.2022	16.04.2022	1 W				
II Phase of Instructions	18.04.2022	04.06.2022	7 W				
II MID Examinations	06.06.2022	11.06.2022	1 W				
Preparation and Practicals	13.06.2022	18.06.2022	1 W				
Semester End Examinations	20.06.2022	02.07.2022	2 W				

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
	systems and Implement real time applications in the field of VLSI and Embedded Systems
	using relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

DEPARTMENT OF ELECTRONICS & COMMUNICATIONS ENGINEERING

<u>COURSE HANDOUT</u> <u>PART-A</u>

Name of Course Instructor	: N.Dharmachari	
Course Name & Code	: Embedded System Design-17EC29	
L-T-P Structure	: 3-0-0	Credits : 3
Program/Sem/Sec	: B.Tech., EEE., VI-Sem, B Sec	A.Y : 2021-22

PRE-REQUISITE: Microprocessors and Microcontrollers, Computer Organization

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course provides the knowledge on typical embedded system design methodologies, characteristics and design metrics, computational models for describing embedded system behavior, standard single purpose processors, various communication protocols and design technology for implementing embedded system.

COURSE OUTCOMES (COs): At the end of the course, students will be able to

CO 1	Outline the functionality of standard single purpose processors commonly used in embedded systems
CO 2	Apply top-down and bottom-up methodologies for embedded system design
CO 3	Analyze state machine and concurrent process models.
CO 4	Design Control unit and data path using computational models, and develop embedded systems using IC design technologies.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	2		-	-	-	-	-	-	-	-	1	-	1	-
CO2	3	2	1	-	-	-	-	-	-	-	-	2	-	2	
CO3	2	3	2	-	-	-	-	-	-	-	-	2	-	3	-
CO4	3	3	3	-	-	-	I	-	-	-	-	3	-	3	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

T1 Frank Vahid/Tony Givargis, "Embedded Sytem Design A Unified Hardware/Software Introduction" Jhon Wiley & Sons,Inc.

REFERENCE BOOKS:

- **R1** James K Peckol," Embedded Systems- A Cntemporary Design Tool" Jhon Wiley, 2008.
- **R2** Joseph Yiu,"The Definitive Guide to the ARM Cortex-M3", Newnes, Elsevier, 2008.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Embedded System Introduction

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Course Objectives	1	232-2022		TLM2	-
2.	Embedded System overview, Design Challenge	1	24-02-2022		TLM2	
3.	Processor Technology	1	26-02-2022		TLM2	
4.	IC Technology	1	02-03-2022		TLM2	
5.	Design Technology, Trade-offs, Single Purpose Processors	1	03-03-2022		TLM2	
б.	RT Level Combinational Logic, Sequential Logic	1	05-03-2022		TLM2	
7.	Custom Single Purpose processor design	1	09-03-2022		TLM2	
8.	Optimizing custom single Purpose processors	1	10-03-2022		TLM2	
9.	Assignment-1	1	12-03-2022		TLM2	
No. of	f classes required to complete UNIT-I:	9		No. of class	es taken:	

UNIT-II: State Machine and Concurrent Process Models

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Models vs Languages	1	16-03-2022		TLM2	
2.	Finite State machines with data path models(FSMD), FSMD using state machines	1	17-03-2022		TLM2	
3.	Program State machine model, Concurrent Process Model	1	19-03-2022		TLM2	
4.	Concurrent Processes	1	23-03-2022		TLM2	
5.	Communication among processes	1	24-03-2022		TLM2	
6.	Synchronization among processes, Implementation	1	26-03-2022		TLM2	
7.	Data flow models	1	30-03-2022		TLM2	
8.	Real-time Systems	1	31-03-2022		TLM2	
9.	Assignment-2	1	06-04-2022		TLM2	
No. of classes required to complete UNIT-II:9 No. of classes taken:						

UNIT-III: Standard Single-purpose Processors

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Timers	1	07-04-2022		TLM2	-
2.	Counters, Watchdog Timers	1	09-04-2022		TLM2	
3.	UART, LCD Controllers	1	20-04-2022		TLM2	
4.	Stepper Motor Controllers	1	21-04-2022		TLM2	
5.	Analog to digital Converters	1	23-04-2022		TLM2	
6.	Real Time Clocks	1	27-04-2022		TLM2	
7.	Common memory types	1	28-04-2022		TLM2	
8.	Memory hierarchy, Cache, Advanced RAM	1	30-04-2022		TLM2	
9.	Assignment-3	1	04-05-2022		TLM2	
No. of classes required to complete UNIT-III: 09 No. of classes taken:						
UNIT-	IV: Interfacing			•		

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Communication Basics	1	05-05-2022		TLM2	
2.	Microprocessor Interfacing, I/O Addressing, Interrupts	1	07-05-2022		TLM2	
3.	Direct Memory Access	1	11-05-2022		TLM2	
4.	Arbitration, Multilevel bus architectures	1	12-05-2022		TLM2	
5.	Advanced Communication principles: Serial Protocols	1	14-05-2022		TLM2	
6.	Parallel Protocols, Wireless Protocols	1	18-05-2022		TLM2	
7.	Assignment-4	1	19-05-2022		TLM2	
No. o	No. of classes required to complete UNIT-IV: 07 No. of classes taken:					

UNIT-V : IC and Design Technology

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	IC Technology	1	21-05-2022		TLM2	
2.	Full- Custom(VLSI) IC technology	1	25-05-2022		TLM2	
3.	Programmable logic devices(PLD) IC technology	1	26-05-2022		TLM2	
4.	Design technology: Automation, Systhesis, Verification	1	28-05-222		TLM2	
5.	Hardware/Software Co-simulation	1	01-06-2022		TLM2	
6.	Reuse:Intellectual Property cores, Design Process Models	1	02-06-2022		TLM2	
7.	Assignment-5	1	04-06-2022		TLM2	
No. of	No. of classes required to complete UNIT-V: 07 No. of classes taken:					

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	30
Semester End Examination (SEE)	70
Total Marks = $CIE + \overline{SEE}$	100

Academic C	alendar: B.Tech., VI-Se	em., 2021-22	
Description	From	То	Weeks
Commenc	ement of Class Work: 2	29.03.2021	
I Phase of Instructions-1	21-02-2022	09-04-2022	6 W
I Mid Examinations	11-04-2022	16-04-2022	1 W
II Phase of Instructions	18-04-2022	04-06-2022	7 W
II Mid Examinations	06-06-2022	11-06-2022	1 W
Preparation and Practical's	13-06-2022	18-06-2022	1 W
Semester End Examinations	20-06-2022	02-07-2022	2 W

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
DO 2	Decign/development of solutions: Decign solutions for complex angineering problems and
PO 5	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety and the cultural societal and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess
	the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in
DO 10	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	clear instructions
PO 11	Project management and finance : Demonstrate knowledge and understanding of the
1011	engineering and management principles and apply these to one's own work as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
	systems and Implement real time applications in the field of VLSI and Embedded Systems
	using relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Course Coordinator (M.Sambasiva Reddy) Module Coordinator (Dr.P.Lachi Reddy)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Mr.K.Ravi Kiran Yasaswi	
Course Name & Code	: Industrial Engineering and management-17MB80	
L-T-P Structure	: 3-0-0	Credits : 3
Program/Sem/Sec	: B.Tech., EEE, VI-Sem., A Section A.Y	: 2021-22

PRE-REQUISITE:NIL

Course Objectives:

- 1. To make students understand management, its principles, contribution to management, organization, and its basic issues and types
- 2. To make students understand the concept of plant location and its factors and plant layout and types, method of production and work study importance
- 3. To understand the purpose and function of statistical quality control and material management techniques
- 4. To make students understand the concept of HRM and its functions
- 5. To make students understand PERT & CPM methods in effective project management and need of project crashing and its consequence on cost of project

Course Outcomes:

Upon The Successful Completion of This Course Students Will Able To:

- 1. Apply management principles to the particle situations to be in a position to know which type of business organisation structure suits
- 2. Determine decision making relating to the problems in operations and production activities.
- 3. Apply SQC techniques and to take effective decision making relating to reduce the investment in materials through better control of inventory
- 4. Ability to manage people in working environment with the practices of HRM across corporate businesses
- 5. Identify the PERT & CPM techniques in effective project management.

COs	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1						2	2	2	1		1			
CO2					2							1			
CO3		2					2				2	1			
CO4								2	2	2		1			
CO5					2		2				2	1			

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

Text Books:

T1:Dr. A.R.Aryasri, Management Science, TMH, 10th edition, 2012

References:

R1: Koontz & weihrich – Essentials of management, TMH, 10th edition, 2015 R2: Stoner, Freeman, Gilbert, Management, 6th edition Pearson education, New Delhi, 2004 R3:O.P. Khana, Industrial engineering and Management

R4:L.S.Srinath, PERT & CPM

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: introduction to Management

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Subject & Course Outcomes	1	23-02-22		TLM1	
2.	Management Introduction and Definition, Nature Importance of management & Functions	1	24-02-22		TLM1	
3.	Taylor's scientific management theory, Fayal's principles of management	1	26-02-22		TLM1	
4.	Contribution of Elton mayo & MASLOW theory Herzberg theory of motivation & Douglas MC Gregor theory of motivation	1	02-03-22		TLM1	
5.	Organization Basic concept: Authority & responsibility & Delegation of Authority, Span of control & Departmentation and Decentralization	1	03-03-22		TLM1	
6.	Organization structure :line organization structure, Line and staff organization	1	05-03-22		TLM2	
7.	Committee & Matrix organization & Functional organization	1	09-03-22		TLM1	
No. of classes required to complete UNIT-I:07				No. of class	sses taken:	

UNIT-II: Operations Management

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Plant location and Factors influencing location	1	10-03-22		TLM1	
2.	Factors influencing location	1	12-03-22		TLM1	
3.	Objectives and Principles of plant layout	1	16-03-22		TLM1	
4.	types of plant layouts	1	16-03-22		TLM2	
5.	types of plant layouts	1	17-03-22		TLM2	
6.	Methods of production : job batch and mass production	1	19-03-22		TLM1	
7.	Work study: Basic procedure involved in method study work measurement	1	23-03-22		TLM2	
8.	Basic procedure involved in method study work measurement	1	24-03-22		TLM2	
No. of	No. of classes required to complete UNIT-II:08 No. of classes taken:					
	MID-1 EXAM 11-04-2022 TO 16-04-2022					

UNIT-III: Statistical quality control & Materials Management

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Statistical quality control Meaning , Variables and attributes & X chart problems and R	1	26-03-22		TLM1	
2.	C Chart problems AND P Chart, problems Acceptance sampling & Sampling plans & Deming's contribution to quality	1	30-03-22		TLM1	
3.	Materials management :Objectives of Materials management, Need for inventory control	1	31-03-22		TLM1	

4.	Purchase procedure, Store records	1	06-04-22	TLM1	
5.	Methods of inventory control :ABC analysis & EOQ analysis	1	07-04-22	TLM1	
6.	EOQ Problems	1	09-04-22	TLM1	
7.	Stock levels & Problems on stock levels	1	20-04-22	TLM1	
No. of classes required to complete UNIT-III:07				No. of classes take	en:

UNIT-IV :Human Resource management (HRM)

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Concepts of HRM: Basic functions of HR manager	1	21-04-22		TLM2	
2.	Man power planning	1	23-04-22		TLM2	
3.	Recruitment & Selection, Training and development	1	27-04-22		TLM2	
4.	Placement, Wage and salary administration	1	28-04-22		TLM2	
5.	Promotion, Transfer & Separation	1	30-04-22		TLM2	
6.	Performance Appraisal	1	04-05-22		TLM2	
7.	Job evaluation & Merit raring	1	05-05-22		TLM2	
No. of classes required to complete UNIT-IV:07				No. of class	sses taken:	

UNIT-V : Project management

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Project management: Introduction Early techniques in project management	1	07-05-22		TLM2	¥
2.	Network analysis & Rules for drawing of networks and Critical path method	1	11-05-22		TLM2	
3.	Problems on CPM & Identifying critical path	1	12-05-22		TLM1	
4.	Problems on CPM & Identifying critical path	1	12-05-22		TLM1	
5.	Programme evaluation and review technique (PERT)	1	14-05-22		TLM1	
6.	Problems on PERT	1	18-05-22		TLM1	
7.	Problems on PERT	1	19-05-22		TLM1	
8.	Problems on PERT,	1	21-05-22		TLM1	
9.	Project cost analysis	1	25-05-22		TLM1	
10.	Project cost analysis	1	26-05-22		TLM1	
11.	Project cost analysis	1	28-05-22		TLM1	
12.	Project cost analysis	1	01-06-22		TLM1	
13.	Project cost analysis	1	02-06-22		TLM1	
14.	Project cost analysis	1	04-06-22		TLM1	
No. of	classes required to complete UNIT-V:14			No. of clas	sses taken:	
	MID-2 EXAM 06-06-2022 TO 11-06 -2022					

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

PART-C

EVALUATION PROCESS (R17 Regulations):	
Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
	systems and Implement real time applications in the field of VLSI and Embedded Systems
	using relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Course Instructor (Mr.K.Ravi Kiran) Course Coordinator (U.RAMBABU) Module Coordinator (U.RAMBABU) HOD (Dr.A.Adisesha Reddy)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Mrs.R.JEYALAKSHMI		
Course Name & Code	: Industrial Engineering and management-17MB80		
L-T-P Structure	: 3-0-0	Credits	: 3
Program/Sem/Sec	: B.Tech., EEE-B., VI-Sem.,	A.Y	: 2021-22

PRE-REQUISITE: NIL

Course Objectives:

- 1. To make students understand management, its principles, contribution to management, organization, and its basic issues and types
- 2. To make students understand the concept of plant location and its factors and plant layout and types, method of production and work study importance
- 3. To understand the purpose and function of statistical quality control and material management techniques
- 4. To make students understand the concept of HRM and its functions
- 5. To make students understand PERT & CPM methods in effective project management and need of project crashing and its consequence on cost of project

Course Outcomes:

Upon The Successful Completion of This Course Students Will Able To:

- 1. Apply management principles to the particle situations to be in a position to know which type of business organisation structure suits
- 2. Determine decision making relating to the problems in operations and production activities.
- 3. Apply SQC techniques and to take effective decision making relating to reduce the investment in materials through better control of inventory
- 4. Ability to manage people in working environment with the practices of HRM across corporate businesses
- 5. Identify the PERT & CPM techniques in effective project management.

COs	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO10	PO11	PO 12	PSO 1	PSO 2	PSO 3
CO1	1						2	2	2	1		1			
CO2					2							1			
CO3		2					2				2	1			
CO4								2	2	2		1			
CO5					2		2				2	1			

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

Text Books:

T1:Dr. A.R.Aryasri, Management Science, TMH, 10th edition, 2012

References:

R1: Koontz & weihrich – Essentials of management, TMH, 10th edition, 2015

R2: Stoner, Freeman, Gilbert, Management, $6^{\rm th}$ edition Pearson education, New Delhi, 2004

R3:O.P. Khana, Industrial engineering and Management R4:L.S.Srinath, PERT & CPM

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Subject & Course Outcomes	1	21-02-22		TLM1	
2.	Management Introduction and Definition, Nature Importance of management & Functions	1	23-02-22		TLM1	
3.	Taylor's scientific management theory, Fayal's principles of management	1	25-02-22		TLM1	
4.	Contribution of Elton mayo & MASLOW theory Herzberg theory of motivation & Douglas MC Gregor theory of motivation	1	28-02-22		TLM1	
5.	Organization Basic concept: Authority & responsibility & Delegation of Authority, Span of control & Departmentation and Decentralization	1	02-03-22		TLM1	
6.	Organization structure :line organization structure, Line and staff organization	1	04-03-22		TLM2	
7.	Committee & Matrix organization & Functional organization	1	07-03-22		TLM1	
No. o	f classes required to complete UNIT-I:07			No. of class	sses taken:	

UNIT-I: introduction to Management

UNIT-II: Operations Management

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Plant location and Factors influencing location	1	09-03-22		TLM1	
2.	Factors influencing location	1	11-03-22		TLM1	
3.	Objectives and Principles of plant layout	1	14-03-22		TLM1	
4.	types of plant layouts	1	16-03-22		TLM2	
5.	Methods of production : job batch and mass production	1	21-03-22		TLM1	
6.	Work study: Basic procedure involved in method study work measurement	1	23-03-22		TLM2	
7.	Basic procedure involved in method study work measurement	1	25-03-22		TLM2	
No. of classes required to complete UNIT-II:07 No. of classes taken:						
MID-1 EXAM 11-04-2022 TO 16-04-2022						

		NT C	T ()		T 1 •	HOD
GN		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
		Required	Completion	Completion	Methods	Weekly
1.	Statistical quality control Meaning , Variables and attributes & X chart problems and R	1	28-03-22		TLM1	
	C Chart problems AND P Chart, problems				TLM1	
2	Acceptance sampling & Sampling plans & Deming's	1	30-03-22			
2.	contribution to quality	1	30 03 22			
3	Materials management :Objectives of Materials	1	01 04 22		TLM1	
5.	management, Need for inventory control	1	01-04-22			
4.	Purchase procedure, Store records	1	04-04-22		TLM1	
5	Methods of inventory control :ABC analysis &	1	06.04.22		TLM1	
5.	EOQ analysis	1	06-04-22			
6.	EOQ Problems	1	08-04-22		TLM1	
7.	Stock levels & Problems on stock levels	1	18-04-22		TLM1	
No. of	No. of classes required to complete UNIT-III:07 No. of classes taken:					

UNIT-III: Statistical quality control & Materials Management

UNIT-IV : Human Resource management (HRM)

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Concepts of HRM: Basic functions of HR manager	1	20-04-22		TLM2	
2.	Man power planning	1	22-04-22		TLM2	
3.	Recruitment & Selection, Training and development	1	25-04-22		TLM2	
4.	Placement, Wage and salary administration	1	27-04-22		TLM2	
5.	Promotion, Transfer & Separation	1	29-04-22		TLM2	
6.	Performance Appraisal	1	02-05-22		TLM2	
7.	Job evaluation & Merit raring	1	04-05-22		TLM2	
No. of classes required to complete UNIT-IV:07 No. of classes taken					sses taken:	

UNIT-V : Project management

S.No.	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign	
1.	Project management: Introduction Early	1	06-05-22	Completion	TLM2	vveekiy	
	techniques in project management						
2.	networks and Critical path method	1	09-05-22		ILM2		
3.	Problems on CPM & Identifying critical path	1	11-05-22		TLM1		
4.	Problems on CPM & Identifying critical path	1	13-05-22		TLM1		
5.	Programme evaluation and review technique (PERT)	1	16-05-22		TLM1		
6.	Problems on PERT	1	18-05-22		TLM1		
7.	Problems on PERT	1	20-05-22		TLM1		
8.	Problems on PERT,	1	23-05-22		TLM1		
9.	Project cost analysis	1	25-05-22		TLM1		
10.	Project cost analysis	1	27-05-22		TLM1		
11.	Project cost analysis	1	30-05-22		TLM1		
12.	Project cost analysis	1	01-06-22		TLM1		
13.	Project cost analysis	1	03-06-22		TLM1		
No. of classes required to complete UNIT-V:13 No. of classes taken:							
	MID-2 EXAM 06-06-2022 TO 11-06 -2022						

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using first principles of mathematics,
natural sciences, and engineering sciences.
Design/development of solutions : Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
considerations
Conduct investigations of complex problems . Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of
the information to provide valid conclusions.
Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modelling to complex engineering activities
with an understanding of the limitations
The engineer and society: Apply reasoning informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
the professional engineering practice
Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of and need
for sustainable development
Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice.
Individual and team work: Function effectively as an individual, and as a member or leader in
diverse teams, and in multidisciplinary settings.
Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as, being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and receive
clear instructions.
Project management and finance: Demonstrate knowledge and understanding of the
leader in a team to manage projects and in multidisciplinary environments
Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Communication: Design and develop modern communication technologies for building the
	inter disciplinary skills to meet current and future needs of industry.
PSO 2	VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or
	systems and Implement real time applications in the field of VLSI and Embedded Systems
	using relevant tools
PSO 3	Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues
	related to real time applications

Course Instructor (Mrs.R.Jeyalakshmi) Course Coordinator (U.RAMBABU) Module Coordinator (U.RAMBABU) HOD (Dr.A.Adisesha Reddy)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Mr.P.Rathnakar Kumar		
Course Name & Code	: Electrical Reliability Engineering (17EE91)-AOC-	-II	Credits : 3
L-T-P Structure	: 3-0-0	A.Y	: 2021-22
Program/Sem/Sec	: B.Tech., EEE., VI-Sem., Sections- A		

PRE-REQUISITE: Complex variables and statistical methods

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course enables the student to

- Interpret the language of power system reliability analysis
- Illustrate analytical models for power system reliability analysis
- Implement algorithms for power system reliability analysis

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Illustrate the main principles in power system reliability analysis
CO 2	Analyze different methods and tools for power system reliability

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	2	1	1	1	-	-	-	-	-	-	2	2	-	3
CO2	3	3	3	2	2	-	-	-	-	-	-	2	3	-	3
CO3	3	3	2	2	1	-	-	-	-	-	-	2	3	-	3
CO4	3	3	3	2	2	-	-	-	-	-	-	2	3	-	3

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- **T1** Reliability evaluation of engineering system R.Billinton and R.N.Allan Plenum Press,NewYork, reprinted in india by B.S.Publications, 2nd Edition, 2008.
- T2 New Computational methods in power system reliability Elmakias, David, Springer 2008.

REFERENCE BOOKS:

- **R1** Engineering Reliability, S.S.Rao Pearson Education, 2004
- **R2** Reliability Engineering by R.Balaguruswamy.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-I	1	21-02-2022		TLM1	
2.	Basic probability theory	1	22-02-2022		TLM1	
3.	Probability Distributions	1	24-02-2022		TLM1	
4.	Rules for combining probabilities of events	1	28-02-2022		TLM1	
5.	Bernoulli's trails	1	01-03-2022		TLM1	
6.	probabilities density and distribution functions	1	03-03-2022		TLM1	
7.	binomial distribution	1	07-03-2022		TLM1	
8.	expected value and standard deviation of binomial distribution	1	08-03-2022		TLM1	
9.	Network modelling and reliability analysis	1	10-03-2022		TLM1	
10.	analysis of series, parallel and series-parallel networks	2	14-03-2022 15-03-2022		TLM1	
11.	complex networks and decomposition method	1	17-03-2022		TLM1	
No. of	classes required to complete UNIT-I	: 11		No. of class	ses taken:	

UNIT-I: Basics of Probability Theory and Distribution

UNIT-II: Reliability functions

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Reliability functions f(t), F(t), R(t), h(t) and their relationships	2	21-03-2022 22-03-2022		TLM1	
2.	expected value and standard deviation of the exponential distribution	2	24-03-2022 28-03-2022		TLM1	
3.	Bath tub curve	2	29-03-2022 31-03-2022		TLM1	
4.	reliability analysis of series- parallel networks using exponential distribution	2	04-04-2022 05-04-2022		TLM1	
5.	Reliability measures MTTF, MTTR, MTBF.	2	07-04-2022		TLM1	
6.	MID-I		11-04-2022			
7.	MID-I		12-04-2022			
8.	MID-I		14-04-2022			
No. of	classes required to complete UNIT-	II: 10		No. of class	sses taken:	

UNIT-III: Markov modelling

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Markov chains	2	18-04-2022 19-04-2022		TLM1	
2.	Concept of stochastic transitional probability matrix, evaluation of limiting state probabilities	2	21-04-2022 25-04-2022		TLM1	
3.	Markov processes one component repairable	2	26-04-2022 28-04-2022		TLM1	
4.	time dependent probability evaluation using Laplace transform approach	1	02-05-2022		TLM1	
5.	evaluation of limiting state	1	05-05-2022		TLM1	

	probabilities using STPM					
6.	Two component repairable models	1			TLM1	
No. of classes required to complete UNIT-III:09			No. of class	sses taken:		

UNIT-IV : Frequency and Duration Techniques

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Frequency and duration concept	1	09-05-2022		TLM1	
2.	Evaluation of frequency of encountering state, mean cycle time, for one repairable models	1	10-05-2022		TLM1	
3.	Evaluation of frequency of encountering state, mean cycle time two repairable models	1	12-05-2022		TLM1	
4.	evaluation of cumulative probability	1	16-05-2022		TLM1	
5.	Cumulative frequency of encountering of merged states	1	17-05-2022		TLM1	
No. of	classes required to complete UNIT-I	V: 05		No. of class	ses taken:	

UNIT-V : Generation system reliability analysis

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Reliability model of a generation system	1	19-05-2022		TLM1	
2.	recursive relation for unit addition and removal	1	23-05-2022		TLM1	
3.	load modeling	1	24-05-2022		TLM1	
4.	Merging of load generation model	1	26-05-2022		TLM1	
5.	evaluation of transition rates for merged state model	1	30-05-2022		TLM1	
6.	cumulative probability, cumulative frequency of failure evaluation	1	31-05-2022		TLM1	
7.	LOLP, LOLE evaluations	1	02-06-2022		TLM1	
8.	MID-II		06-06-2022			
9.	MID-II		07-06-2022			
10.	MID-II		09-06-2022			
No. of classe	s required to complete UNIT-	V: 07		No. of class	sses taken:	

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

EVALUATION PROCESS (R17 Regulations):	
Evaluation Task	Marks
Assignment-I (Unit-I)	A1=5
Assignment-II (Unit-II)	A2=5
I-Mid Examination (Units-I & II)	M1=20
I-Quiz Examination (Units-I & II)	Q1=10
Assignment-III (Unit-III)	A3=5
Assignment-IV (Unit-IV)	A4=5
Assignment-V (Unit-V)	A5=5
II-Mid Examination (Units-III, IV & V)	M2=20
II-Quiz Examination (Units-III, IV & V)	Q2=10
Attendance	B=5
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10
Cumulative Internal Examination (CIE) : A+B+M+Q	40
Semester End Examination (SEE)	60
Total Marks = CIE + SEE	100

PART-C

E

ACADEMIC CALENDAR:

Description	From	То	Weeks
I Phase of Instructions-1	21-02-2022	09-04-2022	7W
I Mid Examinations	11-04-2022	16-04-2022	1W
II Phase of Instructions	18-04-2022	04-06-2022	7W
II Mid Examinations	06-06-2022	11-06-2022	1W
Preparation and Practicals	13-06-2022	18-06-2022	1W
Semester End Examinations	20-06-2022	02-07-2022	2W

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Specify, design and analyze systems that efficiently generate, transmit and distribute electrical
	power
PSO 2	Design and analyze electrical machines, modern drive and lighting systems
PSO 3	Specify, design, implement and test analog and embedded signal processing electronic systems
PSO 4	Design controllers for electrical and electronic systems to improve their performance

Course Instructor	Course Coordinator	Module Coordinator	HOD
Mr.P.Rathnakar Kumar	Mr.P.Rathnakar Kumar	M.S.GIRIDHAR	Dr. J.Siva Vara Prasad

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE HANDOUT

PART-A

Name of Course Instructor	: Mr.M.Raja Nayak	
Course Name & Code	: Electrical Reliability Engineering	Credits : 3
L-T-P Structure	: 3-0-0	A.Y : 2021-22
Program/Sem/Sec	: B.Tech., EEE., VI-Sem., Sections- B	

PRE-REQUISITE: Complex variables and statistical methods

COURSE EDUCATIONAL OBJECTIVES (CEOs): This course enables the student to

- Interpret the language of power system reliability analysis
- Illustrate analytical models for power system reliability analysis
- Implement algorithms for power system reliability analysis

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Illustrate the main principles in power system reliability analysis
CO 2	Analyze different methods and tools for power system reliability

COURSE ARTICULATION MATRIX(Correlation between COs, POs & PSOs):

COs	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	2	-	-	-	-	-	-	-	-	2	2	-	-
CO2	3	3	2	2	2	-	-	-	2	-	-	1	2	3	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

TEXT BOOKS:

- **T1** Reliability evaluation of engineering system R.Billinton and R.N.Allan Plenum Press,NewYork, reprinted in india by B.S.Publications, 2nd Edition, 2008.
- T2 New Computational methods in power system reliability Elmakias, David, Springer 2008.

REFERENCE BOOKS:

- R1 Engineering Reliability, S.S.Rao Pearson Education, 2004
- **R2** Reliability Engineering by R.Balaguruswamy.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Unit-I	1	22-02-2022		TLM1	U
2.	Basic probability theory	1	23-02-2022		TLM1	
3.	Probability Distributions	1	25-02-2022		TLM1	
4.	Rules for combining probabilities of events	1	02-03-2022		TLM1	
5.	Bernoulli's trails	1	04-03-2022		TLM1	
6.	probabilities density and distribution functions	1	08-03-2022		TLM1	
7.	binomial distribution	1	09-03-2022		TLM1	
8.	expected value and standard deviation of binomial distribution	1	11-03-2022		TLM1	
9.	Network modelling and reliability analysis	1	15-03-2022		TLM1	
10.	analysis of series, parallel and series-parallel networks	2	16-03-2022 22-03-2022		TLM1	
11.	complex networks and decomposition method	1	23-03-2022		TLM1	
No. of	No. of classes required to complete UNIT-I:11 No. of classes taken:					

UNIT-I: Basics of Probability Theory and Distribution

UNIT-II: Reliability functions

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Reliability functions f(t), F(t), R(t), h(t) and their relationships	2	25-03-2022 29-03-2022		TLM1	
2.	expected value and standard deviation of the exponential distribution	2	30-03-2022 01-04-2022		TLM1	
3.	Bath tub curve	1	01-04-2022		TLM1	
4.	reliability analysis of series- parallel networks using exponential distribution	2	06-04-2022 08-04-2022		TLM1	
5.	Reliability measures MTTF, MTTR, MTBF.	1	19-04-2022		TLM1	
No. of	classes required to complete UNIT-	II: 10		No. of class	ses taken:	

UNIT-III: Markov modelling

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Markov chains	1	20-04-2022		TLM1	
2.	Concept of stochastic transitional probability matrix, evaluation of limiting state probabilities	1	22-04-2022		TLM1	
3.	Markov processes one component repairable	1	26-04-2022		TLM1	
4.	time dependent probability evaluation using Laplace transform approach	1	27-04-2022		TLM1	
5.	evaluation of limiting state probabilities using STPM	1	29-04-2022		TLM1	

6.	Two component repairable models	1	04-05-2022		TLM1	
No. of	classes required to complete UNIT-	II:12		No. of clas	sses taken:	

UNIT-IV : Frequency and Duration Techniques

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Frequency and duration concept	2	06-05-2022		TLM1	
2.	Evaluation of frequency of encountering state, mean cycle time, for one repairable models	2	10-05-2022 11-05-2022		TLM1	
3.	Evaluation of frequency of encountering state, mean cycle time two repairable models	1	13-05-2022		TLM1	
4.	evaluation of cumulative probability	1	17-05-2022		TLM1	
5.	Cumulative frequency of encountering of merged states	2	18-05-2022 20-05-2022		TLM1	
No. of	classes required to complete UNIT-I	V: 10		No. of class	sses taken:	

UNIT-V :Generation system reliability analysis

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Reliability model of a generation system	1	24-05-2022		TLM1	
2.	recursive relation for unit addition and removal	1	25-05-2022		TLM1	
3.	load modeling	1	27-05-2022		TLM1	
4.	Merging of load generation model	1	27-05-2022		TLM1	
5.	evaluation of transition rates for merged state model	1	31-05-2022		TLM1	
6.	cumulative probability, cumulative frequency of failure evaluation	1	01-05-2022		TLM1	
7.	LOLP, LOLE evaluations	1	03-05-2022		TLM1	
No. of classes	No. of class	sses taken:				

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks								
Assignment-I (Unit-I)									
Assignment-II (Unit-II)									
I-Mid Examination (Units-I & II)									
I-Quiz Examination (Units-I & II)									
Assignment-III (Unit-III)									
Assignment-IV (Unit-IV)									
Assignment-V (Unit-V)									
II-Mid Examination (Units-III, IV & V)									
II-Quiz Examination (Units-III, IV & V)	Q2=10								
Attendance	B=5								
Assignment Marks = Best Four Average of A1, A2, A3, A4, A5	A=5								
Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)	M=20								
Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)	B=10								
Cumulative Internal Examination (CIE) : A+B+M+Q	40								
Semester End Examination (SEE)	60								
Total Marks = CIE + SEE	100								

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering									
	problems.									
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex									
	engineering problems reaching substantiated conclusions using first principles of mathematics,									
	natural sciences, and engineering sciences.									
PO 3	Design/development of solutions : Design solutions for complex engineering problems and									
	design system components or processes that meet the specified needs with appropriate									
	considerations									
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research									
101	methods including design of experiments, analysis and interpretation of data, and synthesis of									
	the information to provide valid conclusions.									
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern									
	engineering and IT tools including prediction and modelling to complex engineering activities									
	with an understanding of the limitations									
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess									
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to									
PO 7	Environment and sustainability : Understand the impact of the professional engineering									
107	solutions in societal and environmental contexts and demonstrate the knowledge of and need									
	for sustainable development.									
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and									
	norms of the engineering practice.									
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in									
	diverse teams, and in multidisciplinary settings.									
PO 10	Communication: Communicate effectively on complex engineering activities with the									
	engineering community and with society at large, such as, being able to comprehend and write									
	effective reports and design documentation, make effective presentations, and give and receive									
PO 11	Project management and finance : Demonstrate knowledge and understanding of the									
1011	engineering and management principles and apply these to one's own work as a member and									
	leader in a team, to manage projects and in multidisciplinary environments.									
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in									
	independent and life-long learning in the broadest context of technological change.									

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Specify, design and analyze systems that efficiently generate, transmit and distribute electrical
	power
PSO 2	Design and analyze electrical machines, modern drive and lighting systems
PSO 3	Specify, design, implement and test analog and embedded signal processing electronic systems
PSO 4	Design controllers for electrical and electronic systems to improve their performance

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Mr.M.RAJA NAYAK	Mr.P.RATNAKAR KUMAR	Dr.M.S.GIRIDHAR	Dr. J.S.V. PRASAD
Signature				

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE HANDOUT

Part - A

PROGRAM	: B.Tech., VI-Sem., EEE								
ACADEMIC YEAR	: 2020-21								
COURSE NAME & CODE	: Electrical Machines-II Lab - 17EE68								
L-T-P STRUCTURE	:0-0-2								
COURSE CREDITS	:1								
COURSE INSTRUCTOR	: Mr.J.V.Pavan Chand, Dr.A.V.G.M.MArthanda, Mr Imran								
abdul, Mr.P.Srihari									
COURSE COORDINATOR : Mr.J.V.Pavan Chand									

Prerequisite: EM-I, EM-II

COURSE EDUCATIONAL OBJECTIVES (CEOs):

This course enables the student to know the operation of various ac machines Give practical exposure on the performance of various AC machines like induction motors and synchronous machines.

Course Outcomes: At the end of the course, the student will be able to:

CO1	Examine the performance characteristics of a single phase and three phase induction motor
CO2	Determine the regulation of alternator by conducting suitable test
CO3	Analyze the performance characteristics of synchronous motor
CO4	Estimate the losses of a single phase transformer

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3		3	2				3	3		2		3		
CO2	3	3	3	3	2				3	3		2	3	3		
CO3	3	3		3	2				3	3		2		3		2
CO4	3	3	3	3	2				3	3		2	3	3		

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'
1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

Part - B COURSE DELIVERY PLAN (LESSON PLAN) <u>SECTION-A SCHEDULE</u>

Day: Monday(5, 6 Hours)

Batches: 18761A0258, 18761A0236, 19761A0201 - 19761A0234, 19765A0201-19765A0213

	-														
B.NO.	H.T. Nos	I Week	II Week	III Week	IV Week	V Week	VI Week	VII Week	VIII Week	IX Week	X Week	XI Week	XII Week	XIII Week	XIV Week
Tentative Date		21-02- 2022	28-02 -2022	07-03 -2022	14- 03- 2022	21-03 -2021	28- 03- 2022	04- 04- 2022	18- 04- 2022	25- 04- 2021	02- 05- 2022	09- 05- 2022	16- 05- 2021	23- 05- 2021	30- 05- 2021
Actual Date															
B-1		Demo	1	2	3	4	5	6	7	8	9	10			
B-2		Demo	2	3	4	5	6	7	8	9	10	1			
B-3		Demo	3	4	5	6	7	8	9	10	1	2			
B-4		Demo	4	5	6	7	8	9	10	1	2	3			
B-5		Demo	5	6	7	8	9	10	1	2	3	4			INI
B-6		Demo	6	7	8	9	10	1	2	3	4	5	Rep	Rep	ERN
B-7		Demo	7	8	9	10	1	2	3	4	5	6	etitic	etitic	VAL
B-8		Demo	8	9	10	1	2	3	4	5	6	7	n	on	TES
B-9		Demo	9	10	1	2	3	4	5	6	7	8			Т
B-10		Demo	10	1	2	3	4	5	6	7	8	9			

Day: Wednesday (2,3 Hours)

Batches: 19761A0235 - 19761A0254, 20765A0201 - 20765A0211

B.NO.	H.T. Nos	I Week	II Week	III Week	IV Week	V Week	VI Week	VII Week	VIII Week	IX Week	X Week	XI Week	XII Week	XIII Week	XIV Week
Tentative Date		23-02- 2022	02-03 -2022	09-03 -2022	16- 03- 2022	23-03 -2021	30- 03- 2022	06- 04- 2022	20- 04- 2022	27- 04- 2021	04- 05- 2022	11- 05- 2022	18- 05- 2021	25- 05- 2021	01- 06- 2021
Actual Date															
B-1		Demo	1	2	3	4	5	6	7	8	9	10	R	R	Π
B-2		Demo	2	3	4	5	6	7	8	9	10	1	lep	lep	NT
B-3		Demo	3	4	5	6	7	8	9	10	1	2	etit	etit	ER
B-4		Demo	4	5	6	7	8	9	10	1	2	3	ion	ion	N
B-5		Demo	5	6	7	8	9	10	1	2	3	4	-	-	F
B-6		Demo	6	7	8	9	10	1	2	3	4	5			TE
B-7		Demo	7	8	9	10	1	2	3	4	5	6			ST
B-8		Demo	8	9	10	1	2	3	4	5	6	7			
B-9		Demo	9	10	1	2	3	4	5	6	7	8			
B-10		Demo	10	1	2	3	4	5	6	7	8	9			

Teaching Learning Methods											
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD						
TLM2	PPT	TLM5	Programming	TLM8	Lab Demo						
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study						
Description	From	То	Weeks								
--	------------	------------	-------								
I Phase of Instructions-1	29-03-2021	15-05-2021	7W								
I Mid Examinations	17-05-2021	19-05-2021	½ W								
II Phase of Instructions + CRT Classes	20-05-2021	07-07-2021	7 W								
II Mid Examinations	08-07-2021	10-07-2021	½ W								
Preparation and Practicals	12-07-2021	17-07-2021	1W								
Semester End Examinations	19-07-2021	31-07-2021	2W								

Course Instructor	Course Coordinator	Module Coodrinator	HOD
Mr.J.V.Pavan Chand, Dr.A.V.G.M.MArthanda, Mr Imran abdul, Mr.P.Srihari	Mr.J.V.Pavan Chand,	Mr.P.Deepak Reddy	Dr.J.Siva Vara Prasad

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE HANDOUT

Part - A

PROGRAM : B.Tech., VI-Sem., EEE

ACADEMIC YEAR : 2020-21

COURSE NAME & CODE : Electrical Machines-II Lab- 17EE68

L-T-P STRUCTURE : 0-0-2

COURSE CREDITS : 1

COURSE INSTRUCTOR: Mr.P.Srihari,

Mr.K.NagaLingachary, Mr.P.Rathnakar & Dr.A.V.G.A.Marthanda

COURSE COORDINATOR : Mr.J.V.Pavan Chand

Prerequisite: EM-I, EM-II

COURSE EDUCATIONAL OBJECTIVES (CEOs):

This course enables the student toknow the operation of various ac machines Give practical exposure on the performance of various AC machines like inductionmotors and synchronous machines.

Course Outcomes: At the end of the course, the studentwill be able to:

CO1	Examine the performance characteristics of a single phase and three phase induction motor
CO2	Determine the regulation of alternator by conducting suitable test
CO3	Analyze the performance characteristics of synchronous motor
CO4	Estimate the losses of a single phase transformer

COURSE ARTICULATION MATRIX(Correlation between COs&POs,PSOs):

														-		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	3	3		3	2				3	3		2		3		
CO2	3	3	3	3	2				3	3		2	3	3		
CO3	3	3		3	2				3	3		2		3		2
CO4	3	3	3	3	2				3	3		2	3	3		

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

Part - B COURSE DELIVERY PLAN (LESSON PLAN) <u>SECTION-B SCHEDULE</u>

Day: Monday(2, 3 Hours)

Batches: 18761A0283,19761A0255 - 19761A0286

B.NO.	H.T. Nos	I Week	II Week	III Week	IV Week	V Week	VI Week	VII Week	VIII Week	IX Week	X Week	XI Week	XII Week	XIII Week	XIV Week
Tentative Date		21-02- 2022	28-02 -2022	07-03 -2022	14- 03- 2022	21-03 -2021	28- 03- 2022	04- 04- 2022	18- 04- 2022	25- 04- 2021	02- 05- 2022	09- 05- 2022	16- 05- 2021	23- 05- 2021	30- 05- 2021
Actual Date															
B-1		Demo	1	2	3	4	5	6	7	8	9	10			
B-2		Demo	2	3	4	5	6	7	8	9	10	1			
B-3		Demo	3	4	5	6	7	8	9	10	1	2			
B-4		Demo	4	5	6	7	8	9	10	1	2	3			
B-5		Demo	5	6	7	8	9	10	1	2	3	4			INI
B-6		Demo	6	7	8	9	10	1	2	3	4	5	Rep	Rep	ERN
B-7		Demo	7	8	9	10	1	2	3	4	5	6	etitic	etitic	VAL
B-8		Demo	8	9	10	1	2	3	4	5	6	7	'n	'n	TES
B-9		Demo	9	10	1	2	3	4	5	6	7	8			Т
B-10		Demo	10	1	2	3	4	5	6	7	8	9			

Day:Thursday (5,6 Hours)

Batches: 19761A0287 - 19761A02A9, 20765A0212 - 20765A0222

B.NO.	H.T. Nos	I Week	II Week	III Week	IV Week	V Week	VI Week	VII Week	VIII Week	IX Week	X Week	XI Week	XII Week	XIII Week	XIV Week
Tentative		24-	03-03	10-03	17-03	24-03	31-	07-04	21-	28-04	05-	12-	19-	26-	02-
Actual Date		02-22					03		04		05	05	05	05	00
B-1		Demo	1	2	3	4	5	6	7	8	9	10	Å	A	Ι
B-2		Demo	2	3	4	5	6	7	8	9	10	1	lep	lep	NT
B-3		Demo	3	4	5	6	7	8	9	10	1	2	etit	etit	ER
B-4		Demo	4	5	6	7	8	9	10	1	2	3	ion	ion	N/
B-5		Demo	5	6	7	8	9	10	1	2	3	4	_	_	L.
B-6		Demo	6	7	8	9	10	1	2	3	4	5			TE
B-7		Demo	7	8	9	10	1	2	3	4	5	6			ST
B-8		Demo	8	9	10	1	2	3	4	5	6	7			
B-9		Demo	9	10	1	2	3	4	5	6	7	8			
B-10		Demo	10	1	2	3	4	5	6	7	8	9			

Teaching Learning Methods												
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD							
TLM2	PPT	PPT TLM5		TLM8	Lab Demo							
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study							

Description	From	То	Weeks
I Phase of Instructions-1	29-03-2021	15-05-2021	7W
I Mid Examinations	17-05-2021	19-05-2021	½ W
II Phase of Instructions + CRT Classes	20-05-2021	07-07-2021	7 W
II Mid Examinations	08-07-2021	10-07-2021	½ W
Preparation and Practicals	12-07-2021	17-07-2021	1W
Semester End Examinations	19-07-2021	31-07-2021	2W

Course Instructor	Course Coordinator	Module Coordinator	HOD
Mr.P.Srihari, Mr.K.NagaLingachary,Mr.P.Rathnakar&Dr.A.V.G.A.Marth anda	Mr.J.V.Pava n Chand	Mr.P.Deepa k Reddy	Dr.J.Siv a Vara Prasad

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE HANDOUT

Part - A

COURSE INSTRUCTOR	: Mrs. M.Raja Nayak, Dr.J. Sivavara Prasad&Mrs. K.S.L.Lavanya
COURSE CREDITS	:1
L-T-P STRUCTURE	:0-0-2
COURSE NAME & CODE	: Microprocessors and Microcontrollers Lab - 17EC70
ACADEMIC YEAR	: 2021-22
PROGRAM	: B.Tech., VI-Sem., EEE

COURSE COORDINATOR : Dr. J. Sivavara Prasad

Prerequisite: Microprocessors and Microcontrollers (17EC22)

COURSE EDUCATIONAL OBJECTIVES (CEOs):

In this course, student will understand working of instructions by practicing programs of 8086/8051 and develop applications by interfacing devices.

Course Outcomes: At the end of the course, the studentwill be able to:

- **CO1:** Demonstrate program proficiency using the various instructions of the 8086 microprocessor / 8051 microcontroller.
- **CO2:** Apply different programming techniques like loops, subroutines for various applications.
- **CO3:** Design systems for different applications by interfacing external devices.
- **CO4:** Develop report writing skills

COURSE ARTICULATION MATRIX(Correlation between COs&POs,PSOs):

COs	Р О 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2	2	3	2	2	-	-	-	-	-	-	-	-	2	-	
CO2	3	2	2	2	2	-	-	-	-	-	-	-	-	3	-	
CO3	3	3	3	3	3	-	-	-	-	-	-	-	-	3	-	
CO4								3	2	3		2				

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'
2- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

Part - B COURSE DELIVERY PLAN (LESSON PLAN) <u>SECTION-A SCHEDULE</u>

Day:Monday (5,6 Hours) Batches: 18761A0283,19761A0255-19761A0286

I Week X Week XI Week XIII Week Π III IV v VI VII VIII IX XII XIV Week 04-18-25-02-09-Tentative 21-02-07-03 14-03-30-05-28-02 28-03-16-05-23-05-21-03 04-04-04-05-05date 2022 -2022 -2022 2022 -2021 2022 2022 2022 2022 2022 2022 2022 2022 2022 Actual date **REVISION OF EXPERIMENTS REVISION OF EXPERIMENTS** INTERNAL EXAM Exp 9 10 Demo 2 3 4 5 7 8 1 6

	itenes.i	9701A0	207-2070	JJA0222								-		
H.T. No.s	I Week	II Week	III Week	IV Week	V Week	VI Week	VII Week	VIII Week	IX Week	X Week	XI Week	XII Week	XIII Week	XIV Week
Tentative date	23-02- 22	02-03	09-03	16-03	23-03	30-03	06-04	20-04	27-04	04-05	11-05	18-05	25- 05	01-06
Actual date														
	Dem o	Exp 1	Exp 2	Exp 3	Exp 4	Exp 5	Exp 6	Exp 7	Exp 8	Exp 9	Exp 10	REVISION OF EXPERIMENTS	REVISION OF EXPERIMENTS	INTERNAL EXAM

Day: Wednesday (2,3 Hours)
Batches: 19761 A0287-20765 A022

Teaching Learning Methods											
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD						
TLM2	PPT	TLM5	Programming	TLM8	Lab Demo						
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study						

Description	From	То	Weeks
I Phase of Instructions-1	29-03-2021	15-05-2021	7W
I Mid Examinations	17-05-2021	19-05-2021	½ W
II Phase of Instructions + CRT Classes	20-05-2021	07-07-2021	7 W
II Mid Examinations	08-07-2021	10-07-2021	½ W
Preparation and Practicals	12-07-2021	17-07-2021	1W
Semester End Examinations	19-07-2021	31-07-2021	2W

KOUK	
PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex
	engineering problems reaching substantiated conclusions using first principles of mathematics,
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
	the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
	for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
	norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in
	diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a member and
	leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in
	independent and life-long learning in the broadest context of technological change.

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Specify, design and analyze systems that efficiently generate, transmit and distribute electrical power
PSO 2	Design and analyze electrical machines, modern drive and lighting systems
PSO 3	Specify, design, implement and test analog and embedded signal processing electronic systems
PSO 4	Design controllers for electrical and electronic systems to improve their performance.

Mr. M.Raja Nayak, Dr.J. Sivavara Prasad & Mrs. K.S.L.Lavanya	Dr.J. Sivavara Prasad	Dr.J.SivaVara Prasad	Dr.J.Siva Vara Prasad
Course Instructors	Course Coordinator	Module Coordinator	HOD

PROGRAMME OUTCOMES (POs):

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE HANDOUT

Part - A

COURSE COORDINATOR	· Dr. I. Siyayara Prasad
COURSE INSTRUCTOR	: Dr.J. Sivavara Prasad&Mrs. K.S.L.Lavanya
COURSE CREDITS	:1
L-T-P STRUCTURE	:0-0-2
COURSE NAME & CODE	: Microprocessors and Microcontrollers Lab - 17EC70
ACADEMIC YEAR	: 2021-22
PROGRAM	: B.Tech., VI-Sem., EEE

Prerequisite: Microprocessors and Microcontrollers (17EC22)

COURSE EDUCATIONAL OBJECTIVES (CEOs):

In this course, student will understand working of instructions by practicing programs of 8086/8051 and develop applications by interfacing devices.

Course Outcomes: At the end of the course, the studentwill be able to:

- **CO1:** Demonstrate program proficiency using the various instructions of the 8086 microprocessor / 8051 microcontroller.
- **CO2:** Apply different programming techniques like loops, subroutines for various applications.
- CO3: Design systems for different applications by interfacing external devices.
- **CO4:** Develop report writing skills

COURSE ARTICULATION MATRIX(Correlation between COs&POs,PSOs):

COs	Р О 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
CO1	2	2	3	2	2	-	-	-	-	-	-	-	-	2	-	
CO2	3	2	2	2	2	-	-	-	-	-	-	-	-	3	-	
CO3	3	3	3	3	3	-	-	-	-	-	-	-	-	3	-	
CO4								3	2	3		2				

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'
3- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

Part - B COURSE DELIVERY PLAN (LESSON PLAN) <u>SECTION-B SCHEDULE</u>

Day:Monday(2,3 Hours)

	I Week	II Week	III Week	IV Week	V Week	VI Week	VII Week	VIII Week	IX Week	X Week	XI Week	XII Week	XIII Week	XIV Week
Tentative date	21-02- 2022	28-02 -2022	07-03 -2022	14-03- 2022	21-03 -2021	28-03- 2022	04- 04- 2022	18- 04- 2022	25- 04- 2021	02- 05- 2022	09- 05- 2022	16-05- 2021	23-05- 2021	30-05- 2021
Actual date														
	Demo	Exp 1	Exp 2	Exp 3	Exp 4	Exp 5	Exp 6	Exp 7	Exp 8	Exp 9	Exp 10	REVISION OF EXPERIMENTS	REVISION OF EXPERIMENTS	INTERNAL EXAM

Batches:18761A0283,19761A0255-19761A0287

		9701A0	200-1970	1A02A9	,2070JA	0212-2070JA0222								
H.T. No.s	I Week	II Week	III Week	IV Week	V Week	VI Week	VII Week	VIII Week	IX Week	X Week	XI Week	XII Week	XIII Week	XIV Week
Tentative date	24-02- 22	03-03	10-03	17-03	24-03	31-03	07-04	21- 04	28- 04	05- 05	12- 05	19- 05	26- 05	02-06
Actual date														
	Dem o	Exp 1	Exp 2	Exp 3	Exp 4	Exp 5	Exp 6	Exp 7	Exp 8	Exp 9	Exp 10	REVISION OF EXPERIMENTS	REVISION OF EXPERIMENTS	INTERNAL EXAM

Day: Thursday(5,6Hours)
Batches:19761A0288-19761A02A9,20765A0212-20765A0222

Teaching Learning Methods											
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD						
TLM2	PPT	TLM5	Programming	TLM8	Lab Demo						
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study						

Description	From	То	Weeks
I Phase of Instructions-1	21-02-2022	09-04-2022	7W
I Mid Examinations	11-04-2022	16-04-2022	½ W
II Phase of Instructions + CRT Classes	18-04-2022	04-06-2022	7 W
II Mid Examinations	06-06-2022	11-06-2022	½ W
Preparation and Practicals	13-06-2022	18-06-2022	1W
Semester End Examinations	20-06-2022	02-07-2022	2W

Part- C

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering				
	fundamentals, and an engineering specialization to the solution of complex engineering				
PO 2	problems. Problem analysis: Identify formulate review research literature and analyze complex				
102	engineering problems reaching substantiated conclusions using first principles of mathematics				
	natural sciences, and engineering sciences.				
PO 3	Design/development of solutions: Design solutions for complex engineering problems and				
	design system components or processes that meet the specified needs with appropriate				
	consideration for the public health and safety, and the cultural, societal, and environmental				
DO 4	considerations.				
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of				
	the information to provide valid conclusions.				
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern				
	engineering and IT tools including prediction and modelling to complex engineering activities				
	with an understanding of the limitations				
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess				
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to				
PO 7	Environment and sustainability: Understand the impact of the professional engineering				
107	solutions in societal and environmental contexts and demonstrate the knowledge of and need				
	for sustainable development.				
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and				
	norms of the engineering practice.				
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader in				
7.0.10	diverse teams, and in multidisciplinary settings.				
PO 10	Communication : Communicate effectively on complex engineering activities with the				
	engineering community and with society at large, such as, being able to comprehend and write				
	clear instructions				
PO 11	Project management and finance : Demonstrate knowledge and understanding of the				
	engineering and management principles and apply these to one's own work, as a member and				
	leader in a team, to manage projects and in multidisciplinary environments.				
PO 1 2	Life-long learning: Recognize the need for, and have the preparation and ability to engage in				
	independent and life-long learning in the broadest context of technological change.				

PROGRAMME SPECIFIC OUTCOMES (PSOs):

PSO 1	Specify, design and analyze systems that efficiently generate, transmit and distribute electrical power
PSO 2	Design and analyze electrical machines, modern drive and lighting systems
PSO 3	Specify, design, implement and test analog and embedded signal processing electronic systems
PSO 4	Design controllers for electrical and electronic systems to improve their performance.

Dr.J. Sivavara Prasad & Mrs. K.S.L.Lavanya	Dr.J. Sivavara Prasad	Dr.J.SivaVara Prasad	Dr.J.Siva Vara Prasad
Course Instructors	Course Coordinator	Module Coordinator	HOD