

COURSE HANDOUT PART-A

Name of Course Instructor : Mr. G. Rajendra							
Course Name & Code	: Operating System	ns & 20CS11 Section: B					
L-T-P Structure	: 3-0-0	Credits: 3					
Program/Sem/Sec	: B.Tech., IT., IV-Sem.,	A.Y: 2022-23					

Pre-requisite: Knowledge of Computer fundamentals & Data structures& Algorithms.

Course Educational Objectives (CEOs): The objective of the course is to provide basic knowledge of computer operating system structure and functioning, understand how Operating Systems evolved with advent of computer architecture, and comprehend the different CPU scheduling algorithms, page replacement algorithms, disk scheduling and identify best one.

COURSE OUTCOMES (CO):

At the end of the course, the student will be able to:

CO1	Demonstrate the underlying principles and techniques of operating system
	(Understand-L2)
CO2	Interpret scheduling and communication methods of processes handled by
	operating systems (Understand-L2).
CO3	Distinguish the process synchronization methods and deadlock handling approaches
	employed in operating systems (Understand-L2).
CO4	Classify memory management techniques and virtual memory mechanisms
	(Understand-L2).
CO5	Interpret the strategies of disk scheduling algorithms and file system architecture
	(Understand-L2).

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	2	1	2	-	-	-	-	-	-	-	-	1	3	1	1
CO2	1	2	2	-	-	-	-	-	-	-	-	1	3	1	2
CO3	2	1	2	-	-	-	-	-	-	-	-	1	2	3	3
CO4	-	2	2	-	-	-	-	-	-	-	-	1	2	3	3
CO5	-	1	2	-	-	-	-	-	-	-	-	1	1	3	2

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

TEXTBOOKS:

1. Silberschatz & Galvin, "Operating System Concepts", Wiley, 7th edition, 2007.

REFERENCE BOOKS:

- 1. William Stallings, "Operating Systems", PHI, 5th Edition, 2004.
- 2. B.A. Forouzan& R.F. Giberg, —Unix and shell Programming||, Thomson, First Edition, New Delhi, 2003.
- 3. http://codex.cs.yale.edu/avi/os-book/OS9/slide-dir/index.html
- 4. https://swayam.gov.in/nd1_noc19_cs50/preview

PART-B

COURSE DELIVERY PLAN (LESSON PLAN)

		No. of	Tentative	Actual	Teaching	HOD
S No	Topics to be	Classes	Date of	Date of	Loarning	Sign
5.110.	covered	Poquirod	Completion	Completion	Mothode	Wookly
	Introduction to	Requireu	completion	completion	Methous	WEEKIY
	Course Outcomes					
1.	and Brogram	1	30-01-2023		TLM2	
	Outcomes					
	Outcomes	1				
2.	Semilar	1	31-01-2023		TLM2	
	Services	1				
3.	User Operating-	1	01-02-2023		TLM2	
	System Interface.	1				
4.	System Calls, Types	1	02-02-2023		TLM2	
	of System Calls,	1	0(02 2022			
	System Programs,	1	06-02-2023			
5.	Operating-system				TLM2	
	Implementation					
		1	07 00 0000			
6.	Tutorial-1	1	07-02-2023		TLM3	
7.	Operating-System	1	08-02-2023		TLM2	
	Structure					
8.	Virtual Machines.	1	09-02-2023		TLM2	
	Operating-System	1	13-02-2023			
9.	Generation, System				TLM2	
	Boot					
10.	Tutorial-2	1	14-02-2023		TLM3	
11	Assignment-1/	1	15-02-2023		ті ма	
11.	Quiz-1				I LIMO	
No. of a	classes required to	11	No of classes	takon		-
comple	ete UNIT-I	11	INU. UI CIASSES	lakell.		

UNIT-I: Introduction to Operating System

	Tonics to be	No. of	Tentative	Actual	Teaching	HOD
S.No.	covered	Classes	Date of	Date of	Learning	Sign
		Required	Completion	Completion	Methods	Weekly
12.	Process Concept, IPC.	1	16-02-2023		TLM2	
13.	Communication in Client-Server Systems.	1	20-02-2023		TLM2	
14.	Threads: Overview,	1	21-02-2023		TLM2	
15.	Multithreading Models	1	22-02-2023		TLM2	
16.	Process Scheduling: Scheduling Criteria.	1	23-02-2023		TLM2	
17.	Scheduling Algorithms (FCFS, SJF)	1	27-02-2023		TLM2	
18.	Scheduling Algorithms (Priority)	1	01-03-2023		TLM2	
19.	Tutorial-3	1	02-03-2023		TLM3	
20.	Scheduling Algorithms (Round Robin)	1	06-03-2023		TLM2	
21.	Discuss various problems related to scheduling algorithms	1	07-03-2023		TLM2	
22.	Discuss various problems related to scheduling algorithms		09-03-2023		TLM2	
23.	Discuss various problems related to scheduling algorithms	1	13-03-2023		TLM2	
24.	Tutorial-4	1	14-03-2023		TLM3	
25.	Assignment-2 / Quiz-2	1	15-03-2023		TLM6	
No. of comple	classes required to ete UNIT-II	14	No. of classes	taken:		

UNIT-II: Process Management & Process Scheduling

(27-03-2023 TO 01-04-2023) I-MID EXAMS

C No	Taniasta ha samuad	No. of	Tentative	Actual	Teaching	HOD
5.NO.	Topics to be covered	Required	Completion	Completion	Methods	Sign Weekly
26.	The Critical-Section Problem		16-03-2023		TLM2	
27.	Peterson's Solution, Synchronization Hardware.	1	20-03-2023		TLM2	
28.	Semaphores, Classic Problems of Synchronization.	1	21-03-2023		TLM2	
29.	Monitors	1	23-03-2023		TLM2	
30.	Deadlocks: System Model, Deadlock Characterization.	1	03-04-2023		TLM2	
31.	Methods for Handling Deadlocks.	1	04-04-2023		TLM2	
32.	Deadlock Prevention		06-04-2023		TLM2	
33.	Deadlock Avoidance, Deadlock Detection.	1	10-04-2023		TLM2	
34.	Recovery from Deadlock. Tutorial-5	1	11-04-2023		TLM2, TLM3	
35.	Tutorial-6	1	12-04-2023		TLM3	
36.	Assignment-3 / Quiz-3	1	13-04-2023		TLM6	
No. of comple	classes required to ete UNIT-III	11	No. of classes t	aken:		

UNIT-III: Synchronization and Deadlocks

UNIT-IV: Memory Management

		No. of	Tentative	Actual	Teaching	HOD
S.No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
		Required	Completion	Completion	Methods	Weekly
37.	Memory Management Strategies: Swapping, Contiguous Memory Allocation.	1	17-04-2023		TLM2	
38.	Paging, Structure of the Page Table.	1	18-04-2023		TLM2	
39.	Segmentation	1	19-04-2023		TLM2	
40.	Tutorial-7	1	20-04-2023		TLM3	
41.	Virtual Memory Management:	1	24-04-2023		TLM2	
42.	Demand Paging	1	25-04-2023		TLM2	
43.	Page Replacement,	1	26-04-2023		TLM2	
44.	Allocation of Frames, Thrashing.	1	27-04-2023		TLM2	
45.	Tutorial-8	1	01-05-2023		TLM3	
46.	Assignment-4 / Quiz-4	1	02-05-2023		TLM6	
No. of c comple	classes required to ete UNIT-IV	10	No. of classes take	n:		

UNIT-V: File System Management

		N C	m • • •		m 1 '	HOD
S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
47.	Overview of Mass- Storage Structure, Disk Structure.	1	03-05-2023		TLM2	
48.	Disk Attachment, Disk Scheduling.	1	04-05-2023		TLM2	
49.	Disk Management	1	08-05-2023		TLM2	
50.	Tutorial-9	1	09-05-2023		TLM3	
51.	File-System Structure, File- System Implementation	1	10-05-2023		TLM2	
52.	Directory Implementation, Allocation Methods	1	11-05-2023		TLM2	
53.	Free-space Management	1	15-05-2023		TLM2	
54.	Efficiency and Performance		16-05-2023		TLM2	
55.	Recovery.		17-05-2023		TLM2	
56.	Tutorial-10	1	18-05-2023		TLM3	
57.	Assignment-4 / Quiz-4	1	23-05-2023		TLM6	
No. of c comple	lasses required to te UNIT-V	11	No. of classes tal	ken:		

(05-06-203 TO 10-06-2023) II-MID EXAMS

Contents beyond the Syllabus

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
58.		1	24-05-2023			
59.		1	25-05-2023			

Teachi	ng Learning Methods				
TLM1	Chalk and Talk	TLM4	Problem Solving	TLM7	Seminars or GD
TLM2	РРТ	TLM5	Programming	TLM8	Lab Demo
TLM3	Tutorial	TLM6	Assignment or Quiz	TLM9	Case Study

ACADEMIC CALENDAR:

Description	From	То	Weeks
Commencement of Class Work	30-01-2023		
I Phase of Instructions	30-01-2023	25-03-2023	8 W
I Mid Examinations	27-03-2023	01-04-2023	1W
II Phase of Instructions	03-04-2023	27-05-2023	7 W
II Mid Examinations	05-06-2023	10-06-2023	1W
Preparation and Practical	12-06-2023	17-06-2023	1W
Semester End Examinations	19-06-2023	01-07-2023	2W

EVALUATION PROCESS:(R20 Regulations)

Evaluation Task	Marks				
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5				
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15				
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10				
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5				
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)					
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10				
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	<mark>M=30</mark>				
Cumulative Internal Examination (CIE): M	<mark>30</mark>				
Semester End Examination (SEE)	<mark>70</mark>				
Total Marks = CIE + SEE	100				

PROGRAMME OUTCOMES (POs):

PO1	Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.								
PO2	Problem Analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.								
PO3	Design/Development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.								
PO 4	4 Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.								
PO5	Modern Tool Usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.								
PO6	The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.								
PO7	Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.								
PO8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.								
PO9	Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.								
PO10	Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.								
PO11	Project Management and Finance: Demonstrate knowledge and understanding of the ring and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.								
PO12	Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.								

PSO 1	Organize, Analyze, and interpret the data to extract meaningful conclusions.
PSO 2	Design, Implement and Evaluate a computer-based system to meet desired
	needs
PSO 3	Develop IT application services with the help of different current engineering
	tools.

Course Instructor	Module Coordinator	Course Coordinator	HOD
Mr. G. Rajendra	Dr. O. Rama Devi	Mr. G. Rajendra	Dr. B. Srinivasa Rao

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE HANDOUT PART-A

Name of Course Instructor	: Mr.G. Rajendra			
Course Name & Code	: Operating Systems and Lin	ux Internals I	ab & 20IT53.	
L-T-P Structure	: 0-0-3		Credits	: 1.5
Program/Sem/Sec	: B.Tech., IT., IV-Sem.,-B	A.Y	: 2022-23	

PRE-REQUISITE: Programming language, DBMS, OOP concepts.

Course Educational Objective: The objective of this lab is to provide the various UNIX/Linux operating system commands, importance of System calls, Scheduling algorithms and Memory Management techniques.

COURSE OUTCOMES (COs): At the end of the course, students are able to

C01	Experiment with Unix commands and shell programming (Understand- L2)								
CO2	Implement CPU scheduling algorithms and memory management techniques								
	(Apply-L3).								
CO3	Simulate process synchronization and file system management using system calls								
	(Apply –L3).								
C04	Improve individual / teamwork skills, communication & report writing skills with								
	ethical values.								

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	PO3	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
CO1	3				3								3		
CO2	3				3								1		
CO3		3			3										3
CO4										3					

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

PART-B

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Cycle-1	3	06-02-2023 13-02-2023		TLM4	
2.	Cycle-2	3	20-02-2023 27-02-2023		TLM4	
3.	Cycle-3	3	06-03-2023		TLM4	
4.	Cycle-4	3	13-03-2023		TLM4	
5.	Cycle-5	3	20-03-2023		TLM4	
6.	Cycle-6	3	03-04-2023		TLM4	
7.	Cycle-7	3	10-04-2023		TLM4	
8.	Cycle-8	3	17-04-2023		TLM4	
9.	Cycle-9	3	24-04-2023 01-05-2023		TLM4	
10.	Cycle-10	3	08-05-2023 15-05-2023		TLM4	
11.	Additional Lab Experiments	3	22-05-2023		TLM4	
12.	Additional Lab Experiments	3	29-05-2023		TLM4	

Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)		
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)		
TLM3	Tutorial	TLM6	Group Discussion/Project		

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks			
Day-to-day work	D1=05			
Record	R1=05			
Internal Test	IT1=5			
Continuous Internal Evaluation (CIE)=D1+R1+IT1				
Procedure/Algorithm	P1=5			
Experimentation/Program execution				
Observations/Calculations/Validation				
Result/Inference				
Viva voce				
Semester End Examination (SEE)= P1+ E1+ O1+ V1				
Total Marks = CIE+SEE	50			

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex
	engineering problems.
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze
	complex engineering problems reaching substantiated conclusions using first
	principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions: Design solutions for complex engineering
	problems and design system components or processes that meet the specified needs
	with appropriate consideration for the public health and safety, and the cultural,
	societal, and environmental considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and
	research methods including design of experiments, analysis and interpretation of data,
DO 5	and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and
	modern engineering and 11 tools including prediction and modelling to complex
	Engineering activities with an understanding of the limitations
PUO	The engineer and society. Apply leasoning informed by the contextual knowledge to
	assess societal, licaliti, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice
PO 7	Environment and sustainability : Understand the impact of the professional
107	engineering solutions in societal and environmental contexts, and demonstrate the
	knowledge of, and need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities
	and norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or
	leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication: Communicate effectively on complex engineering activities with the
	engineering community and with society at large, such as, being able to comprehend
	and write effective reports and design documentation, make effective presentations,
	and give and receive clear instructions.
PO 11	Project management and finance: Demonstrate knowledge and understanding of the
	engineering and management principles and apply these to one's own work, as a
	member and leader in a team, to manage projects and in multidisciplinary
DO 11	environments.
PO 12	Lite-long learning: Recognize the need for, and have the preparation and ability to
	engage in independent and life-long learning in the broadest context of technological
	cnange.

PSO 1	Organize, Analyze and Interpret the data to extract meaningful conclusions.
PSO 2	Design, Implement and Evaluate a computer-based system to meet desired needs.
PSO 3	Develop IT application services with the help of different current engineering tools.

Course Instructor	Module Coordinator	Course Coordinator	HOD
Mr. G. Rajendra	Dr. O. Rama Devi	Mr. G. Rajendra	Dr. B. Srinivasa Rao

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230.

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE HANDOUT

PART-A

Name of Course Instructor:CH. POORNA VENKATA SRINIVASA RAOCourse Name & Code: DESIGN AND ANALYSIS OF ALGORITHMS & 20CS06L-T-P Structure: 3-0-0Program/Sem/Sec: B.Tech/IV/BA.Y.:2022-23

PREREQUISITE: Discrete Mathematical Structures and Data Structures.

COURSE EDUCATIONAL OBJECTIVES (CEOs):

The objective of the course is to learn various algorithm design techniques and analyze the computing resources of the algorithms and motivate the students to design new algorithms for various problems.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Identify the characteristics of an algorithm and analyze its time and space complexity.
COI	(Understand- L2)
CO2	Apply the divide-and-conquer method for solving problems like searching and sorting.
02	(Apply- L3)
CO3	Design Greedy algorithms for the optimization problems like knapsack problem,
	minimum cost spanning tree, single source shortest path problem. (Apply - L3)
CO4	Apply dynamic programming paradigm to solve optimization problems like travelling
C04	salesperson problem,0/1 knapsack problem, Optimal binary search tree. (Apply - L3)
	Analyze the backtracking and branch-and-bound search methods on optimization
CO5	problems like N-queens, sum of subsets,0/1 knapsack, Hamiltonian circuit and so on.
	(Apply - L3)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	2	1											2		
CO2	2	2												2	
CO3	2	2												2	
CO4	2	2													1
C05	2	3													2
			1	- Low	1		2	2 –Mee	dium			3	– High		

TEXTBOOKS:

T1. Ellis Horowitz, SartajSahni,S Rajasekaran, "Fundamentals of Computer Algorithms", University press, 2nd edition, 2012.

REFERENCE BOOKS:

- **R1** Mark Allen Weiss, "Data Structures and Algorithm Analysis in C++", Pearson, 3rd Edition, 2007.
- **R2** Aho, Hopcroft & Ullman, "The Design and Analysis of Computer Algorithms", Addison Wesley publications, 2008.
- **R3** Thomas H.Corman et al, "Introduction to Algorithms", PHI, 3rd edition, 2008.
- R4 Anany Levitin, "Introduction to the Design and Analysis of Algorithms", PEA.
- **R5** P. H. Dave, H. B. Dave, "Design and Analysis of Algorithms", Pearson Education", 2008.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Introduction

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction	1	01-02-2023		TLM1	Weenly
2.	Algorithm definition	1	02-02-2023		TLM1	
3.	Specifications	1	03-02-2023		TLM1	
4.	Performance Analysis	1	07-02-2023		TLM1	
5.	Time Complexity	1	08-02-2023		TLM1	
6.	Space Complexity	1	09-02-2023		TLM1	
7.	Asymptotic Notations	1	10-02-2023		TLM1	
8.	Big-Oh	1	14-02-2023		TLM1	
9.	Omega	1	15-02-2023		TLM1	
10.	Theta	1	16-02-2023		TLM1	
11.	Divide and Conquer	1	17-02-2023		TLM1	
12.	General Method	1	21-02-2023		TLM1	
13.	Binary Search	1	22-02-2023		TLM1	
14.	Finding Maximum and Minimum	1	23-02-2023		TLM1	
15.	Merge Sort	1	24-02-2023		TLM1	
16.	Quick sort	1	28-02-2023		TLM1	
17.	closest pair of points	1	01-03-2023		TLM1	
No. of	f classes required to complete I	UNIT-I: 17		No. of clas	ses takeı	1:

UNIT-II: The Greedy Method

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
18.	The Greedy Method	1	01-03-2023		TLM1	
19.	General Method	1	02-03-2023		TLM1	
20.	Knapsack Problem	2	07-03-2023		TLM1	
21.	Job sequencing with deadlines	1	09-03-2023		TLM1	
22.	Minimum-cost spanning trees	2	14-03-2023		TLM1	
23.	Optimal storage on tapes	1	15-03-2023		TLM1	

24.	Single source shortest paths	2	17-03-2023	TLM1	
25.	Huffman coding	2	23-03-2023	TLM1	
No. of classes required to complete UNIT-II: 12 No. of classes taken:					

UNIT-III: Dynamic Programming

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
26.	Dynamic Programming	1	24-03-2023		TLM1	
27.	General method	1	04-04-2023		TLM1	
28.	Multistage graph	1	11-04-2023		TLM1	
29.	All pairs shortest path	2	13-04-2023		TLM1	
30.	Single Source Shortest path	2	19-04-2023		TLM1	
31.	Optimal Binary search trees	2	20-04-2023		TLM1	
32.	0/1 Knapsack	2	21-04-2023		TLM1	
33.	Reliability design	1	25-04-2023		TLM1	
34.	The travelling salesman problem	1	26-04-2023		TLM1	
	No. of classes required to con	III: 13	No. of class	es taken:		

UNIT-IV: Back tracking

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
35.	Back tracking	1	27-04-2023		TLM1	
36.	The General Method	1	28-04-2023		TLM1	
37.	The 8-Queens Problem	1	02-05-2023		TLM1	
38.	Sum of subsets	2	04-05-2023		TLM1	
39.	Graph Coloring	2	09-05-2023		TLM1	
40.	Hamiltonian cycles	1	10-05-2023		TLM1	
No. of	classes required to complete	No. of classe	es taken:			

UNIT-V: Branch and Bound

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
41.	Branch and Bound	1	11-05-2023		TLM1	
42.	General method	1	12-05-2023		TLM1	
43.	Job sequencing with deadlines LC Branch and Bound	2	17-05-2023		TLM2	

No of	Bound solution	LINIT_V: 17		No of classe	s takoni	
47.	Problem LC Branch and	2	30-05-2023			
	Travelling salesperson				TLM2	
46.	Branch and Bound solution	Z	20-03-2023			
16	0/1 Knapsack problem FIFO	2	26.05.2022		TLM2	
45.	Branch and Bound solution	2	24-03-2023			
4 -	0/1 Knapsack problem LC	2	24 05 2023		TLM2	
44.	LIFO Branch and Bound	2	19-03-2023			
4.4	FIFO Branch and Bound and	2	10 05 2023		TLM2	

CONTENT BEYOND THE SYLLABUS:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Recursive and Non-Recursive Algorithms	1	20-03-2022		TLM1	
2.	Recurrence Relations	1	26-03-2023		TLM1	

Teaching Lea	Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

PART-C

PEVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	<mark>M=30</mark>
Cumulative Internal Examination (CIE): M	<mark>30</mark>
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1Engineering knowledge: Apply the knowledge of mathematics, science,
engineering fundamentals, and an engineering specialization to the solution of
complex engineering problems.

PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
PO 4	Conduct investigations of complex problems : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
PO 5	Modern tool usage : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
PO 6	The engineer and society : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
PO 7	Environment and sustainability : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO 8	Ethics : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO 9	Individual and team work : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10	Communication : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO 12	Life-long learning : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

PSO 1	The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of
	Organization.
PSO 2	The ability to design and develop computer programs in networking, web applications
	and IoT as per the society needs
PSO 3	To inculcate an ability to analyze, design and implement database applications.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Mr. Ch. Poorna Venkata Srinivasa Rao	Dr. M. Sitha Ram	Mrs. M.Hemalatha	Dr.B.Srinivasa Rao
Signature				

COURSE HANDOUT

PART-A

Name of Course Instructor :	Mr. M. Rajesh Reddy		
Course Name & Code :	Data Mining using Python Lab & 20CS58		
L-T-P Structure :	0-0-3	Credits	: 3
Program/Sem/Sec :	B.Tech., IT., IV-Sem., B section	A.Y	: 2022-23

PRE-REQUISITE : Python Programming

COURSE EDUCATIONAL OBJECTIVES (CEOs): The objective of this lab is to Practical exposure on implementation of well-known data mining algorithms and Learning performance evaluation of data mining algorithms in a supervised and an unsupervised setting.

COURSE OUTCOMES (COs): At the end of the course, students are able to

CO 1	Apply preprocessing techniques on real world datasets.(Apply-L3)
CO 2	Apply apriori algorithm to generate frequent itemsets.(Apply L3)
CO 3	Apply Classification and clustering algorithms on different datasets.(Apply L3)
CO 4	Improve individual / teamwork skills, communication & report writing skills with
	ethical values.

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

			-			(-)					
COs	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PS O3
CO1	-	-	2	-	1	-	-	-	-	-	-	-	3	1	
CO2	-	-	-	2	1	-	-	-	-	-	-	-	-	3	1
CO3	-	-	-	2	1	-	-	-	-	-	-	-	-	3	2
CO4	-	-	-	-	-	-	-	2	2	2	-	-	-	-	-

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

Web Resources:

- 1. https://analyticsindiamag.com/data-pre-processing-in-python/
- 2. https://towardsdatascience.com/decision-tree-in-python-b433ae57fb93
- 3. https://towardsdatascience.com/calculate-similarity-the-most-relevant-metrics-in-a-nutshell-9a43564f533e
- 4. https://www.springboard.com/blog/data-mining-python-tutorial/
- 5. https://medium.com/analytics-vidhya/association-analysis-in-python-2b955d0180c
- 6. https://www.datacamp.com/community/tutorials/naive-bayes-scikit-learn
- 7. https://www.analyticsvidhya.com/blog/2019/05/beginners-guide-hierarchical-clustering/
- 8. https://towardsdatascience.com/dbscan-algorithm-complete-guide-and-application-with-python-scikit-learnd690cbae4c5d

PART-B

COU	COURSE DELIVERY PLAN (LESSON PLAN):						
S NO	Date (Tentative)	Actual Date	Topics to be covered	Teaching Learning Methods	HOD Signature		
1	31.01.2023, 07.02.2023, 14.02.2023		Demonstrate the following data preprocessing tasks using python libraries. a) Loading the dataset b) Identifying the dependent and independent variables. c) Dealing with missing data	TLM4			
2	21.02.2023, 28.02.2023		Demonstrate the following data preprocessing tasks using python libraries.a) Dealing with categorical data.b) Scaling the features.c) Splitting dataset into Training and Testing Sets	TLM4			
3	07.03.2023		Demonstrate the following Similarity and Dissimilarity Measures using python a) Pearson's Correlation b) Cosine Similarity c) Jaccard Similarity d) Euclidean Distance e) Manhattan Distance	TLM4			
4	14.03.2023		Build a model using a linear regression algorithm on any dataset.	TLM4			
5	21.03.2023		Build a classification model using Decision Tree algorithm on iris dataset	TLM4			
		Μ	id - I Examinations 27.03.2023 to 01.04.2023				
6	03.04.2023		Apply Naïve Bayes Classification algorithm on any dataset	TLM4			
7	10.04.2023		Generate frequent item sets using Apriori Algorithm in python and also generate association rules for any market basket data.	TLM4			
8	17.04.2023, 24.04.2023		Apply the K- Means clustering algorithm on any dataset.	TLM4			
9	01.05.2023		Apply Hierarchical Clustering algorithms on any dataset.	TLM4			
10	08.05.2023		Apply the DBSCAN clustering algorithm on any dataset.	TLM4			
11	15.05.2023		Revision of all Experiments	TLM4			
12	22.05.2023		Internal Exam	TLM4			

Teaching Learning Methods						
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

EVALUATION PROCESS (R17 Regulations):

Evaluation Task	Marks
Day-to-day work	D1=05
Record	R1=05
Internal Test	IT1=5
Continuous Internal Evaluation (CIE)=D1+R1+IT1	15
Procedure/Algorithm	P1=5
Experimentation/Program execution	E1=10
Observations/Calculations/Validation	O1=10
Result/Inference	R1=5
Viva voce	V1=5
Semester End Examination (SEE)= P1+ E1+ O1+ V1	30
Total Marks = CIE+SEE	50

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering
DO 1	problems. Droblem analyzing Identify formulate regions research literature and analyze complex.
PO 2	engineering problems reaching substantiated conclusions using first principles of mathematics
	natural sciences, and engineering sciences.
PO 3	Design/development of solutions : Design solutions for complex engineering problems and
	design system components or processes that meet the specified needs with appropriate
	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research
	methods including design of experiments, analysis and interpretation of data, and synthesis of
DO 5	the information to provide valid conclusions.
PU 5	engineering and IT tools including prediction and modelling to complex engineering activities
	with an understanding of the limitations
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
	the professional engineering practice
PO 7	Environment and sustainability: Understand the impact of the professional engineering
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
DO 9	for sustainable development.
PUS	norms of the engineering practice
PO 9	Individual and team work : Function effectively as an individual and as a member or leader in
107	diverse teams, and in multidisciplinary settings.
РО	Communication: Communicate effectively on complex engineering activities with the
10	engineering community and with society at large, such as, being able to comprehend and write
	effective reports and design documentation, make effective presentations, and give and receive
	clear instructions.
PO 11	Project management and finance : Demonstrate knowledge and understanding of the
11	engineering and management principles and apply these to one's own work, as a member and
PO	L ife-long learning: Recognize the need for and have the preparation and ability to angage in
12	independent and life-long learning in the broadest context of technological change
14	independent and me long learning in the broadest context of teenhological change.

PSO 1	Organize, Analyze and interpret the data to extract meaningful conclusions.
PSO 2	Design, Implement and Evaluate a computer-based system to meet desired needs
PSO 3	Develop IT application services with the help of different current engineering tools.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Mr. M. Rajesh Reddy	Dr. S. Jayaprada	Dr.K. Lavanya	Dr.B.Srinivasa Rao
Signature				

COURSE HANDOUT

PART-A

Name of Course Instructor:M. Rajesh ReddyCourse Name & Code: Data Warehousing and Data mining & 20CS01L-T-P Structure: 3-0-0

Program/Sem/Sec

: **3-0-0** : B.Tech/IV/B

Credits: 3 **A.Y.:** 2022-23

PREREQUISITE

: DBMS and Probability and Statistics

COURSE EDUCATIONAL OBJECTIVES (CEOs): The Objective of the course is to introduce the concepts of data warehouse and data mining, which gives a complete description about the principles, used, architectures, applications, design and implementation of data mining and data warehousing concepts.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Summarize the architecture of data warehouse.(Understand- L2)
CO2	Apply different preprocessing methods, Similarity, Dissimilarity measures for any given raw data (Apply – L3)
CO3	Construct a decision tree and resolve the problem of model over fitting. (Analyze– L4)
CO4	Compare Apriori and FP-growth association rule mining algorithms for frequent itemset generation.(Apply - L3)
CO5	Apply suitable clustering algorithm for the given data set.(Apply - L3)

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

COs	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3
C01	-	3	-	-	-	-	-	-	-	-	-	-	2	-	-
CO2	3	1	-	-	-	-	-	-	-	-	-	-	3	-	-
CO3	-	-	3	2	-	-	-	-	-	-	-	-	-	3	-
CO4	-	-	3	2	-	-	-	-	-	-	-	-	-	-	2
CO5	-	-	3	2	-	-	-	-	-	-	-	-	-	2	-
			1 -]	Low			2 -M	lediur	n			3 - Hig	h		

TEXTBOOKS:

- T1 Introduction to Data Mining : Pang-Ning Tan & Michael Steinbach, Vipin Kumar, Fifth Impression, Pearson, 2015.
- T2 Data Mining concepts and Techniques, 3rd Edition, Jiawei Han, Michel Kamber, Elsevier, 2011.

REFERENCE BOOKS:

- **R1** Data Mining Techniques and Applications: An Introduction, Hongbo Du, Cengage Learning, 2010.
- R2 Data Mining : Introductory and Advanced topics : Dunham, First Edition, Pearson, 2020
- **R3** Data Warehousing Data Mining & OLAP, Alex Berson, Stephen Smith, TMH, 2008.

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Data Warehouse and OLAP Technology

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction to Course and COs	1	31.01.2023		TLM1,2	
2.	Introduction to Unit-I	1	02.02.2023			
3.	Data Warehouse and OLAP Technology : An Overview: Data Warehouse	1	03.02.2023		TLM1,2	
4.	Data Warehouse and OLAP Technology : A Multidimensional Data Model	1	06.02.2023		TLM1,2	
5.	Data Warehouse and OLAP Technology : Data Warehouse Architecture	1	07.02.2023		TLM1,2	
6.	Data Warehouse and OLAP Technology : Data Warehouse Implementation	2	10.02.2023		TLM1,2	
7.	Data Warehouse and OLAP Technology : From Data Warehousing to Data Mining.	2	14.02.2023		TLM1,2	
8.	Revision	1	16.02.2023		TLM1,2	
9.	Assignment on Unit-1	1	17.02.2023			
No. of	classes required to complete UN	IT-I: 11		No. of clas	sses taken	1 :

UNIT-II: Data Mining & Data Preprocessing

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Data Mining : Introduction to Data Mining	1	20.02.2023		TLM1,2	
2.	Motivating challenges, The origins of Data Mining,	1	21.02.2023		TLM1,2	
3.	Data MiningTasks, Types of Data, Data Quality.	2	24.02.2023		TLM1,2	
4.	Data Preprocessing: Aggregation	1	27.02.2023		TLM1,2	
5.	Data Preprocessing: Sampling, Dimensionality Reduction, Feature Subset Selection	2	02.03.2023		TLM1,2	
6.	Data Preprocessing: Feature creation	1	03.03.2023		TLM1,2	
7.	Data Preprocessing: Discretization and Binarization	1	06.03-2023		TLM1,2	
8.	Data Preprocessing: Variable Transformation	1	07.03.2023		TLM1,2	
9.	Data Preprocessing: Measures of Similarity and Dissimilarity	1	09.03.2023		TLM1,2	
10.	Revision	1	10.03.2023		TLM1,2	

11.	Assignment on Unit-2	1	13.03.2023			
No. of clas	sses required to complete UNIT	-II: 13		No. of clas	sses taken	1:

UNIT-III: Classification & Model Over fitting

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
	Classification: Basic Concepts,	_			TLM1,2	
1.	General Approach to solving a	2	16.03.2023			
	classification problem				TT) (1 0	
	Decision Tree Induction:	•	20.02.2022		TLM1,2	
2.	Working of Decision Tree,	2	20.03.2023			
	building a decision tree					
2	methods for expressing an	2	22.02.2022		1LM1,2	
3.	attribute test conditions, measures	2	23.03.2023			
	for selecting the best split					
4.	Algorithm for decision tree	1	24.03.2023		TLM1,2	
	Induction.	05.00.0		2000		
	Mid - I Examinations fro	0m 27.03.2	023 to 01.04.2	2023	TTL 1 (1 0	
	Model Overfitting: Due to				TLM1,2	
5.	presence of noise, due to lack of	1	03.04.2023			
	representation samples					
	Evaluating the performance of				TLM1,2	
6	classifier: holdout method,	2	06 04 2023			
0.	random sub sampling, cross-	2	00.04.2025			
	validation, bootstrap.					
7.	BayesTheorem	1	11.04.2023		TLM1,2	
8.	Naïve Bayes Classifier	2	17.04.2023		TLM1,2	
	No. of classes required to compl	ete UNIT	-III: 13	No. of cla	sses taken	1:

UNIT-IV: Association Analysis

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Association Analysis: Basic Concepts	1	18.04.2023		TLM1,2	
2.	Algorithms: Problem Definition, Frequent Item Set Generation	2	21.04.2023		TLM1,2	
3.	Apriori Principle, Apriori Algorithm	2	25.04.2023		TLM1,2	
4.	Rule Generation, Compact Representation of Frequent Itemsets	2	28.04.2023		TLM1,2	
5.	FPGrowth Algorithm	1	01.05.2023		TLM1,2	
6.	Revision	1	02.05.2023		TLM1,2	
7.	Assignment on Unit-4	1	04.05.2023			
No. of c	lasses required to complete UNIT		No. of clas	ses taken	ı:	

UNIT-V: Cluster Analysis

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly	
	Cluster Analysis: Basic				TLM1,2		
1.	Concepts and Algorithms:	1	05.05.2023				
2.	Different Types of Clustering, Different Types of Clusters;	1	08.05.2023		TLM1,2		
3.	K-means: The Basic K- means Algorithm	1	09.05.2023		TLM1,2		
4.	K-means Additional Issues, Bisecting K-means, Strengths and Weaknesses;	1	11.05.2023		TLM1,2		
5.	Exercise problems on K- means	1	12.05.2023		TLM1,2		
6.	Agglomerative Hierarchical Clustering: Basic Agglomerative Hierarchical Clustering Algorithm	1	15.05.2023		TLM1,2		
7.	Exercise problems on Agglomerative Hierarchical Clustering Algorithm	1	16.05.2023		TLM1,2		
8.	DBSCAN: Traditional Density Center-Based Approach,DBSCAN Algorithm, Strengths and Weaknesses.	1	18.05.2023		TLM1,2		
9.	Exercise problems on DBSCAN Algorithm	1	19.05.2023		TLM1,2		
10.	Revision	1	22.05.2023		TLM1,2		
11.	Assignment on Unit-5	1	23.05.2023				
No. of cla	No. of classes required to complete UNIT-V: 11 No. of classes						

CONTENT BEYOND THE SYLLABUS:

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Regression Analysis - I (Linear Regression)	1	25.05.2023		TLM1,2	
2.	Regression Analysis - II (Logistic Regression)	1	26.05.2023		TLM1,2	

Teaching Learning Methods							
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)				
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)				
TLM3	Tutorial	TLM6	Group Discussion/Project				

ACADEMIC CALENDAR

B. ⁻	Tech (IV Semester)				
Commencement of Class Work		30-01-2023			
I Phase of Instructions	30-01-2023	25-03-2023	8 W		
I MID Examinations	27-03-2023	01-04-2023	1 W		
Il Phase of Instructions	03-04-2023	27-05-2023	8 W		
Summer Vacation	29-05-2023	03-06-2023	1 VV		
II MID Examinations	05-06-2023	10-06-2023	1 W		
Preparation and Practicals	12-06-2023	17-06-2023	1 W		
Semester End Examinations	19-06-2023	01-07-2023	2 W		
Internship	03-07-2023	15-07-2023	2 W		
Commence of Next Semester	r Class Work	17-07-2	2023		

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5
II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	M2=15
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	<mark>M=30</mark>
Cumulative Internal Examination (CIE): M	<mark>30</mark>
Semester End Examination (SEE)	<mark>70</mark>
Total Marks = CIE + SEE	100

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
	Problem analysis: Identify, formulate, review research literature, and analyze complex
PO 2	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.

	Design/development of solutions: Design solutions for complex engineering problems and
DO 3	design system components or processes that meet the specified needs with appropriate
PO 3	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
	Conduct investigations of complex problems: Use research-based knowledge and research
PO 4	methods including design of experiments, analysis and interpretation of data, and synthesis
	of the information to provide valid conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
PO 5	engineering and IT tools including prediction and modeling to complex engineering
	activities with an understanding of the limitations.
	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
PO 6	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant
	to the professional engineering practice.
	Environment and sustainability: Understand the impact of the professional engineering
PO 7	solutions in societal and environmental contexts, and demonstrate the knowledge of, and
	need for sustainable development.
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
100	norms of the engineering practice.
PO 9	Individual and team work: Function effectively as an individual, and as a member or
10,	leader in diverse teams, and in multidisciplinary settings.
	Communication: Communicate effectively on complex engineering activities with the
P010	engineering community and with society at large, such as, being able to comprehend and
1010	write effective reports and design documentation, make effective presentations, and give and
	receive clear instructions.
	Project management and finance: Demonstrate knowledge and understanding of the
P011	engineering and management principles and apply these to one's own work, as a member
	and leader in a team, to manage projects and in multidisciplinary environments.
	Life-long learning: Recognize the need for, and have the preparation and ability to engage
P012	in independent and life-long learning in the broadest context of technological change

PSO 1	Organize, Analyze and interpret the data to extract meaningful conclusions.
PSO 2	Design, Implement and Evaluate a computer-based system to meet desired needs
PSO 3	Develop IT application services with the help of different current engineering tools.

Title	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Mr. M. Rajesh Reddy	Dr. S. Jayaprada	Dr.K. Lavanya	Dr.B.Srinivasa Rao
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

AT Y LAVAR INTO

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE HANDOUT

PART-A

Name of Course Instructor: Mrs.S.JYOTHI

Course Name & Code L-T-P Structure Program/Sem/Sec A.Y. : Software Engineering Lab, 20IT55 : 0-0-3 : B.Tech-IT / IV SEM / B : 2022-23

Credits: 1.5

PREREQUISITE

: Object Oriented Programming

Course Educational Objectives:

The main objective of this course is that a student will be familiar with principles behind the Object-Oriented Design and able to apply those principles in a project setting. Students will analyze applications and know how to take a pragmatic approach to software design and development.

Course Outcomes (COs): At the end of this course, the student will be able to

- **CO1:** Analyze Software Requirements for the given Real-World Application using Use Cases.(Analyze-L4)
- **CO2:** Develop the UML Diagrams to view Software System in static aspects. (Analyze-L4)
- **CO3:** Develop the UML Diagrams to view Software System in dynamic aspects.(Analyze-L4)
- **CO4:** Improve individual / teamwork skills, communication & report writing skills with ethical values.

COs	PO1	PO2	PO3	PO4	PO5	P06	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	-	3	-	-	-	-	-	-	-	-	-	-	-	-	1
CO2	-	2	2	-	2	-	-	-	-	-	-	-	-	3	-
CO3	-	2	2	-	2	-	-	-	-	-	-	-	-	3	-
CO4	-	-	-	-	-	-	-	2	2	2	-	-	-	-	-

COURSE ARTICULATION MATRIX (Correlation of Cos & POs, PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-' 1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

PART-B COURSE DELIVERY PLAN (LESSON PLAN): Section-C

S.No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	Learning Outcome COs	HOD Sign Weekly
1	Case Studies	3	02-02-2023		TLM4	CO1	
2	Cycle-1: Analyze the Requirements for the following Case Studies. 1) Automated Teller Machine (ATM) 2) Library Management System 3) Railway Ticket Reservation System	3	09-02-2023		TLM4	CO1	
3	Cycle-2 : Analyze the Requirements for the following Case Studies. 1) Point-of-Sale Terminal 2) Customer Support Service Operations 3) Cab Booking Service	3	16-02-2023		TLM4	CO1	
4	Cycle-3: Basics of UML, 1) Introduction to UML. 2) Familiarization with any one of the Software such as Rational Rose or Umbrello or Gliffy Diagram etc.	3	23-02-2023		TLM4	CO1	
5	 Cycle-4: For each case study given earlier, Construct Use Case Diagram for following: 1) Identify and Analyze the Actors. 2) Identify the Actions. 3) Analyze the Relationships between Actors and Actions. 4) Sketch the Use Case Diagram. 	3	02-03-2023		TLM4	CO2	
6	 Cycle-5: For each case study given earlier, Construct Class Diagram in the following manner: 1) Identify and Analyze the Classes related to your problem. 2) Analyze the Attributes and Operations 3) Analyze the Relationships between Classes 4) Sketch the Class Diagram 	3	09-03-2023		TLM4	CO1	
7	Cycle-6: For each case study given earlier, Construct Class Diagram in the following manner: 1) Identify and Analyze the Classes related to		16-03-2023				

	your problem. 2) Analyze the Attributes and Operations 3) Analyze the Relationships between Classes 4) Sketch the Class Diagram					
8	 Cycle-7: For each case study given earlier, Construct Interaction Diagrams in the following manner: 1) Identify the Objects participating in Communication. 2) Identify the Messages between the objects. 3) Give numbering to messages. 4) Use Flat Sequencing or Procedural Sequencing for numbering 	3	23-03-2023	TLM4	CO2	
9	 Cycle-8:For each case study given earlier, Construct Activity Diagram in the following manner: 1) Identify activities in your case study. 2) Identify relationships among activities. 3) Use Fork or Join, if necessary. 4) Sketch the diagram. 	6	06-04-2023 & 13-04-2023	TLM4	CO3	
10	 Cycle-9: For each case study given earlier, Construct State Chart Diagram in the following manner: 1) Identify the different states in your case study. 2) List out the different substates present in the state. 3) Identify relationships among the state to state. 4) Sketch the diagram. 	6	20-04-2023 & 27-04-2023	TLM4	CO3	
11	 Cycle-10:For each case study given earlier, Construct Component Diagram in the following manner: 1) Identify the different components in your case study 2) Create a visual for each of the component. 3) Describe the organization and relationships between components using interfaces, ports etc. 4) Sketch the diagram. 	6	04-05-2023 & 11-05-2023	TLM4	CO3	

12	 Cycle-11: For each case study given earlier, Construct Deployment Diagram in the following manner: 1) Identify the nodes. 2) Identify the relationships among the nodes. 3) Sketch the Diagram. 	3	18-05-2023	TLM4	CO3	
13	Internal Lab Exam		27-05-2023			

Teaching	Teaching Learning Methods					
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)			
TLM2	РРТ	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)			
TLM3	Tutorial	TLM6	Group Discussion/Project			

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Day-to-Day Work	A1 = 5
Record & Observation	B1 = 5
Internal Exam	C1 = 5
Cumulative Internal Examination (CIE): (A1+B1+C1)	<mark>15</mark>
Semester End Examination (SEE)	<mark>35</mark>
Total Marks = CIE + SEE	50

PART-D

PROGRAMME OUTCOMES (POs):

	Engineering knowledge: Apply the knowledge of mathematics, science, engineering
PO 1	fundamentals, and an engineering specialization to the solution of complex engineering
	problems.
	Problem analysis: Identify, formulate, review research literature, and analyze complex
PO 2	engineering problems reaching substantiated conclusions using first principles of
	mathematics, natural sciences, and engineering sciences.
	Design/development of solutions: Design solutions for complex engineering problems and
DO 2	design system components or processes that meet the specified needs with appropriate
PU 3	consideration for the public health and safety, and the cultural, societal, and environmental
	considerations.
	Conduct investigations of complex problems: Use research-based knowledge and research
PO 4	methods including design of experiments, analysis and interpretation of data, and synthesis
	of the information to provide valid conclusions.
	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
PO 5	engineering and IT tools including prediction and modeling to complex engineering activities
	with an understanding of the limitations.
	The engineer and society: Apply reasoning informed by the contextual knowledge to assess
PO 6	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant
-	to the professional engineering practice.

	Environment and sustainability: Understand the impact of the professional engineering
PO 7	solutions in societal and environmental contexts, and demonstrate the knowledge of, and
	need for sustainable development
	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
FUO	norms of the engineering practice.
50.0	Individual and team work: Function effectively as an individual, and as a member or leader
PO 9	in diverse teams, and in multidisciplinary settings.
	Communication: Communicate effectively on complex engineering activities with the
DO 10	engineering community and with society at large, such as, being able to comprehend and
FU 10	write effective reports and design documentation, make effective presentations, and give and
	receive clear instructions.
	Project management and finance: Demonstrate knowledge and understanding of the
PO 11	engineering and management principles and apply these to one's own work, as a
	member and leader in a team, to manage projects and in multidisciplinary environments
DO 12	Life-long learning: Recognize the need for and have the preparation and ability to engage in
PU 12	independent and life-long learning in the broadest context of technological change.

PSO 1	Organize, Analyze and Interpret the data to extract meaningful conclusions.
PSO 2	Design, Implement and Evaluate a computer-based system to meet desired needs.
PSO 3	Develop IT application services with the help of different current engineering tools.

	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Mrs.S.Jyothi	Dr.J.Nageswara Rao	Mr.G.Rajendra	Dr. B.Srinivasa Rao
Signature				

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

DEPARTMENT OF INFORMATION TECHNOLOGY

COURSE HANDOUT

PART-A

Name of Course Instructor	: Mrs.S.JYOTHI	
Course Name & Code	: Software Engineering, 20IT01	
L-T-P Structure	: 3-0-0	Credits: 3
Program/Sem/Sec	: B.Tech, IV,Sec-B	A.Y.: 2022-23

PREREQUISITE : Object Oriented Programming

COURSE EDUCATIONAL OBJECTIVES (CEOs): The objective of the course is to provide understanding of different s/w process models and how to choose one among them by gathering the requirements from a client and specifying them. Using those requirements in the design of the software architecture based on the choices with the help of modules and interfaces. To enable s/w development, by using different testing techniques like unit, integration and functional testing, the quality assurance can be achieved.

COURSE OUTCOMES (COs): At the end of the course, student will be able to

CO1	Understand the fundamentals of software engineering concepts and software process models. (Understand-L2)
CO2	Apply the requirement elicitation techniques for preparing SRS and design engineering. (Apply-L3)
CO3	Understanding the basic building blocks of UML, Class and object diagrams. (Understand-L2)
CO4	Apply the behavioral models for real world applications. (Apply-L3)
CO5	Demonstrate different software testing approaches for testing the real time applications. (Understand-L2)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	1	1	3							2			3	2	
CO2	1	2	3	2					1	2				3	2
CO3		1	3		3				3	1			1	3	3
CO4		1	3		3				3	1			1	3	3
CO5	1			2											2
1 - Low			2	-Medi	um			3	- High						

COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

TEXTBOOKS:

- T1 Roger S. Pressman, "Software engineering- A Practitioner 's Approach", TMH International Edition, 6th edition, 2005.
- T2 Grady Booch, James Rumbaugh, Ivar Jacobson, "The Unified Modelling Language User Guide", PEARSON, 4th Impression, 2012.

REFERENCE BOOKS:

- R1 Software Engineering Concepts and practices: Ugrasen Suman, Cengage learning
- R2 Object-oriented analysis and design using UML", Mahesh P. Matha, PHI
- **R3** Fundamentals of Software Engineering, Rajib Mall, Third Edition, PHI
- R4 https://nptel.ac.in/courses/106/105/106105182/[1,2,3]
- **R5** https://onlinecourses.nptel.ac.in/noc20_cs68 [1,2,3,4,5]

PART-B

COURSE DELIVERY PLAN (LESSON PLAN):

UNIT-I: Software and software Engineering & Software Process and Process Models

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
1.	Introduction, CO's and PO's	1	01/02/23		TLM-1	
2.	The Evolving role of Software	1	02/02/23		TLM-1	
3.	Characteristics of Software	1	03/02/23		TLM-2	
4.	Importance of software Engineering	1	06/02/23		TLM-2	
5.	Changing nature of software, Legacy Software	1	08/02/23		TLM-2	
6.	Software Myths.	1	09/02/23		TLM-1	
7.	Layered technology, Process frame work	2	10/02/23& 13/02/23		TLM-1	
8.	The process and Product	1	15/02/23		TLM-1	
9.	Software process models, The water fall model	2	16/02/23& 17/02/23		TLM-2	
10.	Incremental model,	1	20/02/23		TLM-2	
11.	The spiral and V Model	1	22/02/23		TLM-2	
12.	Component based s/w development	1	23/02/23		TLM-2	
13.	Unified process model	1	24/02/23		TLM-1	
No. o	of classes required to complete U		No. of classes	s taken:		

UNIT-II: Requirements Analysis and Software design & Data Engineering

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
14.	Requirements gathering	1	27/02/23		TLM-1	
15.	Requirements analysis	1	01/03/23		TLM-1	
16.	software requirements specifications (SRS)	2	02/03/23& 03/03/23		TLM-1	
17.	overview of design process	2	06/03/23& 09/03/23		TLM-1	
18.	Design Concepts	2	10/03/23& 13/03/23		TLM-2	
19.	Architectural Concepts	2	15/03/23& 16/03/23		TLM-2	
No.	of classes required to complete U	No. of classes	staken:			

UNIT-III: Design Using UML

S. N	Topics to be covered	No. of Classes	Tentative Date of	Actual Date of	Teaching Learning	HOD Sign		
0.		Required	Completion	Completion	Methods	Weekly		
20.	Building Blocks of UML	1	17/03/23		TLM-1			
21.	Defining things	1	20/03/23		TLM-1			
22.	Relationships and diagrams	1	23/03/23		TLM-1			
23.	Common Mechanism in UML	1	24/03/23		TLM-1			
24.	Class Diagrams	1	03/04/23		TLM-2			
25.	Object Diagrams	1	06/04/23		TLM-2			
No. of classes required to complete UNIT-III: 6 No. of classes taken:								

UNIT-IV: Behavioral Modeling

S. No.	Topics to be covered	No. of Classes Required	Tentative Date of Completion	Actual Date of Completion	Teaching Learning Methods	HOD Sign Weekly
26.	Interactions, Interaction diagrams	1	10/04/23		TLM-2	
27.	use cases, Use case Diagrams	2	12/04/23& 13/04/23		TLM-2	
28.	Activity Diagrams	2	17/04/23& 19/04/23		TLM-2	
29.	Events and signals	2	20/04/23& 21/04/23		TLM-1	
30.	state machines	2	24/04/23& 26/04/23		TLM-1	
31.	Processes and Threads	2	27/04/23& 28/04/23		TLM-1	
32.	Time and space	2	01/05/23& 03/05/23		TLM-1	
33.	State chart diagrams	2	04/05/23& 05/05/23		TLM-2	
No.	of classes required to complete U	No. of classes	taken:			

UNIT-V: Testing Techniques

S.		No. of	Tentative	Actual	Teaching	HOD
No.	Topics to be covered	Classes	Date of	Date of	Learning	Sign
110.		Required	Completion	Completion	Methods	Weekly
34.	Software testing fundamentals	1	08/05/23		TLM-2	
25	Unit testing	2	10/05/23&		TIM 1	
55.	Onit testing	2	11/05/23		1 LIVI-1	
26	Integration testing	2	12/05/23&		TIM 1	
50.			15/05/23		1 LIVI-1	
27	7. Black box testing	2	17/05/23&		TIM 1	
57.		2	18/05/23		1 L1VI-1	
20	white how testing	2	19/05/23&		TIM1	
38.	white box testing	2	22/05/23		1 LIVI-1	
20	Dahuaging	2	24/05/23&		TIM 1	
39.	Debugging	2	25/05/23		1 LIVI-1	
40.	System testing	1	26/05/23		TLM-1	
No. of	f classes required to complete U		No. of classes	staken:		

Teaching Learning Methods								
TLM1	Chalk and Talk	TLM4	Demonstration (Lab/Field Visit)					
TLM2	PPT	TLM5	ICT (NPTEL/Swayam Prabha/MOOCS)					
TLM3	Tutorial	TLM6	Group Discussion/Project					

PART-C

EVALUATION PROCESS (R20 Regulation):

Evaluation Task	Marks
Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))	A1=5
I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))	M1=15
I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))	Q1=10
Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)	A2=5

II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)		
II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)	Q2=10	
Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2))	<mark>M=30</mark>	
Cumulative Internal Examination (CIE): M	<mark>30</mark>	
Semester End Examination (SEE)	<mark>70</mark>	
Total Marks = $CIE + SEE$	100	

PART-D

PROGRAMME OUTCOMES (POs):

PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering						
	problems.						
PO 2	Problem analysis: Identify, formulate, review research literature, and analyze complex						
	engineering problems reaching substantiated conclusions using first principles of mathematics,						
	natural sciences, and engineering sciences.						
PO 3	Design/development of solutions: Design solutions for complex engineering problems and						
	design system components or processes that meet the specified needs with appropriate						
	consideration for the public health and safety, and the cultural, societal, and environmental						
	considerations.						
PO 4	Conduct investigations of complex problems: Use research-based knowledge and research						
	methods including design of experiments, analysis and interpretation of data, and synthesis of						
	the information to provide valid conclusions.						
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern						
	engineering and IT tools including prediction and modeling to complex engineering activities						
	with an understanding of the limitations						
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess						
	societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to						
	the professional engineering practice						
PO 7	Environment and sustainability: Understand the impact of the professional engineering						
	solutions in societal and environmental contexts, and demonstrate the knowledge of, and need						
	for sustainable development.						
PO 8	Ethics: Apply ethical principles and commit to professional ethics and responsibilities and						
	norms of the engineering practice.						
PO 9	Individual and team work: Function effectively as an individual, and as a member or leader						
7.0.10	in diverse teams, and in multidisciplinary settings.						
PO 10	Communication: Communicate effectively on complex engineering activities with the						
	engineering community and with society at large, such as, being able to comprehend and						
	write effective reports and design documentation, make effective presentations, and give and						
70.44	receive clear instructions.						
PO 11	Project management and finance: Demonstrate knowledge and understanding of the						
	engineering and management principles and apply these to one's own work, as a member and						
DO 11	leader in a team, to manage projects and in multidisciplinary environments.						
PO 12	Life-long learning: Recognize the need for, and have the preparation and ability to engage in						
	independent and life-long learning in the broadest context of technological change.						

PSO 1	Organize, Analyze and Interpret the data to extract meaningful conclusions
PSO 2	Design, Implement and evaluate a computer-based system to meet desired needs
PSO 3	Develop IT application services with the help of different current engineering tools

	Course Instructor	Course Coordinator	Module Coordinator	Head of the Department
Name of the Faculty	Mrs.S.Jyothi	Dr.J.Nageswara Rao	Mr.G.Rajendra	Dr. B.Srinivasa Rao
Signature				