

#### LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)

L.B. REDDY NAGAR, MYLAVARAM – 521230. A.P. INDIA Affiliated to JNTUK Kakinada & Approved by AICTE, New Delhi Accredited By NAAC, Accredited By NBA Tier-I & Certified by ISO 9001:2015 <u>http://www.lbrce.ac.in</u>, Phone: 08659 – 222933, Fax: 08659 – 222931 Extn:109 **DEPARTMENT OF INFORMATION TECHNOLOGY** 

# **COURSE HANDOUT**

### Part-A

| PROGRAM           | : | B.Tech.(IT), V-Semester    |
|-------------------|---|----------------------------|
| ACADEMIC YEAR     | : | 2023-2024                  |
| COURSE CODE&NAME  | : | 20CS12 - COMPUTER NETWORKS |
| L-T-P STRUCTURE   | : | 3                          |
| COURSE CREDITS    | : | 3                          |
| COURSE INSTRUCTOR | : | M. VIJAYKUMAR              |
| PRE-REQUISITES    | : | Communication systems.     |
|                   |   |                            |

#### COURSE EDUCATIONAL OBJECTIVES (CEOs):

#### In this course student will learn:

#### COURSE OUTCOMES (COs):

The Objective of the course is to provide a foundation to understand computer networks using layered architectures. It also helps the students to understand the various network models, addressing concepts, routing protocols and design aspects of computer networks.

On successful completion of the course, students will be able to:

| CO 1        | Demonstrate the modern network architectures from a design perspective.                                               |
|-------------|-----------------------------------------------------------------------------------------------------------------------|
| CO 2        | Apply various Data Link layer design issues and error detection & correction techniques to solve collisions problems. |
|             | solve contsions problems.                                                                                             |
| CO 3        | Demonstrate the network Layer functionalities.                                                                        |
| <b>CO 4</b> | Outline the functions of transport layer protocols                                                                    |
| CO 5        | Examine different application layer protocols.                                                                        |

| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | 3   | 2   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | 2    | -    | 2    | -    |
| CO2 | 3   | 2   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | 2    | -    | 2    | -    |
| соз | 3   | 2   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | 2    | -    | 2    | -    |
| CO4 | 3   | 2   | 2   | 1   | -   | -   | -   | -   | -   | -    | -    | 2    | -    | 2    | -    |
| CO5 | 3   | 2   | 2   | -   | -   | -   | -   | -   | -   | -    | -    | 2    | -    | 2    | -    |

Course Articulation Matrix (Correlation between COs&POs,PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight(Low), 2 – Moderate(Medium), 3 - Substantial (High).

#### **BOS APPROVED TEXT BOOKS:**

- **T1** Behrouz A. Forouzan, "Data Communication and Networking", McGraw-Hill, 4th Edition, 2011.
- T2 Andrew S. Tanenbaum, "Computer Networks", Pearson New International Edition, 8th Edition, 2013.

#### **BOS APPROVED REFERENCE BOOKS:**

- **R1** William Stallings, "Data and Computer Communication", Pearson Prentice Hall India, 8 th Edition.
- **R2** Douglas Comer, Internetworking with TCP/IP, Prentice Hall of India, Volume 1, 6th Edition, 2009.
- R3 Richard Stevens, "TCP/IP Illustrated", Addison-Wesley, Volume 1, 2001.
- R4 http://www.cse.iitk.ac.in/users/dheeraj/cs425/.
- R5 http://www.tcpipguide.com/free/t\_OSIReferenceModelLayers.htm

# Part-B

### COURSE DELIVERY PLAN (LESSON PLAN): Section-A

| S.No. | Topics to be covered                                           | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|----------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Discussion of Cos and<br>CEOs of the course                    | 1                             | 05-07-2023                         |                                 | TLM2                            |                       |
| 2.    | Introduction to Data<br>Communication and<br>Computer Networks | 1                             | 06-07-2023                         |                                 | TLM2                            |                       |
| 3.    | Protocols and Standards                                        | 1                             | 07-07-2023                         |                                 | TLM2                            |                       |
| 4.    | Various Connection<br>Topology s                               | 1                             | 12-07-2023                         |                                 | TLM2                            |                       |
| 5.    | OSI model                                                      | 2                             | 13-07-2023<br>14-07-2023           |                                 | TLM2                            |                       |
| 6.    | Transmission Media                                             | 2                             | 15-07-2023<br>19-07-2023           |                                 | TLM2                            |                       |
| 7.    | LAN: Wired LAN,<br>Wireless LANs                               | 1                             | 20-07-2023                         |                                 | TLM2                            |                       |
| 8.    | Connecting LAN and Virtual LAN.                                | 1                             | 21-07-2023                         |                                 | TLM2                            |                       |
| 9.    | TUTORIAL-1, Quiz-1<br>& Assignment-1                           | 1                             | 22-07-2023                         |                                 | TLM3                            |                       |
|       | classes required to<br>te UNIT-I                               | 11                            |                                    |                                 |                                 |                       |

## **UNIT-I: Data Communication Components**

# UNIT-II: Data Link Layer and Medium Access Sub Layer

| S.No. | Topics to be covered                                            | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|-----------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 10.   | Introduction to DLL,<br>Data link layer design<br>issues        | 1                             | 26-07-2023                         |                                 | TLM2                            |                       |
| 11.   | Error Detection and<br>Error Correction -<br>Fundamentals       | 1                             | 27-07-2023                         |                                 | TLM2                            |                       |
| 12.   | Block coding, Hamming<br>Distance                               | 1                             | 28-07-2023                         |                                 | TLM2                            |                       |
| 13.   | CRC                                                             | 1                             | 02-08-2023                         |                                 | TLM2                            |                       |
| 14.   | Flow Control and Error<br>control protocols -Stop<br>and Wait   | 1                             | 03-08-2023                         |                                 | TLM2                            |                       |
| 15.   | Go back – N ARQ,<br>Selective Repeat ARQ                        | 1                             | 04-08-2023                         |                                 | TLM2                            |                       |
| 16.   | Sliding Window,<br>Piggybacking                                 | 1                             | 05-08-2023                         |                                 | TLM2                            |                       |
| 17.   | Random Access s,<br>Multiple access<br>protocols -Pure<br>ALOHA | 1                             | 09-08-2023                         |                                 | TLM2                            |                       |
| 18.   | Slotted ALOHA,<br>CSMA                                          | 1                             | 10-08-2023                         |                                 | TLM2                            |                       |
| 19.   | CSMA/CD,CDMA/CA                                                 | 1                             | 11-08-2023                         |                                 | TLM2                            |                       |

| 20.                    | TUTORIAL-2, Quiz-2<br>ASSIGNMENT-2 | 1  | 16-08-2023 | TLM3 |  |
|------------------------|------------------------------------|----|------------|------|--|
| No. of clas<br>UNIT-II | sses required to complete          | 11 |            |      |  |

# UNIT-III: Network Layer

| S.No.                | Topics to be covered                        | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion     | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|----------------------|---------------------------------------------|-------------------------------|----------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 21.                  | Network layer design issues                 | 1                             | 17-08-2023                             |                                 | TLM2                            |                       |
| 22.                  | Switching                                   | 1                             | 18-08-2023                             |                                 | TLM2                            |                       |
| 23.                  | Logical addressing –<br>IPV4.               | 1                             | 19-08-2023                             |                                 | TLM2                            |                       |
| 24.                  | IPV6                                        | 1                             | 23-08-2023                             |                                 | TLM2                            |                       |
| 25.                  | Address mapping – ARP,<br>RARP              | 1                             | 24-08-2023                             |                                 | TLM2                            |                       |
| 26.                  | BOOTP                                       | 1                             | 25-08-2023                             |                                 | TLM2                            |                       |
| 27.                  | DHCP-Delivery                               | 1                             | 26-08-2023                             |                                 | TLM2                            |                       |
| 28.                  | Forwarding and Unicast<br>Routing protocols | 3                             | 07-08-2023<br>08-09-2023<br>09-09-2023 |                                 | TLM2                            |                       |
| 29.                  | TUTORIAL-3, Quiz-3<br>ASSIGNMENT-3          | 1                             | 13-09-2023                             |                                 | TLM2                            |                       |
| No. of cl<br>UNIT-II | asses required to complete                  | 11                            |                                        |                                 |                                 |                       |

# **UNIT-IV: Transport Layer**

| S.No.           | Topics to be covered                                                          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------------|-------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 30.             | Introduction to Transport<br>Layer and Network Layer,<br>Optimality Principle | 1                             | 141-09-2023                        |                                 | TLM2                            |                       |
| 31.             | Process to Process<br>Communication                                           | 1                             | 15-09-2023                         |                                 | TLM2                            |                       |
| 32.             | User Datagram Protocol<br>(UDP)                                               | 1                             | 16-09-2023                         |                                 | TLM2                            |                       |
| 33.             | Transmission Control Protocol (TCP)                                           | 1                             | 20-09-2023                         |                                 | TLM2                            |                       |
| 34.             | SCTP Congestion Contro                                                        | 1                             | 21-09-2023                         |                                 | TLM2                            |                       |
| 35.             | Flow and congestion control                                                   | 1                             | 22-09-2023                         |                                 | TLM2                            |                       |
| 36.             | Quality of Service                                                            | 1                             | 23-09-2023                         |                                 | TLM2                            | _                     |
| 37.             | QoS improving techniques:<br>Leaky Bucket                                     | 1                             | 27-09-2023                         |                                 | TLM2                            |                       |
| 38.             | Token Bucket algorithm.                                                       | 1                             | 29-09-2023                         |                                 | TLM2                            |                       |
| 39.             | TUTORIAL4, Quiz-4<br>ASSIGNMENT-4                                             | 1                             | 30-09-2023                         |                                 | TLM3                            |                       |
| No. of<br>UNIT- | classes required to complete                                                  | 10                            |                                    |                                 |                                 |                       |

| S.No.               | Topics to be covered                 | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|---------------------|--------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 40.                 | Domain Name Space<br>(DNS)           | 1                             | 04-10-2023                         |                                 | TLM2                            |                       |
| 41.                 | DDNS                                 | 1                             | 05-10-2023                         |                                 | TLM2                            |                       |
| 42.                 | TELNET                               | 1                             | 06-10-2023                         |                                 | TLM2                            |                       |
| 43.                 | EMAIL                                | 1                             | 07-10-2023                         |                                 | TLM2                            |                       |
| 44.                 | File Transfer Protocol<br>(FTP), WWW | 1                             | 11-10-2023                         |                                 | TLM2                            |                       |
| 45.                 | HTTP, SNMP                           | 1                             | 12-10-2023                         |                                 | TLM2                            |                       |
| 46.                 | Bluetooth, Firewalls0                | 1                             | 13-10-2023                         |                                 | TLM2                            |                       |
| 47.                 | . TUTORIAL-5, Quiz-5<br>ASSIGNMENT-5 | 1                             | 18-10-2023                         |                                 | TLM3                            |                       |
| No. of cl<br>UNIT-V | asses required to complete           | 08                            |                                    |                                 |                                 |                       |

## **UNIT-V: APPLICATION LAYER**

### **Contents beyond the Syllabus**

| S.No. | Topics to be covered            | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign |
|-------|---------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-------------|
| 48.   | DNS, N/W Layer Design<br>Issues | 1                             | 19-10-2023                         |                                 | TLM2                            |             |

| Teachir | Teaching Learning Methods |      |                                    |  |  |  |  |
|---------|---------------------------|------|------------------------------------|--|--|--|--|
| TLM1    | Chalk and Talk            | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |  |
| TLM2    | PPT                       | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |  |
| TLM3    | Tutorial                  | TLM6 | Group Discussion/Project           |  |  |  |  |

# Part – C

### **EVALUATION PROCESS:**

| Evaluation Task                                                                      | Marks             |
|--------------------------------------------------------------------------------------|-------------------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5              |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15             |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10             |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5              |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15             |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10             |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | <mark>M=30</mark> |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark>   |
| Semester End Examination (SEE)                                                       | <mark>70</mark>   |
| Total Marks = CIE + SEE                                                              | 100               |

## ACADEMIC CALENDAR:

| Description                 | From       | То         | Weeks |  |  |  |  |
|-----------------------------|------------|------------|-------|--|--|--|--|
| Commencement of Class Work  |            | 03-07-2022 |       |  |  |  |  |
| I Phase of Instructions     | 03-07-2023 | 26-08-2023 | 8W    |  |  |  |  |
| I Mid Examinations          | 28-08-2023 | 02-09-2023 | 1W    |  |  |  |  |
| II Phase of Instructions    | 04-09-2023 | 28-10-2023 | 8W    |  |  |  |  |
| II Mid Examinations         | 30-10-2023 | 04-11-2023 | 1W    |  |  |  |  |
| Preparation and Practical's | 06-11-2023 | 11-11-2023 | 1W    |  |  |  |  |
| Semester End Examinations   | 13-11-2023 | 25-11-2023 | 2W    |  |  |  |  |

#### PART-D

#### **PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):**

- **PEO 1** Pursue a successful career in the area of Information Technology or its allied fields.
- **PEO 2** Exhibit sound knowledge in the fundamentals of Information Technology and apply practical experience with programming techniques to solve real world problems.
- **PEO 3** Able to demonstrate self-learning, life-long learning and work in teams on multidisciplinary projects.
- **PEO 4** Able to understand the professional code of ethics and demonstrate ethical behavior, effective communication and team work and leadership skills in their job.

#### **PROGRAMME OUTCOMES (POs):**

- **PO1** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2 Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3 Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7** Environment and sustainability: Understand the impact of the professional engineering solution sin societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11 Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

#### PROGRAMME SPECIFIC OUTCOMES (PSOs)

- **PSO1** Organize, Analyze and Interpret the data to extract meaningful conclusions.
- **PSO2** Design, Implement and Evaluate a computer-based system to meet desired needs.
- **PSO3** Develop IT application services with the help of different current engineering tools.

| Title                     | Course<br>Instructor | Course<br>Coordinator    | Module Coordinator | Head of the<br>Department |
|---------------------------|----------------------|--------------------------|--------------------|---------------------------|
| Name of<br>the<br>Faculty | M VijayKumar         | Dr. K. Naga<br>Prasanthi | G.Rajendra         | Dr.B.Srinivasa Rao        |
| Signature                 |                      |                          |                    |                           |

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)

Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. http://lbrce.ac.in/it/index.php, hodit@lbrce.ac.in , Phone: 08659-222933, Fax: 08659-222931

# **DEPARTMENT OF INFORMATION TECHNOLOGY**

# **COURSE HANDOUT**

## **PART-A**

Name of Course Instructor: A.Sarvani

| Course Name & Code | : Machine Learning & 20AD04        |                      |
|--------------------|------------------------------------|----------------------|
| L-T-P Structure    | : 3-0-0                            | Credits: 3           |
| Program/Sem/Sec    | : B.Tech/V Sem/Sec-A               | <b>A.Y.:</b> 2023-24 |
| PREREQUISITE       | : Probability and Statistics, Data | a Warehousing and Da |

Mining

ata

**COURSE EDUCATIONAL OBJECTIVES (CEOs)**: The objective of the course is to provide the basic concepts and techniques of Machine Learning and helps to use machine learning algorithms for solving real world problems. It enables students to gain experience by doing independent study and research.

#### **COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| СО         | Description                                                                    | Target |
|------------|--------------------------------------------------------------------------------|--------|
| CO1        | Identify the characteristics of machine learning. (Understand- L2)             | 70     |
| CO2        | Understand the Model building and evaluation approaches (Understand- L2)       | 67     |
| CO3        | Apply regression algorithms for real-world Problems. (Apply-L3)                | 63     |
| <b>CO4</b> | Handle classification problems via supervised learning algorithms. (Apply- L3) | 67     |
| CO5        | Learn advanced learning techniques to deal with complex data (Apply- L3)       | 66     |

**COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs | P01            | P02 | P03 | P04 | P05              | P06 | P07 | P08 | P09             | P010 | P011 | P012 | PSO1 | PSO2 | PSO3 |
|-----|----------------|-----|-----|-----|------------------|-----|-----|-----|-----------------|------|------|------|------|------|------|
| C01 | 3              | 2   | -   | 2   | -                | -   | -   | -   | -               | -    | -    | -    | -    | 2    | -    |
| CO2 | 3              | 2   | -   | 2   | -                | -   | -   | -   | -               | -    | -    | -    | -    | 2    | -    |
| CO3 | 3              | 2   | -   | -   | -                | -   | -   | -   | -               | -    | -    | -    | -    | 2    | -    |
| C04 | 3              | -   | -   | 3   | -                | -   | -   | -   | -               | -    | -    | -    | -    | 2    | -    |
| C05 | 3              | 1   | -   | 3   | -                | -   | -   | -   | -               | -    | -    | -    | -    | 2    | -    |
|     | <b>1</b> - Low |     |     |     | <b>2</b> –Medium |     |     |     | <b>3 -</b> High |      |      |      |      |      |      |

#### TEXTBOOKS:

| I LA      |                                                                                             |
|-----------|---------------------------------------------------------------------------------------------|
| <b>T1</b> | Subramanian Chandramouli, Saikat Dutt, Amit Kumar Das, "Machine Learning", Pearson          |
|           | Education India ,1st edition,2015.                                                          |
| <b>T2</b> | Tom M. Mitchell, "Machine Learning', MGH, 1997.                                             |
| REF       | ERENCE BOOKS:                                                                               |
| <b>R1</b> | Shai Shalev-Shwartz, ShaiBen David, "Understanding Machine Learning: From Theory            |
|           | toAlgorithms", Cambridge.                                                                   |
| R2        | Peter Harington, "Machine Learning in Action", Cengage, 1st edition, 2012                   |
| <b>R3</b> | Peter Flach, "Machine Learning: The art and science of algorithms that make sense of data", |
|           | Cambridge university press,2012.                                                            |
| <b>R4</b> | Jason Brownlee, "Machine Learning Mastery with Python Understand Your Data, Create          |
|           | Accurate Models and Work Projects End-To-End", Edition: v1.4, 2011.                         |

## PART-B

# **COURSE DELIVERY PLAN (LESSON PLAN):**

# **UNIT-1: Introduction to Machine Learning and Preparing to Model**

| S. No.  | Topics to be covered                                                       | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcome<br>COs | HOD<br>Sign<br>Weekly |
|---------|----------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------------|-----------------------|
| 1.      | Introduction to Machine<br>Learning - Introduction                         | 1                             | 10-07-2023                         |                                 | TLM1,2                          | CO1                        |                       |
| 2.      | Types of Human Learning                                                    | 1                             | 11-07-2023                         |                                 | TLM1,2                          | CO1                        |                       |
| 3.      | How Machine Learning works?                                                | 2                             | 13-07-2023<br>14-07-2023           |                                 | TLM1,2                          | CO1                        |                       |
| 4.      | Types of Machine Learning                                                  | 2                             | 17-07-2023<br>18-07-2023           |                                 | TLM1,2                          | CO1                        |                       |
| 5.      | Applications and issues in<br>Machine Learning                             | 1                             | 20-07-2023                         |                                 | TLM1,2                          | CO1                        |                       |
| 6.      | <b>Preparing to Model:</b><br>Introduction, Machine Learning<br>Activities | 1                             | 21-07-2023                         |                                 | TLM1,2                          | CO1                        |                       |
| 7.      | Basic Types of Data in Machine<br>Learning                                 | 1                             | 24-07-2023                         |                                 | TLM1,2                          | CO1                        |                       |
| 8.      | Exploring Structure Of Data                                                | 1                             | 25-07-2023                         |                                 | TLM1,2                          | CO1                        |                       |
| 9.      | Data Quality and Remediation,<br>Data Pre-Processing                       | 1                             | 27-07-2023                         |                                 | TLM1,2                          | CO1                        |                       |
| 10.     | Assignment on Unit-1                                                       | 1                             | 28-07-2023                         |                                 |                                 |                            |                       |
| o. of c | classes required to complete UN                                            | IT-I: 12                      |                                    |                                 | No. of clas                     | sses taken                 | 1:                    |

### **UNIT-2: Modelling & Evaluation, Basics of Feature Engineering**

| S. No. | Topics to be covered                                                                                                    | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcome<br>COs | HOD<br>Sign<br>Weekly |
|--------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------------|-----------------------|
| 1.     | Introduction, selecting a Model                                                                                         | 1                             | 01-08-2023                         |                                 | TLM1,2                          | CO2                        |                       |
| 2.     | Training a Model<br>(for supervised Learning),                                                                          | 1                             | 03-08-2023                         |                                 | TLM1,2                          | CO2                        |                       |
| 3.     | Model Representation and Interpretability,                                                                              | 1                             | 04-08-2023                         |                                 | TLM1,2                          | CO2                        |                       |
| 4.     | Evaluating Performance of a Model                                                                                       | 2                             | 07-08-2023<br>08-08-2023           |                                 | TLM1,2                          | CO2                        |                       |
| 5.     | Basics of Feature<br>Engineering- Introduction,                                                                         | 1                             | 10-08-2023                         |                                 | TLM1,2                          | CO2                        |                       |
| 6.     | Feature Transformation –<br>Feature Construction,<br>Feature Extraction,                                                | 2                             | 11-08-2023<br>14-08-2023           |                                 | TLM1,2                          | CO2                        |                       |
| 7.     | Principal Component Analysis<br>(PCA), Singular Value<br>Decomposition<br>(SVD), Linear Discriminant<br>Analysis (LDA), | 1                             | 17-08-2023                         |                                 | TLM1,2                          | CO2                        |                       |

| No. of clas | No. of cl                | asses taken | 1:         |        |     |  |
|-------------|--------------------------|-------------|------------|--------|-----|--|
| 9.          | Assignment on Unit-2     | 1           | 21-08-2023 |        |     |  |
| 8.          | Feature Subset Selection | 2           | 18-08-2023 | TLM1,2 | CO2 |  |

# **UNIT-3: Regression**

| S. No. | Topics to be covered                                                                                                       | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcome<br>COs | HOD<br>Sign<br>Weekly |
|--------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------------|-----------------------|
| 1.     | Introduction to regression<br>analysis, Simple linear regression                                                           | 2                             | 22-08-2023                         |                                 | TLM1,2                          | CO3                        |                       |
| 2.     | Multiple linear regression,<br>Assumptions in Regression<br>Analysis, Improving Accuracy of<br>the linear regression model | 1                             | 24-08-2023                         |                                 | TLM1,2                          | CO3                        |                       |
| 3.     | <b>Revision for Mid-1</b>                                                                                                  | 1                             | 25-08-2023                         |                                 | TLM1,2                          | CO3                        |                       |
|        | Mid - I Examinations fro                                                                                                   | m 28.08.2                     | 023 to 02.09.2                     | 2023                            |                                 |                            |                       |
| 4.     | Polynomial Regression Model<br>Logistic Regression                                                                         | 2                             | 04-09-2023<br>05-09-2023           |                                 | TLM1,2                          | CO3                        |                       |
| 5.     | Regularization Regularized<br>Linear Regression                                                                            | 2                             | 07-09-2023<br>08-09-2023           |                                 | TLM1,2                          | CO3                        |                       |
| 6.     | Regularized Logistic Regression                                                                                            | 1                             | 11-09-2023                         |                                 | TLM1,2                          | CO3                        |                       |
| 7.     | Assignment on Unit-3                                                                                                       | 1                             | 12-09-2023                         |                                 |                                 |                            |                       |
|        | No. of classes required to complete UNIT-III: 10 No. of cla                                                                |                               |                                    |                                 |                                 |                            | en:                   |

# UNIT-IV: Supervised Learning: Classification

| S. No.   | Topics to be covered                                                              | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completio<br>n | Teaching<br>Learning<br>Methods | Learning<br>Outcome<br>COs | HOD<br>Sign<br>Weekly |
|----------|-----------------------------------------------------------------------------------|-------------------------------|------------------------------------|-------------------------------------|---------------------------------|----------------------------|-----------------------|
| 1.       | <b>Classification-</b> Introduction,<br>Example of Supervised Learning,           | 1                             | 14-09-2023                         |                                     | TLM1,2                          | CO4                        |                       |
| 2.       | Classification Model                                                              | 1                             | 15-09-2023                         |                                     | TLM1,2                          | CO4                        |                       |
| 3.       | Classification Learning Steps                                                     | 1                             | 19-09-2023                         |                                     | TLM1,2                          | CO4                        |                       |
| 4.       | <b>Common Classification</b><br><b>Algorithms</b> - k-Nearest Neighbour<br>(kNN), | 2                             | 21-09-2023<br>22-09-2023           |                                     | TLM1,2                          | CO4                        |                       |
| 5.       | Random Forest model                                                               | 2                             | 25-09-2023<br>26-09-2023           |                                     | TLM1,2                          | CO4                        |                       |
| 6.       | Support vector Machines (SVM),                                                    | 2                             | 29-09-2023<br>03-10-2023           |                                     | TLM1,2                          | CO4                        |                       |
| 7.       | Assignment on Unit-4                                                              | 1                             | 05-10-2023                         |                                     |                                 |                            |                       |
| No. of o | classes required to complete UNIT                                                 |                               | No. of clas                        | sses taken                          | :                               |                            |                       |

# UNIT-V: Other Types of Learning

| S. No.    | Topics to be covered                            | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcome<br>COs | HOD<br>Sign<br>Weekly |
|-----------|-------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------------|-----------------------|
| 1.        | Ensemble Learning                               | 1                             | 06-10-2023                         |                                 | TLM1,2                          | CO5                        |                       |
| 2.        | Bagging, Boosting                               | 1                             | 09-10-2023                         |                                 | TLM1,2                          | CO5                        |                       |
| 3.        | Stacking and its impact on bias and variance,   | 1                             | 10-10-2023                         |                                 | TLM1,2                          | CO5                        |                       |
| 4.        | AdaBoost                                        | 1                             | 12-10-2023                         |                                 | TLM1,2                          | CO5                        |                       |
| 5.        | Gradient Boosting Machines                      | 1                             | 13-10-2023                         |                                 | TLM1,2                          | CO5                        |                       |
| 6.        | XGBoost.                                        | 1                             | 16-10-2023                         |                                 | TLM1,2                          | CO5                        |                       |
| 7.        | <b>Reinforcement Learning</b> -<br>Introduction | 1                             | 17-10-2023                         |                                 | TLM1,2                          | CO5                        |                       |
| 8.        | Q Learning                                      | 2                             | 19-10-2023<br>20-10-2023           |                                 | TLM1,2                          | CO5                        |                       |
| No. of cl | asses required to complete U                    |                               | No. of clas                        | sses taken                      | l:                              |                            |                       |

# CONTENT BEYOND THE SYLLABUS:

| S. No. | Topics to be covered          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign |
|--------|-------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-------------|
| 1.     | Basics of Neural Network      | 1                             | 25-10-2023                         |                                 | TLM1,2                          |             |
| 2.     | Types of Activation Functions | 1                             | 27-10-2023                         |                                 | TLM1,2                          |             |

| Teaching Learning Methods                                              |          |                                         |                          |  |  |  |  |  |
|------------------------------------------------------------------------|----------|-----------------------------------------|--------------------------|--|--|--|--|--|
| <b>TLM1</b> Chalk and Talk <b>TLM4</b> Demonstration (Lab/Field Visit) |          |                                         |                          |  |  |  |  |  |
| TLM2                                                                   | РРТ      | TLM5 ICT (NPTEL/Swayam<br>Prabha/MOOCS) |                          |  |  |  |  |  |
| TLM3                                                                   | Tutorial | TLM6                                    | Group Discussion/Project |  |  |  |  |  |

### ACADEMIC CALENDAR

| From                                  | То                                                                                      | Weeks                                                                                                                                                            |  |  |  |  |  |  |  |
|---------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| B.Tech (V Semester)                   |                                                                                         |                                                                                                                                                                  |  |  |  |  |  |  |  |
| Commencement of Class Work 03-07-2023 |                                                                                         |                                                                                                                                                                  |  |  |  |  |  |  |  |
| 03-07-2023                            | 26-08-2023                                                                              | 8 W                                                                                                                                                              |  |  |  |  |  |  |  |
| 28-08-2023                            | 02-09-2023                                                                              | 1 W                                                                                                                                                              |  |  |  |  |  |  |  |
| 04-09-2023                            | 28-10-2023                                                                              | 8 W                                                                                                                                                              |  |  |  |  |  |  |  |
| 30-10-2023                            | 04-11-2023                                                                              | 1 W                                                                                                                                                              |  |  |  |  |  |  |  |
| 06-11-2023                            | 11-11-2023                                                                              | 1 W                                                                                                                                                              |  |  |  |  |  |  |  |
| 13-11-2023                            | 25-11-2023                                                                              | 2 W                                                                                                                                                              |  |  |  |  |  |  |  |
|                                       | Tech (V Semester)<br>03-07-2023<br>28-08-2023<br>04-09-2023<br>30-10-2023<br>06-11-2023 | View View   Tech (V Semester) 03-07-2023   03-07-2023 26-08-2023   28-08-2023 02-09-2023   04-09-2023 28-10-2023   30-10-2023 04-11-2023   06-11-2023 11-11-2023 |  |  |  |  |  |  |  |

# PART-C

# **EVALUATION PROCESS (R20 Regulation):**

| Evaluation Task                                                                      | Marks             |  |  |  |  |
|--------------------------------------------------------------------------------------|-------------------|--|--|--|--|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5              |  |  |  |  |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            |                   |  |  |  |  |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   |                   |  |  |  |  |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    |                   |  |  |  |  |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      |                   |  |  |  |  |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10             |  |  |  |  |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | <mark>M=30</mark> |  |  |  |  |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark>   |  |  |  |  |
| Semester End Examination (SEE)                                                       | <mark>70</mark>   |  |  |  |  |
| Total Marks = CIE + SEE                                                              | 100               |  |  |  |  |

# PART-D

# **PROGRAMME OUTCOMES (POs):**

|             | Engineering knowledge: Apply the knowledge of mathematics, science, engineering                     |  |  |  |  |
|-------------|-----------------------------------------------------------------------------------------------------|--|--|--|--|
| PO 1        | fundamentals, and an engineering specialization to the solution of complex engineering              |  |  |  |  |
|             | problems.                                                                                           |  |  |  |  |
|             | Problem analysis: Identify, formulate, review research literature, and analyze complex              |  |  |  |  |
| PO 2        | engineering problems reaching substantiated conclusions using first principles of                   |  |  |  |  |
|             | mathematics, natural sciences, and engineering sciences.                                            |  |  |  |  |
|             | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and      |  |  |  |  |
| PO 3        | design system components or processes that meet the specified needs with appropriate                |  |  |  |  |
| 105         | consideration for the public health and safety, and the cultural, societal, and environmental       |  |  |  |  |
|             | considerations.                                                                                     |  |  |  |  |
|             | Conduct investigations of complex problems: Use research-based knowledge and research               |  |  |  |  |
| PO 4        | methods including design of experiments, analysis and interpretation of data, and synthesis         |  |  |  |  |
|             | of the information to provide valid conclusions.                                                    |  |  |  |  |
|             | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern          |  |  |  |  |
| PO 5        | engineering and IT tools including prediction and modeling to complex engineering                   |  |  |  |  |
|             | activities with an understanding of the limitations.                                                |  |  |  |  |
|             | The engineer and society: Apply reasoning informed by the contextual knowledge to assess            |  |  |  |  |
| PO 6        | societal, health, safety, legal and cultural issues and the consequent responsibilities relevant    |  |  |  |  |
|             | to the professional engineering practice.                                                           |  |  |  |  |
| <b>DO -</b> | Environment and sustainability: Understand the impact of the professional engineering               |  |  |  |  |
| PO 7        | solutions in societal and environmental contexts, and demonstrate the knowledge of, and             |  |  |  |  |
|             | need for sustainable development.                                                                   |  |  |  |  |
| PO 8        | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and |  |  |  |  |
|             | norms of the engineering practice.                                                                  |  |  |  |  |
| PO 9        | Individual and team work: Function effectively as an individual, and as a member or                 |  |  |  |  |
|             | leader in diverse teams, and in multidisciplinary settings.                                         |  |  |  |  |

| P010 | <b>Communication</b> : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| P011 | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.                                               |
| P012 | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change                                                                                                                  |

# **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

| PSO 1 | Organize, Analyze and interpret the data to extract meaningful conclusions.           |
|-------|---------------------------------------------------------------------------------------|
| PSO 2 | Design, Implement and Evaluate a computer-based system to meet desired needs          |
| PSO 3 | Develop IT application services with the help of different current engineering tools. |

| Title                  | Course Instructor | Course<br>Coordinator | Module Coordinator | Head of the<br>Department |  |
|------------------------|-------------------|-----------------------|--------------------|---------------------------|--|
| Name of<br>the Faculty | A.Sarvani         | Dr. K. Devi Priya     | Mrs. M. Hema Latha | Dr.B.Srinivasa Rao        |  |
| Signature              |                   |                       |                    |                           |  |

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING (AUTONOMOUS)



Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

## **DEPARTMENT OF INFORMATION TECHNOLOGY**

### **COURSE HANDOUT**

# PART-A

Name of Course Instructor: REHANA BEGUM

Course Name & Code L-T-P Structure Program/Sem/Sec A.Y. : Theory of Computation, 20CS13 : **3-0-0** : B.Tech-IT / V SEM/A-Sec : 2023-24

Credits: 03

**PRE-REQUISITE:** Discrete Mathematical Structures

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** The objective of the course is to provide a formal connection between algorithmic problem solving and the theory of Automata and languages, and develop them into a mathematical view towards algorithmic design and in general computation itself.

| CO1 | Construct finite automata for regular languages and prove it's equivalence. (Apply-L3)                                             |
|-----|------------------------------------------------------------------------------------------------------------------------------------|
| CO2 | Construct regular expression for regular languages and prove the equivalence of regular expression and Finite Automata. (Apply-L3) |
| CO3 | Design Pushdown automata for the context-free languages. (Understand-L2)                                                           |
| CO4 | Design Turing machine to model computational problems. (Apply-L3)                                                                  |
| CO5 | Distinguish decidable and undecidable problems with the help of Turing machine. $(Understand - L2)$                                |

#### COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

| СО  |   |   |   | ] | Progra | am Ou | utcom | es (PC | s) |    |    |    |   | PSOs |   |
|-----|---|---|---|---|--------|-------|-------|--------|----|----|----|----|---|------|---|
|     | 1 | 2 | 3 | 4 | 5      | 6     | 7     | 8      | 9  | 10 | 11 | 12 | 1 | 2    | 3 |
| CO1 | 3 | 2 | - | - | -      | -     | -     | -      | -  | -  | -  | 1  | - | -    | - |
| CO2 | 3 | 2 | - | - | -      | -     | -     | -      | -  | -  | -  | 1  | - | -    | - |
| CO3 | 3 | 2 | - | - | -      | -     | -     | -      | -  | -  | -  | -  | - | -    | - |
| CO4 | 3 | 2 | - | - | -      | -     | -     | -      | _  | -  | -  | -  | - | _    | _ |
| CO5 | 1 | 2 | - | - | -      | -     | -     | -      | -  | -  | -  | -  | - | -    | - |

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

#### **TEXTBOOKS:**

1. John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, "Introduction to Automata Theory, Languages, and Computation", Pearson Education Asia, 1997.

#### **REFERENCE BOOKS:**

1. Harry R. Lewis and Christos H. Papadimitriou, "Elements of the Theory of Computation", Pearson Education Asia,2000.

2. Dexter C. Kozen, "Automata and Computability", Springer, 2011.

3. Michael Sipser, "Introduction to the Theory of Computation", PWS Publishing, 2005.

4. John Martin, Introduction to Languages and The Theory of Computation, Tata McGraw Hill,2nd Edition,2003.

|                | UNIT-1: Finite Automata                                        |                               |                                    |                                 |                                 |                      |                       |  |  |  |  |  |
|----------------|----------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------|-----------------------|--|--|--|--|--|
| S.No           | Topics to be covered                                           | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcomes | HOD<br>Sign<br>Weekly |  |  |  |  |  |
| 1              | Introduction to Finite<br>Automata,                            | 1                             | 03-07-2023                         |                                 | TLM1                            | CO1                  |                       |  |  |  |  |  |
| 2              | Alphabets,                                                     | 1                             | 05-07-2023                         |                                 | TLM1                            | CO1                  |                       |  |  |  |  |  |
| 3              | Strings, Languages and Grammars,                               | 1                             | 07-07-2023                         |                                 | TLM1                            | CO1                  |                       |  |  |  |  |  |
| 4              | Classification of Automata,                                    | 1                             | 08-07-2023                         |                                 | TLM1                            | CO1                  |                       |  |  |  |  |  |
| 5              | Definitions and its applications.                              | 1                             | 10-07-2023                         |                                 | TLM1                            | CO1                  |                       |  |  |  |  |  |
| 6              | Finite Automata:<br>Deterministic Finite<br>Automata (DFA),    | 2                             | 12-07-2023<br>14-07-2023           |                                 | TLM1                            | CO1                  |                       |  |  |  |  |  |
| 7              | Non-Deterministic Finite<br>Automata(NFA)                      | 1                             | 15-07-2023                         |                                 | TLM1                            | CO1                  |                       |  |  |  |  |  |
| 8              | Equivalence of NFA and DFA,                                    | 1                             | 17-07-2023                         |                                 | TLM1                            | CO1                  |                       |  |  |  |  |  |
| 9              | Equivalence of NFA with<br>epsilon and NFA without<br>epsilon, | 2                             | 19-07-2023<br>21-07-2023           |                                 | TLM1                            | CO1                  |                       |  |  |  |  |  |
| 10             | Minimization of finite automata,                               | 1                             | 22-07-2023                         |                                 | TLM1                            | CO1                  |                       |  |  |  |  |  |
| 11             | Finite automata with output: mealy machine,                    | 1                             | 24-07-2023                         |                                 | TLM1                            | CO1                  |                       |  |  |  |  |  |
| 12             | Moore machines,                                                | 1                             | 26-07-2023                         |                                 | TLM1                            | CO1                  |                       |  |  |  |  |  |
| 13             | Equivalence of mealy and moore machines                        | 2                             | 28-07-2023<br>31-07-2023           |                                 | TLM1                            | CO1                  |                       |  |  |  |  |  |
| No. of<br>UNIT | classes required to complete                                   | 16                            | No. of classe                      | es taken:                       |                                 |                      |                       |  |  |  |  |  |

#### **COURSE DELIVERY PLAN (LESSON PLAN):** UNIT-I: Finite Automata

|                 | UNIT-II: Regular Expression and Regular Languages                                   |                               |                                    |                                 |                                 |                      |                       |  |  |  |  |
|-----------------|-------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------|-----------------------|--|--|--|--|
| S.No            | Topics to be covered                                                                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcomes | HOD<br>Sign<br>Weekly |  |  |  |  |
| 19              | Regular Expressions:<br>Equivalence of Regular<br>expression and finite<br>automata | 2                             | 02-08-2023<br>04-08-2023           | -                               | TLM1                            | CO2                  | ·                     |  |  |  |  |
| 20              | Regular Grammar:<br>Definition of grammar,                                          | 1                             | 05-08-2023                         |                                 | TLM1                            | CO2                  |                       |  |  |  |  |
| 21              | Derivation and parse tree,                                                          | 2                             | 05-08-2023                         |                                 | TLM1                            | CO2                  |                       |  |  |  |  |
| 22              | Equivalence of regular<br>grammar and finite<br>automata,                           | 2                             | 07-08-2023                         |                                 | TLM1                            | CO2                  |                       |  |  |  |  |
| 23              | Closure properties of regular languages,                                            | 1                             | 09-08-2023                         |                                 | TLM1                            | CO2                  |                       |  |  |  |  |
| 24              | Pumping lemma for regular languages.                                                | 2                             | 11-08-2023                         |                                 | TLM1                            | CO2                  |                       |  |  |  |  |
| No. of<br>UNIT- | classes required to complete<br>2                                                   | 11                            | No. of classe                      | es taken:                       |                                 | ·                    |                       |  |  |  |  |

## UNIT-II: Regular Expression and Regular Languages

### UNIT - III: CFL and Pushdown Automata

| S.No           | Topics to be covered                                      | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcomes | HOD<br>Sign<br>Weekly |
|----------------|-----------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------|-----------------------|
| 31             | Context free languages:<br>context free<br>grammars(CFG), | 1                             | 14-08-2022<br>16-08-2023           |                                 | TLM1                            | CO3                  |                       |
| 32             | Ambiguity in CFG,                                         | 2                             | 18-08-2023<br>19-08-2023           |                                 | TLM1                            | CO3                  |                       |
| 33             | Chomsky and Greibach normal forms.                        | 2                             | 21-08-2023<br>23-08-2023           |                                 | TLM1                            | CO3                  |                       |
| 34             | Pushdown automata (PDA):<br>Definition of PDA,            | 1                             | 25-08-2023                         |                                 | TLM1                            | CO3                  |                       |
| 35             | Deterministic and Non<br>deterministic PDA,               | 2                             | 04-09-2023<br>08-09-2023           |                                 | TLM1                            | CO3                  |                       |
| 36             | Equivalence of PDA and CFG,                               | 2                             | 09-09-2023<br>11-09-2023           |                                 | TLM1                            | CO3                  |                       |
| 37             | Pumping lemma for context free languages,                 | 1                             | 13-09-2023                         |                                 | TLM1                            | CO3                  |                       |
| 38             | Closure properties of CFLs.                               | 1                             | 15-09-2022                         |                                 | TLM1                            | CO3                  |                       |
| No. of<br>UNIT | classes required to complete<br>-3                        | 12                            | No. of classes                     | s taken:                        |                                 |                      |                       |

| S.No            | Topics to be covered                                                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcomes | HOD<br>Sign<br>Weekly |
|-----------------|---------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------|-----------------------|
| 43              | Turing machine: The basic<br>model for Turing Machine<br>(TM),      | 2                             | 16-09-2023<br>20-09-2023           |                                 | TLM1                            | CO4                  |                       |
| 44              | Turing recognizable<br>(recursively enumerable),                    | 2                             | 22-09-2023<br>23-09-2023           |                                 | TLM1                            | CO4                  |                       |
| 45              | Turing-decidable(recursive) languages,                              | 1                             | 25-09-2023                         |                                 | TLM1                            | CO4                  |                       |
| 46              | Closure properties,                                                 | 1                             | 27-09-2023                         |                                 | TLM1                            | CO4                  |                       |
| 47              | Variants of Turing machines,                                        | 1                             | 29-09-2023                         |                                 | TLM1                            | CO4                  |                       |
| 48              | Non deterministic TMs and<br>Equivalence with<br>deterministic TMs, | 2                             | 30-09-2023<br>04-10-2023           |                                 | TLM1                            | CO4                  |                       |
| 49              | Unrestricted grammars and equivalence with TMs,                     | 2                             | 06-10-2023<br>07-10-2023           |                                 | TLM1                            | CO4                  |                       |
| 50              | TMs as enumerators.                                                 | 1                             | 09-10-2023                         |                                 | TLM1                            | CO4                  |                       |
| No. of<br>UNIT- | classes required to complete<br>-4                                  | 12                            | No. of classes                     | s taken:                        |                                 |                      |                       |

#### **UNIT-IV: Turing Machine**

### **UNIT-V: Undecidability**

| S.No            | Topics to be covered                              | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcomes | HOD<br>Sign<br>Weekly |
|-----------------|---------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------|-----------------------|
| 55              | Undecidability: Church-<br>Turing thesis,         | 1                             | 11-10-2023                         |                                 | TLM1                            | CO5                  |                       |
| 56              | Universal turing machine,                         | 2                             | 13-10-2023<br>14-10-2023           |                                 | TLM1                            | CO5                  |                       |
| 57              | the universal and<br>diagnolization<br>languages, | 2                             | 16-10-2023<br>18-10-2023           |                                 | TLM1                            | CO5                  |                       |
| 58              | Reduction between languages,                      | 1                             | 20-10-2023                         |                                 | TLM1                            | CO5                  |                       |
| 59              | Rice's theorem,                                   | 1                             | 21-10-2023                         |                                 | TLM1                            | CO5                  |                       |
| 60              | Post's correspondence problem,                    | 1                             | 25-10-2023                         |                                 | TLM1                            | CO5                  |                       |
| 61              | Undecidable problems about languages.             | 1                             | 26-10-2023                         |                                 | TLM1                            | CO5                  |                       |
| No. of<br>UNIT- | classes required to complete .5                   | 9                             | No. of classes                     | s taken:                        |                                 |                      |                       |

### CONTENT BEYOND SYLLABUS

| S No | Topics To Be Covered | No Of<br>Classes<br>Required | Tentaive<br>Date Of<br>Completion | Actual<br>Date | Teaching<br>Learning<br>Method | Learning<br>Outcome | HOD<br>Sign<br>Weakly |
|------|----------------------|------------------------------|-----------------------------------|----------------|--------------------------------|---------------------|-----------------------|
| 1    | Concept of Halt      | 1                            | 27-10-2023                        |                | TLM1                           | CO5                 |                       |
| 2    | Halting Problems     | 1                            | 28-10-2023                        |                | TLM 1                          | CO5                 |                       |

| TLM1 | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) |
|------|----------------|------|---------------------------------|
| TLM2 | PPT            | TLM5 | ICT (NPTEL/SWAYAM/MOOCS)        |
| TLM3 | Tutorial       | TLM6 | Group Discussion/Project        |

### **EVALUATION PROCESS:**

| Evaluation Task                                                                      | Marks             |
|--------------------------------------------------------------------------------------|-------------------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5              |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15             |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10             |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5              |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15             |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10             |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | <mark>M=30</mark> |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark>   |
| Semester End Examination (SEE)                                                       | <mark>70</mark>   |
| Total Marks = CIE + SEE                                                              | 100               |

## PART-D

| PROGE | RAMME OUTCOMES (POs):                                                                                                    |
|-------|--------------------------------------------------------------------------------------------------------------------------|
|       | Engineering knowledge: Apply the knowledge of mathematics, science, engineering                                          |
| PO 1  | fundamentals, and an engineering specialization to the solution of complex engineering                                   |
|       | problems.                                                                                                                |
|       | Problem analysis: Identify, formulate, review research literature, and analyze complex                                   |
| PO 2  | engineering problems reaching substantiated conclusions using first principles of                                        |
|       | mathematics, natural sciences, and engineering sciences.                                                                 |
|       | Design/development of solutions: Design solutions for complex engineering problems                                       |
| PO 3  | and design system components or processes that meet the specified needs with                                             |
| 105   | appropriate consideration for the public health and safety, and the cultural, societal, and                              |
|       | environmental considerations.                                                                                            |
|       | Conduct investigations of complex problems: Use research-based knowledge and                                             |
| PO 4  | research methods including design of experiments, analysis and interpretation of data,                                   |
|       | and synthesis of the information to provide valid conclusions.                                                           |
|       | Modern tool usage: Create, select, and apply appropriate techniques, resources, and                                      |
| PO 5  | modern engineering and IT tools including prediction and modeling to complex                                             |
|       | engineering activities with an understanding of the limitations.                                                         |
|       | The engineer and society: Apply reasoning informed by the contextual knowledge to                                        |
| PO 6  | assess societal, health, safety, legal and cultural issues and the consequent                                            |
|       | responsibilities relevant to the professional engineering practice.                                                      |
| DO 7  | <b>Environment and sustainability</b> : Understand the impact of the professional engineering                            |
| PO 7  | solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development |
|       | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities                          |
| PO 8  | and norms of the engineering practice.                                                                                   |
|       | <b>Individual and team work</b> : Function effectively as an individual, and as a member or                              |
| PO 9  |                                                                                                                          |
|       | leader in diverse teams, and in multidisciplinary settings.                                                              |
|       | Communication: Communicate effectively on complex engineering activities with the                                        |
| PO 10 | engineering community and with society at large, such as, being able to comprehend and                                   |
| 1010  | write effective reports and design documentation, make effective presentations, and give                                 |
|       | and receive clear instructions.                                                                                          |
|       | Project management and finance: Demonstrate knowledge and understanding of the                                           |
| PO 11 | engineering and management principles and apply these to one's own work, as a                                            |
|       | member and leader in a team, to manage projects and in multidisciplinary environments                                    |
|       | Life-long learning: Recognize the need for and have the preparation and ability to                                       |
| PO 12 | engage in independent and life-long learning in the broadest context of technological                                    |
|       | change.                                                                                                                  |

# **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

| <b>PSO 1</b> | Organize, Analyze and Interpret the data to extract meaningful conclusions.          |
|--------------|--------------------------------------------------------------------------------------|
| <b>PSO 2</b> | Design, Implement and Evaluate a computer-based system to meet desired needs.        |
| <b>PSO 3</b> | Develop IT application services with the help of different currentengineering tools. |

|                        | Course<br>Instructor | Course<br>Coordinator | Module<br>Coordinator | Head of the<br>Department |
|------------------------|----------------------|-----------------------|-----------------------|---------------------------|
| Name of the<br>Faculty | MRS REHANA<br>BEGUM  | DR D VEERIAH          | DR G RAJENDRA         | DR B SRINIVASRAO          |
| Signature              |                      |                       |                       |                           |

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)



Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

### **DEPARTMENT OF INFORMATION TECHNOLOGY**

### **COURSE HANDOUT**

### PART-A

#### Name of Course Instructor: REHANA BEGUM

Course Name & Code: Theory of Computation, 20CS13L-T-P Structure: 3-0-0Program/Sem/Sec: B.Tech-IT / V SEM/B-SecA.Y.: 2023-24

Credits: 03

**PRE-REQUISITE:** Discrete Mathematical Structures

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** The objective of the course is to provide a formal connection between algorithmic problem solving and the theory of Automata and languages, and develop them into a mathematical view towards algorithmic design and in general computation itself.

| Construct finite automata for regular languages and prove it's equivalence. (Apply-L3)                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------|
| Construct regular expression for regular languages and prove the equivalence of regular expression and Finite Automata. ( <b>Apply-L3</b> ) |
| Design Pushdown automata for the context-free languages. (Understand-L2)                                                                    |
| Design Turing machine to model computational problems. (Apply-L3)                                                                           |
| Distinguish decidable and undecidable problems with the help of Turing machine. $(Understand - L2)$                                         |
|                                                                                                                                             |

#### COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

| СО  | Program Outcomes (POs) |   |   |   |   |   |   |   |   |    |    |    | PSOs |   |   |
|-----|------------------------|---|---|---|---|---|---|---|---|----|----|----|------|---|---|
|     | 1                      | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1    | 2 | 3 |
| CO1 | 3                      | 2 | - | - | - | - | - | - | - | -  | -  | 1  | -    | - | - |
| CO2 | 3                      | 2 | - | - | - | - | - | - | - | -  | -  | 1  | -    | - | - |
| CO3 | 3                      | 2 | - | - | - | - | - | - | - | -  | -  | -  | -    | - | - |
| CO4 | 3                      | 2 | - | - | - | - | - | - | - | -  | -  | -  | -    | - | - |
| CO5 | 1                      | 2 | - | - | - | - | - | - | - | -  | -  | -  | -    | - | - |

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

#### **TEXTBOOKS:**

1. John E. Hopcroft, Rajeev Motwani and Jeffrey D. Ullman, "Introduction to Automata Theory, Languages, and Computation", Pearson Education Asia, 1997.

#### **REFERENCE BOOKS:**

1. Harry R. Lewis and Christos H. Papadimitriou, "Elements of the Theory of Computation", Pearson Education Asia,2000.

2. Dexter C. Kozen, "Automata and Computability", Springer, 2011.

3. Michael Sipser, "Introduction to the Theory of Computation", PWS Publishing, 2005.

4. John Martin, Introduction to Languages and The Theory of Computation, Tata McGraw Hill,2nd Edition,2003.

| S.No           | UNIT-1: Finite Automata<br>Topics to be covered                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcomes | HOD<br>Sign<br>Weekly |
|----------------|----------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------|-----------------------|
| 1              | Introduction to Finite<br>Automata,                            | 1                             | 03-07-2023                         |                                 | TLM1                            | CO1                  |                       |
| 2              | Alphabets,                                                     | 1                             | 06-07-2023                         |                                 | TLM1                            | CO1                  |                       |
| 3              | Strings, Languages and Grammars,                               | 1                             | 07-07-2023                         |                                 | TLM1                            | CO1                  |                       |
| 4              | Classification of Automata,                                    | 1                             | 08-07-2023                         |                                 | TLM1                            | CO1                  |                       |
| 5              | Definitions and its applications.                              | 1                             | 10-07-2023                         |                                 | TLM1                            | CO1                  |                       |
| 6              | Finite Automata:<br>Deterministic Finite<br>Automata (DFA),    | 2                             | 13-07-2023<br>14-07-2023           |                                 | TLM1                            | CO1                  |                       |
| 7              | Non-Deterministic Finite<br>Automata(NFA)                      | 1                             | 15-07-2023                         |                                 | TLM1                            | CO1                  |                       |
| 8              | Equivalence of NFA and DFA,                                    | 1                             | 17-07-2023                         |                                 | TLM1                            | CO1                  |                       |
| 9              | Equivalence of NFA with<br>epsilon and NFA without<br>epsilon, | 2                             | 20-07-2023<br>21-07-2023           |                                 | TLM1                            | CO1                  |                       |
| 10             | Minimization of finite automata,                               | 1                             | 22-07-2023                         |                                 | TLM1                            | CO1                  |                       |
| 11             | Finite automata with output: mealy machine,                    | 1                             | 24-07-2023                         |                                 | TLM1                            | CO1                  |                       |
| 12             | Moore machines,                                                | 1                             | 27-07-2023                         |                                 | TLM1                            | CO1                  |                       |
| 13             | Equivalence of mealy and moore machines                        | 2                             | 28-07-2023<br>31-07-2023           |                                 | TLM1                            | CO1                  |                       |
| No. of<br>UNIT | classes required to complete<br>I                              | 16                            | No. of classe                      | es taken:                       |                                 | 1                    |                       |

#### **COURSE DELIVERY PLAN (LESSON PLAN):** UNIT-I: Finite Automata

|      | UNIT-II: Regular Expressio                                              | 0        | 0 0                      |            |          |          |        |
|------|-------------------------------------------------------------------------|----------|--------------------------|------------|----------|----------|--------|
|      |                                                                         | No. of   | Tentative                | Actual     | Teaching | Learning | HOD    |
| S.No | Topics to be covered                                                    | Classes  | Date of                  | Date of    | Learning | Outcomes | Sign   |
|      |                                                                         | Required | Completion               | Completion | Methods  |          | Weekly |
| 19   | Regular Expressions:<br>Equivalence of Regular<br>expression and finite | 2        | 03-08-2023<br>04-08-2023 |            | TLM1     | CO2      |        |
|      | automata                                                                |          |                          |            |          |          |        |
| 20   | Regular Grammar:<br>Definition of grammar,                              | 1        | 05-08-2023               |            | TLM1     | CO2      |        |
| 21   | Derivation and parse tree,                                              | 2        | 07-08-2023               |            | TLM1     | CO2      |        |
| 22   | Equivalence of regular<br>grammar and finite<br>automata,               | 2        | 10-08-2023               |            | TLM1     | CO2      |        |
| 23   | Closure properties of regular languages,                                | 1        | 11-08-2023               |            | TLM1     | CO2      |        |
| 24   | Pumping lemma for regular languages.                                    | 2        | 12-08-2023               |            | TLM1     | CO2      |        |
|      | No. of classes required to complete 11 No. of classes taken:            |          |                          |            |          |          |        |

### UNIT-II: Regular Expression and Regular Languages

### UNIT - III: CFL and Pushdown Automata

| S.No                                                         | Topics to be covered                                      | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcomes | HOD<br>Sign<br>Weekly |
|--------------------------------------------------------------|-----------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------|-----------------------|
| 31                                                           | Context free languages:<br>context free<br>grammars(CFG), | 1                             | 14-08-2022<br>17-08-2023           |                                 | TLM1                            | CO3                  |                       |
| 32                                                           | Ambiguity in CFG,                                         | 2                             | 18-08-2023<br>19-08-2023           |                                 | TLM1                            | CO3                  |                       |
| 33                                                           | Chomsky and Greibach normal forms.                        | 2                             | 21-08-2023<br>24-08-2023           |                                 | TLM1                            | CO3                  |                       |
| 34                                                           | Pushdown automata (PDA):<br>Definition of PDA,            | 1                             | 25-08-2023                         |                                 | TLM1                            | CO3                  |                       |
| 35                                                           | Deterministic and Non<br>deterministic PDA,               | 2                             | 04-09-2023<br>07-09-2023           |                                 | TLM1                            | CO3                  |                       |
| 36                                                           | Equivalence of PDA and CFG,                               | 2                             | 08-09-2023<br>09-09-2023           |                                 | TLM1                            | CO3                  |                       |
| 37                                                           | Pumping lemma for context free languages,                 | 1                             | 11-09-2023                         |                                 | TLM1                            | CO3                  |                       |
| 38                                                           | Closure properties of CFLs.                               | 1                             | 14-09-2022                         |                                 | TLM1                            | CO3                  |                       |
| No. of classes required to complete 12 No. of classes taken: |                                                           |                               |                                    |                                 |                                 |                      |                       |

| S.No           | Topics to be covered                                                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcomes | HOD<br>Sign<br>Weekly |
|----------------|---------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------|-----------------------|
| 43             | Turing machine: The basic<br>model for Turing Machine<br>(TM),      | 2                             | 15-09-2023<br>16-09-2023           |                                 | TLM1                            | CO4                  |                       |
| 44             | Turing recognizable<br>(recursively enumerable),                    | 2                             | 21-09-2023<br>22-09-2023           |                                 | TLM1                            | CO4                  |                       |
| 45             | Turing-decidable(recursive)<br>languages,                           | 1                             | 23-09-2023                         |                                 | TLM1                            | CO4                  |                       |
| 46             | Closure properties,                                                 | 1                             | 25-09-2023                         |                                 | TLM1                            | CO4                  |                       |
| 47             | Variants of Turing machines,                                        | 1                             | 29-09-2023                         |                                 | TLM1                            | CO4                  |                       |
| 48             | Non deterministic TMs and<br>Equivalence with<br>deterministic TMs, | 2                             | 30-09-2023<br>05-10-2023           |                                 | TLM1                            | CO4                  |                       |
| 49             | Unrestricted grammars and equivalence with TMs,                     | 2                             | 06-10-2023<br>07-10-2023           |                                 | TLM1                            | CO4                  |                       |
| 50             | TMs as enumerators.                                                 | 1                             | 09-10-2023                         |                                 | TLM1                            | CO4                  |                       |
| No. of<br>UNIT | classes required to complete<br>-4                                  | 12                            | No. of classe                      | s taken:                        |                                 |                      |                       |

#### **UNIT-IV: Turing Machine**

### **UNIT-V: Undecidability**

| S.No            | Topics to be covered                              | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | Learning<br>Outcomes | HOD<br>Sign<br>Weekly |
|-----------------|---------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|----------------------|-----------------------|
| 55              | Undecidability: Church-<br>Turing thesis,         | 1                             | 12-10-2023                         |                                 | TLM1                            | CO5                  |                       |
| 56              | Universal turing machine,                         | 2                             | 13-10-2023<br>14-10-2023           |                                 | TLM1                            | CO5                  |                       |
| 57              | the universal and<br>diagnolization<br>languages, | 2                             | 16-10-2023<br>19-10-2023           |                                 | TLM1                            | CO5                  |                       |
| 58              | Reduction between languages,                      | 1                             | 20-10-2023                         |                                 | TLM1                            | CO5                  |                       |
| 59              | Rice's theorem,                                   | 1                             | 21-10-2023                         |                                 | TLM1                            | CO5                  |                       |
| 60              | Post's correspondence problem,                    | 1                             | 26-10-2023                         |                                 | TLM1                            | CO5                  |                       |
| 61              | Undecidable problems about languages.             | 1                             | 27-10-2023                         |                                 | TLM1                            | CO5                  |                       |
| No. of<br>UNIT- | classes required to complete<br>-5                | 9                             | No. of classes                     | s taken:                        |                                 |                      |                       |

# CONTENT BEYOND SYLLABUS

| S No | Topics To Be Covered | No Of<br>Classes<br>Required | Tentaive<br>Date Of<br>Completion | Actual<br>Date | Teaching<br>Learning<br>Method | Learning<br>Outcome | HOD<br>Sign<br>Weakly |
|------|----------------------|------------------------------|-----------------------------------|----------------|--------------------------------|---------------------|-----------------------|
| 1    | Concept of Halt      | 1                            | 27-10-2023                        |                | TLM1                           | CO5                 |                       |
| 2    | Halting Problems     | 1                            | 28-10-2023                        |                | TLM 1                          | CO5                 |                       |

| TLM1 | Chalk and Talk | TLM4 Demonstration (Lab/Field Visit) |                          |
|------|----------------|--------------------------------------|--------------------------|
| TLM2 | PPT            | TLM5                                 | ICT (NPTEL/SWAYAM/MOOCS) |
| TLM3 | Tutorial       | TLM6                                 | Group Discussion/Project |

## **EVALUATION PROCESS:**

| Evaluation Task                                                                      | Marks             |
|--------------------------------------------------------------------------------------|-------------------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5              |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15             |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10             |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5              |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15             |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10             |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | <mark>M=30</mark> |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark>   |
| Semester End Examination (SEE)                                                       | <mark>70</mark>   |
| Total Marks = CIE + SEE                                                              | 100               |

## PART-D

|             | $\frac{\Gamma A K \Gamma - D}{\Gamma A K \Gamma - D}$                                                                                                                           |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROGR       | AMME OUTCOMES (POs):                                                                                                                                                            |
| <b>DO</b> 4 | Engineering knowledge: Apply the knowledge of mathematics, science, engineering                                                                                                 |
| PO 1        | fundamentals, and an engineering specialization to the solution of complex engineering                                                                                          |
|             | problems.                                                                                                                                                                       |
|             | Problem analysis: Identify, formulate, review research literature, and analyze complex                                                                                          |
| PO 2        | engineering problems reaching substantiated conclusions using first principles of                                                                                               |
|             | mathematics, natural sciences, and engineering sciences.                                                                                                                        |
|             | <b>Design/development of solutions</b> : Design solutions for complex engineering problems                                                                                      |
| PO 3        | and design system components or processes that meet the specified needs with                                                                                                    |
|             | appropriate consideration for the public health and safety, and the cultural, societal, and                                                                                     |
|             | environmental considerations.                                                                                                                                                   |
| PO 4        | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and                                                                                            |
| PU 4        | research methods including design of experiments, analysis and interpretation of data,                                                                                          |
|             | and synthesis of the information to provide valid conclusions.                                                                                                                  |
| PO 5        | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex        |
| ruj         | engineering activities with an understanding of the limitations.                                                                                                                |
|             | <b>The engineer and society</b> : Apply reasoning informed by the contextual knowledge to                                                                                       |
| PO 6        | assess societal, health, safety, legal and cultural issues and the consequent                                                                                                   |
| 100         | responsibilities relevant to the professional engineering practice.                                                                                                             |
|             | <b>Environment and sustainability</b> : Understand the impact of the professional engineering                                                                                   |
| PO 7        | solutions in societal and environmental contexts, and demonstrate the knowledge of, and                                                                                         |
|             | need for sustainable development                                                                                                                                                |
| 50.0        | Ethics: Apply ethical principles and commit to professional ethics and responsibilities                                                                                         |
| PO 8        | and norms of the engineering practice.                                                                                                                                          |
|             | <b>Individual and team work</b> : Function effectively as an individual, and as a member or                                                                                     |
| PO 9        | leader in diverse teams, and in multidisciplinary settings.                                                                                                                     |
|             |                                                                                                                                                                                 |
|             | <b>Communication</b> : Communicate effectively on complex engineering activities with the                                                                                       |
| PO 10       | engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give |
|             | and receive clear instructions.                                                                                                                                                 |
|             | Project management and finance: Demonstrate knowledge and understanding of the                                                                                                  |
| PO 11       | engineering and management principles and apply these to one's own work, as a                                                                                                   |
| 1011        | <b>member and</b> leader in a team, to manage projects and in multidisciplinary environments                                                                                    |
|             | <b>Life-long learning</b> : Recognize the need for and have the preparation and ability to                                                                                      |
| PO 12       | engage in independent and life-long learning in the broadest context of technological                                                                                           |
| 1014        | change.                                                                                                                                                                         |
|             | _ •······                                                                                                                                                                       |

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

| <b>PSO 1</b> | Organize, Analyze and Interpret the data to extract meaningful conclusions.          |
|--------------|--------------------------------------------------------------------------------------|
| PSO 2        | Design, Implement and Evaluate a computer-based system to meet desired needs.        |
| <b>PSO 3</b> | Develop IT application services with the help of different currentengineering tools. |

|                        | Course<br>Instructor | Course<br>Coordinator | Module<br>Coordinator | Head of the<br>Department |
|------------------------|----------------------|-----------------------|-----------------------|---------------------------|
| Name of the<br>Faculty | MRS REHANA<br>BEGUM  | DR D VEERIAH          | DR G RAJENDRA         | DR B SRINIVASRAO          |
| Signature              |                      |                       |                       |                           |

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)



Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

## DEPARTMENT OF INFORMATION TECHNOLOGY

# **COURSE HANDOUT**

# PART-A

| Name of Course Instructor: Mrs. S. JYOTHI |                 |  |  |  |
|-------------------------------------------|-----------------|--|--|--|
| Course Name & Code                        | : POAI & 20CS16 |  |  |  |
| L-T-P Structure                           | :3-0-0          |  |  |  |
| Program/Sem/Sec                           | :BTECH/V/A      |  |  |  |

**Credits:** 3 **A.Y.:** 2023-24

PREREQUISITE: Basic Engineering and Mathematics knowledge

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** 

**COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| C01 | Understand the fundamentals of Artificial Intelligence types of AI agents and their           |
|-----|-----------------------------------------------------------------------------------------------|
| COI | structures to solve engineering problems. (Understand – L2)                                   |
| CO2 | Identify different search algorithms to find and optimise the solution for the given          |
| 02  | problem. (Understand-L2)                                                                      |
| CO3 | Apply different gaming algorithms and identify the importance of knowledge                    |
| 05  | representations in Artificial Intelligence. (Apply-L3)                                        |
| C04 | Make use of predicate logic and rule-based system to represent the knowledge in AI            |
| C04 | domain. (Understand-L2)                                                                       |
| CO5 | Interpret the forms of learning in the AI domain as well as present efficient technologies to |
| 005 | remove uncertainty in knowledge domain. ( <b>Understand –L2</b> )                             |

**COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs            | P01 | P02 | P03 | P04   | P05 | P06 | P07 | P08 | P09    | P010 | P011 | P012 | PSO1 | PSO2 | PSO3 |
|----------------|-----|-----|-----|-------|-----|-----|-----|-----|--------|------|------|------|------|------|------|
| C01            | 3   | 2   | 1   | -     | -   | -   | -   | -   | -      | -    | -    | 1    | -    | 2    | -    |
| CO2            | 2   | 3   | 1   | 1     | -   | -   | -   | -   | -      | -    | -    | -    | -    | 2    | -    |
| CO3            | 2   | 3   | 1   | 1     | -   | -   | -   | -   | -      | -    | -    | 1    | -    | 2    | -    |
| <b>CO4</b>     | 3   | 2   | 2   | -     | -   | -   | -   | -   | I      | -    | -    | -    | -    | 2    | I    |
| CO5            | 3   | 2   | 1   | -     | -   | -   | -   | -   | I      | -    | -    | -    | -    | 2    | I    |
| <b>1</b> - Low |     |     | 2   | -Medi | um  |     |     | 3   | - High |      |      |      |      |      |      |

#### **TEXTBOOKS:**

| T1   | Stuart J. Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach", Pearson Education Asia, third edition, 2009.can also second edition, 2003. |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| T2   | Elaine Rich, Kevin Knight Artificial Intelligence, TMH, second edition, 2007.                                                                                |  |  |  |
| REFE | RENCE BOOKS:                                                                                                                                                 |  |  |  |
| R1   | Nils J.Nilsson "Artificial Intelligence - A New Synthesis", ,Morgan Kaufmann, 1988                                                                           |  |  |  |
| R2   | David poole, Alan Mackworth, "Artificial Intelligence: Foundations for computational                                                                         |  |  |  |
|      | agents",Cambridge Univ.press,2010.                                                                                                                           |  |  |  |
| R3   | Ronald Brachman, "Knowledge representation and Reasoning", Morgan Kaufmann, 2004.                                                                            |  |  |  |
| R4   | Frank van Harmelen,Vladimir Lifschitz,Bruce Porter(Eds),"Handbook of Knowledge                                                                               |  |  |  |
|      | representation",Elsevier,2008.                                                                                                                               |  |  |  |
| R5   | Ivan Bratko," Prolog Programming for Artificial Intelligence",4th Ed., Addition-Wesley,2011.                                                                 |  |  |  |

# PART-B

# COURSE DELIVERY PLAN (LESSON PLAN):

# UNIT-I:

| S.<br>No. | Topics to be covered                                          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|---------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | AI Introduction                                               | 1                             | 3/7/23                             |                                 | TLM1                            |                       |
| 2.        | Applications of AI                                            | 1                             | 4/7/23                             |                                 | TLM1                            |                       |
| 3.        | History of AI                                                 | 1                             | 5/7/23                             |                                 | TLM1                            |                       |
| 4.        | Types of AI                                                   | 1                             | 10/7/23                            |                                 | TLM1                            |                       |
| 5.        | Agents and rationality                                        | 1                             | 11/7/23                            |                                 | TLM2                            |                       |
| 6.        | Structure of the agents                                       | 1                             | 12/7/23                            |                                 | TLM2                            |                       |
| 7.        | Agent environment and nature of the environment               | 1                             | 15/7/23                            |                                 | TLM2                            |                       |
| 8.        | Types of agents-Simple reflex agents and model-based agents   | 1                             | 17/7/23                            |                                 | TLM2                            |                       |
| 9.        | Types of agents-Goal based agents and<br>Utility-based agents | 1                             | 18/7/23                            |                                 | TLM2                            |                       |
| 10.       | Types of agents-Learning agents                               | 1                             | 19/7/23                            |                                 | TLM2                            |                       |
| 11.       | Problems, search spaces                                       | 1                             | 22/7/23                            |                                 | TLM2                            |                       |
| 12.       | Defining the problem as state space search                    | 1                             | 24/7/23                            |                                 | TLM2                            |                       |
| 13.       | Production system                                             | 1                             | 25/7/23                            |                                 | TLM2                            |                       |
| 14.       | Problem characteristics                                       | 1                             | 26/7/23                            |                                 | TLM2                            |                       |
| 15.       | Issues in the design of search programs.                      | 1                             | 1/8/23                             |                                 | TLM2                            |                       |
| No.       | of classes required to complete                               | UNIT-I: 1                     | 5                                  | No. of clas                     | sses taker                      | 1:                    |

#### UNIT-II:

| S.<br>No. | Topics to be covered                                                        | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-----------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 16.       | Problem solving agents and search algorithm terminologies                   | 1                             | 2/8/23                             |                                 | TLM2                            |                       |
| 17.       | Properties of search algorithms and types of search algorithms              | 1                             | 3/8/23                             |                                 | TLM2                            |                       |
| 18.       | Uninformed search algorithms:<br>Breadth-first Search                       | 1                             | 5/8/23                             |                                 | TLM2                            |                       |
| 19.       | Depth-first Search and Depth-limited<br>Search                              | 1                             | 7/8/23                             |                                 | TLM2                            |                       |
| 20.       | Iterative deepening depth-first search.                                     | 1                             | 8/8/23                             |                                 | TLM2                            |                       |
| 21.       | Uniform cost search, Bidirectional search.                                  | 1                             | 9/8/23                             |                                 | TLM2                            |                       |
| 22.       | Informed/Heuristic Search algorithms:<br>Greedy best-first search algorithm | 1                             | 14/8/23                            |                                 | TLM2                            |                       |
| 23.       | A* Search algorithm                                                         | 1                             | 16/8/23                            |                                 | TLM2                            |                       |
| 24.       | Hill climbing algorithm                                                     | 1                             | 19/8/23                            |                                 | TLM2                            |                       |
| 25.       | Constraint satisfaction problem                                             | 1                             | 21/8/23                            |                                 | TLM2                            |                       |
| 26.       | Means-Ends Analysis                                                         | 1                             | 22/8/23                            |                                 | TLM2                            |                       |
| No.       | No. of classes required to complete UNIT-II: 11 No. of classes taken:       |                               |                                    |                                 |                                 | 1:                    |

### UNIT-III:

| S.<br>No. | Topics to be covered                                      | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-----------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 27.       | Adversarial search/Game playing:<br>Introduction          | 1                             | 23/8/23                            |                                 | TLM2                            |                       |
| 28.       | Minmax Algorithm                                          | 1                             | 26/8/23                            |                                 | TLM2                            |                       |
| 29.       | Alpha-Beta Pruning                                        | 1                             | 4/9/23                             |                                 | TLM2                            |                       |
| 30.       | Knowledge representation:<br>Representations and mappings | 1                             | 5/9/23                             |                                 | TLM2                            |                       |
| 31.       | Approaches of Knowledge representation                    | 2                             | 9/9/23<br>11/9/23                  |                                 | TLM2                            |                       |
| 32.       | Issues in Knowledge Representation                        | 1                             | 12/9/23                            |                                 | TLM2                            |                       |
|           | No. of classes required to complete UNIT-III: 07          |                               |                                    |                                 | sses takei                      | 1:                    |

#### UNIT-IV:

| S.<br>No. | Topics to be covered                                                              | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-----------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 33.       | facts in logic.                                                                   | 1                             | 13/9/23                            |                                 | TLM2                            |                       |
| 34.       | Representing instance and Isa relationships                                       | 2                             | 16/9/23<br>19/9/23                 |                                 | TLM2                            |                       |
| 35.       | Computable functions and predicates                                               | 1                             | 20/9/23                            |                                 | TLM2                            |                       |
| 36.       | Resolution                                                                        | 2                             | 23/9/23<br>25/9/23                 |                                 | TLM2                            |                       |
| 37.       | Natural deduction                                                                 | 1                             | 26/9/23                            |                                 | TLM2                            |                       |
| 38.       | Representing knowledge using Rules:<br>Procedural verses declarative<br>knowledge | 1                             | 27/9/23                            |                                 | TLM2                            |                       |
| 39.       | Logic programming                                                                 | 1                             | 30/9/23                            |                                 | TLM2                            |                       |
| 40.       | Forward verses backward reasoning                                                 | 1                             | 3/10/23                            |                                 | TLM2                            |                       |
| 41.       | Matching                                                                          | 1                             | 4/10/23                            |                                 | TLM2                            |                       |
| 42.       | Control knowledge                                                                 | 1                             | 7/10/23                            |                                 | TLM2                            |                       |
| No.       | No. of classes required to complete UNIT-IV: 12                                   |                               |                                    |                                 | sses taker                      | 1:                    |

### UNIT-V:

| S. No. | Topics to be covered                                 | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 40     | Uncertain knowledge and                              | 0                             | 9/10/23                            |                                 | TLM2                            |                       |
| 43.    | Reasoning: Probability and Bayes theorem             | 2                             | 10/10/23                           |                                 |                                 |                       |
| 44.    | Certainty factors and rule-based                     | 2                             | 11/10/23<br>14/10/23               |                                 | TLM2                            |                       |
| 45.    | Bayesian networks                                    | 1                             | 16/10/23                           |                                 | TLM2                            |                       |
| 46.    | Dempster – Shafer Theory                             | 2                             | 17/10/23<br>18/10/23               |                                 | TLM2                            |                       |
| 47.    | Fuzzy logic                                          | 1                             | 21/10/23                           |                                 | TLM2                            |                       |
| 48.    | Learning: Overview of different<br>forms of learning | 1                             | 24/10/23                           |                                 | TLM2                            |                       |
| 49.    | Learning Decision Trees                              | 1                             | 25/10/23                           |                                 | TLM2                            |                       |
| 50.    | Neural networks                                      | 1                             | 28/10/23                           |                                 | TLM2                            |                       |
| No. o  | No. of classes required to complete UNIT-V: 11       |                               |                                    |                                 | sses taker                      | 1:                    |

| Teaching | Teaching Learning Methods |      |                                    |  |  |  |
|----------|---------------------------|------|------------------------------------|--|--|--|
| TLM1     | Chalk and Talk            | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |
| TLM2     | L <b>M2</b> PPT           |      | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |
| TLM3     | Tutorial                  | TLM6 | Group Discussion/Project           |  |  |  |

# PART-C

# EVALUATION PROCESS (R20 Regulation):

| Evaluation Task                                                                      | Marks             |
|--------------------------------------------------------------------------------------|-------------------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5              |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15             |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10             |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5              |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15             |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10             |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | <mark>M=30</mark> |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark>   |
| Semester End Examination (SEE)                                                       | <mark>70</mark>   |
| Total Marks = CIE + SEE                                                              | 100               |

# PART-D

# **PROGRAMME OUTCOMES (POs):**

| PO 1 | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                          |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 2 | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                         |
| PO 3 | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. |
| PO 4 | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                        |
| PO 5 | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                         |
| PO 6 | <b>The engineer and society</b> : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                       |
| PO 7 | <b>Environment and sustainability</b> : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                           |
| PO 8 | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                            |

| <b>PO 9</b>                                                                                                                                                                              | Individual and teamwork: Function effectively as an individual, and as a member or leader    |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                                          | in diverse teams, and in multidisciplinary settings.                                         |  |  |  |  |
|                                                                                                                                                                                          | Communication: Communicate effectively on complex engineering activities with the            |  |  |  |  |
| <b>PO 10</b> engineering community and with society at large, such as, being able to comprehend a effective reports and design documentation, make effective presentations, and give and |                                                                                              |  |  |  |  |
|                                                                                                                                                                                          |                                                                                              |  |  |  |  |
|                                                                                                                                                                                          | Project management and finance: Demonstrate knowledge and understanding of the               |  |  |  |  |
| PO 11                                                                                                                                                                                    | engineering and management principles and apply these to one's own work, as a member         |  |  |  |  |
|                                                                                                                                                                                          | and leader in a team, to manage projects and in multidisciplinary environments.              |  |  |  |  |
| PO 12                                                                                                                                                                                    | Life-long learning: Recognize the need for and have the preparation and ability to engage in |  |  |  |  |
| FU 12                                                                                                                                                                                    | independent and life-long learning in the broadest context of technological change.          |  |  |  |  |

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

| PSO 1        | The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization. |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PSO 2        | The ability to design and develop computer programs in networking, web applications and IoT as per the society needs.                                                         |
| <b>PSO 3</b> | To inculcate an ability to analyze, design and implement database applications.                                                                                               |

| Title                  | Course<br>Instructor | Course<br>Coordinator | Module<br>Coordinator | Head of the<br>Department |
|------------------------|----------------------|-----------------------|-----------------------|---------------------------|
| Name of<br>the Faculty | Mrs.S.JYOTHI         | Mr.G.V.Suresh         | Mr.G.Rajendra         | Dr. B.Srinivasa Rao       |
| Signature              |                      |                       |                       |                           |

LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING

(AUTONOMOUS)



Accredited by NAAC & NBA (Under Tier - I), ISO 9001:2015 Certified Institution Approved by AICTE, New Delhi. and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. Phone: 08659-222933, Fax: 08659-222931

## DEPARTMENT OF INFORMATION TECHNOLOGY

# **COURSE HANDOUT**

# PART-A

| Name of Course Instruct | or: Mrs. S. JYOTHI |
|-------------------------|--------------------|
| Course Name & Code      | : POAI & 20CS16    |
| L-T-P Structure         | :3-0-0             |
| Program/Sem/Sec         | :BTECH/V/B         |

**Credits:** 3 **A.Y.:** 2023-24

PREREQUISITE: Basic Engineering and Mathematics knowledge

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** 

**COURSE OUTCOMES (COs):** At the end of the course, student will be able to

| <b>UCCIUL</b> | <b>CONTROLING (COD)</b> The the course) stadent will be able to                               |
|---------------|-----------------------------------------------------------------------------------------------|
| C01           | Understand the fundamentals of Artificial Intelligence types of AI agents and their           |
| COI           | structures to solve engineering problems. (Understand – L2)                                   |
| CO2           | Identify different search algorithms to find and optimise the solution for the given          |
| 02            | problem. (Understand-L2)                                                                      |
| <b>CO</b> 2   | Apply different gaming algorithms and identify the importance of knowledge                    |
| CO3           | representations in Artificial Intelligence. (Apply-L3)                                        |
| C04           | Make use of predicate logic and rule-based system to represent the knowledge in AI            |
| C04           | domain. (Understand-L2)                                                                       |
| C05           | Interpret the forms of learning in the AI domain as well as present efficient technologies to |
| 05            | remove uncertainty in knowledge domain. (Understand –L2)                                      |

**COURSE ARTICULATION MATRIX** (Correlation between COs, POs & PSOs):

| COs            | P01 | P02 | P03 | P04   | P05 | P06 | P07 | P08 | P09    | P010 | P011 | P012 | PSO1 | PSO2 | PSO3 |
|----------------|-----|-----|-----|-------|-----|-----|-----|-----|--------|------|------|------|------|------|------|
| C01            | 3   | 2   | 1   | -     | -   | -   | -   | -   | -      | -    | -    | 1    | -    | 2    | -    |
| CO2            | 2   | 3   | 1   | 1     | -   | -   | -   | -   | -      | -    | -    | -    | -    | 2    | -    |
| CO3            | 2   | 3   | 1   | 1     | -   | -   | -   | -   | -      | -    | -    | 1    | -    | 2    | -    |
| <b>CO4</b>     | 3   | 2   | 2   | -     | -   | -   | -   | -   | I      | -    | -    | -    | -    | 2    | I    |
| CO5            | 3   | 2   | 1   | -     | -   | -   | -   | -   | I      | -    | -    | -    | -    | 2    | I    |
| <b>1 -</b> Low |     |     | 2   | -Medi | um  |     |     | 3   | - High |      |      |      |      |      |      |

#### **TEXTBOOKS:**

| T1   | Stuart J. Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach", Pearson Education Asia, third edition, 2009.can also second edition, 2003. |  |  |  |  |  |  |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| T2   | Elaine Rich, Kevin Knight Artificial Intelligence, TMH, second edition, 2007.                                                                                |  |  |  |  |  |  |
| REFE | RENCE BOOKS:                                                                                                                                                 |  |  |  |  |  |  |
| R1   | Nils J.Nilsson "Artificial Intelligence - A New Synthesis", ,Morgan Kaufmann, 1988                                                                           |  |  |  |  |  |  |
| R2   | David poole, Alan Mackworth, "Artificial Intelligence: Foundations for computational                                                                         |  |  |  |  |  |  |
|      | agents",Cambridge Univ.press,2010.                                                                                                                           |  |  |  |  |  |  |
| R3   | Ronald Brachman, "Knowledge representation and Reasoning", Morgan Kaufmann, 2004.                                                                            |  |  |  |  |  |  |
| R4   | Frank van Harmelen,Vladimir Lifschitz,Bruce Porter(Eds),"Handbook of Knowledge                                                                               |  |  |  |  |  |  |
|      | representation",Elsevier,2008.                                                                                                                               |  |  |  |  |  |  |
| R5   | Ivan Bratko," Prolog Programming for Artificial Intelligence",4th Ed., Addition-Wesley,2011.                                                                 |  |  |  |  |  |  |

# PART-B

# COURSE DELIVERY PLAN (LESSON PLAN):

# UNIT-I:

| S.<br>No. | Topics to be covered                                          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|---------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.        | AI Introduction                                               | 1                             | 4/7/23                             |                                 | TLM1                            |                       |
| 2.        | Applications of AI                                            | 1                             | 5/7/23                             |                                 | TLM1                            |                       |
| 3.        | History of AI                                                 | 1                             | 6/7/23                             |                                 | TLM1                            |                       |
| 4.        | Types of AI                                                   | 1                             | 11/7/23                            |                                 | TLM1                            |                       |
| 5.        | Agents and rationality                                        | 1                             | 12/7/23                            |                                 | TLM2                            |                       |
| 6.        | Structure of the agents                                       | 1                             | 13/7/23                            |                                 | TLM2                            |                       |
| 7.        | Agent environment and nature of the environment               | 1                             | 15/7/23                            |                                 | TLM2                            |                       |
| 8.        | Types of agents-Simple reflex agents and model-based agents   | 1                             | 18/7/23                            |                                 | TLM2                            |                       |
| 9.        | Types of agents-Goal based agents and<br>Utility-based agents | 1                             | 19/7/23                            |                                 | TLM2                            |                       |
| 10.       | Types of agents-Learning agents                               | 1                             | 20/7/23                            |                                 | TLM2                            |                       |
| 11.       | Problems, search spaces                                       | 1                             | 22/7/23                            |                                 | TLM2                            |                       |
| 12.       | Defining the problem as state space search                    | 1                             | 25/7/23                            |                                 | TLM2                            |                       |
| 13.       | Production system                                             | 1                             | 26/7/23                            |                                 | TLM2                            |                       |
| 14.       | Problem characteristics                                       | 1                             | 27/7/23                            |                                 | TLM2                            |                       |
| 15.       | Issues in the design of search programs.                      | 1                             | 1/8/23                             |                                 | TLM2                            |                       |
| No.       | of classes required to complete                               | 5                             | No. of clas                        | sses taker                      | 1:                              |                       |

### UNIT-II:

| S.<br>No.                                                             | Topics to be covered                                                        | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 16.                                                                   | Problem solving agents and search algorithm terminologies                   | 1                             | 2/8/23                             |                                 | TLM2                            |                       |
| 17.                                                                   | Properties of search algorithms and types of search algorithms              | 1                             | 3/8/23                             |                                 | TLM2                            |                       |
| 18.                                                                   | Uninformed search algorithms:<br>Breadth-first Search                       | 1                             | 5/8/23                             |                                 | TLM2                            |                       |
| 19.                                                                   | Depth-first Search and Depth-limited<br>Search                              | 1                             | 7/8/23                             |                                 | TLM2                            |                       |
| 20.                                                                   | Iterative deepening depth-first search.                                     | 1                             | 8/8/23                             |                                 | TLM2                            |                       |
| 21.                                                                   | Uniform cost search, Bidirectional search.                                  | 1                             | 9/8/23                             |                                 | TLM2                            |                       |
| 22.                                                                   | Informed/Heuristic Search algorithms:<br>Greedy best-first search algorithm | 1                             | 10/8/23                            |                                 | TLM2                            |                       |
| 23.                                                                   | A* Search algorithm                                                         | 1                             | 16/8/23                            |                                 | TLM2                            |                       |
| 24.                                                                   | Hill climbing algorithm                                                     | 1                             | 19/8/23                            |                                 | TLM2                            |                       |
| 25.                                                                   | Constraint satisfaction problem                                             | 1                             | 22/8/23                            |                                 | TLM2                            |                       |
| 26.                                                                   | Means-Ends Analysis                                                         | 1                             | 23/8/23                            |                                 | TLM2                            |                       |
| No. of classes required to complete UNIT-II: 11 No. of classes taken: |                                                                             |                               |                                    |                                 |                                 |                       |

### UNIT-III:

| S.<br>No. | Topics to be covered                                      | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | ActualTeachingDate ofLearningCompletionMethods |      | HOD<br>Sign<br>Weekly |
|-----------|-----------------------------------------------------------|-------------------------------|------------------------------------|------------------------------------------------|------|-----------------------|
| 27.       | Adversarial search/Game playing:<br>Introduction          | 1                             | 24/8/23                            |                                                | TLM2 |                       |
| 28.       | Minmax Algorithm                                          | 1                             | 26/8/23                            |                                                | TLM2 |                       |
| 29.       | Alpha-Beta Pruning                                        | 1                             | 5/9/23                             |                                                | TLM2 |                       |
| 30.       | Knowledge representation:<br>Representations and mappings | 2                             | 7/9/23<br>9/9/23                   |                                                | TLM2 |                       |
| 31.       | Approaches of Knowledge representation                    | 2                             | 12/9/23<br>13/9/23                 |                                                | TLM2 |                       |
| 32.       | Issues in Knowledge Representation                        | 2                             | 14/9/23<br>16/9/23                 |                                                | TLM2 |                       |
|           | No. of classes required to comp                           | No. of clas                   | sses takei                         | 1:                                             |      |                       |

#### UNIT-IV:

| S.<br>No. | Topics to be covered                                                              | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-----------|-----------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 33.       | facts in logic.                                                                   | 1                             | 19/9/23                            |                                 | TLM2                            |                       |
| 34.       | Representing instance and Isa relationships                                       | 2                             | 20/9/23<br>21/9/23                 |                                 | TLM2                            |                       |
| 35.       | Computable functions and predicates                                               | 1                             | 23/9/23                            |                                 | TLM2                            |                       |
| 36.       | Resolution                                                                        | 2                             | 26/9/23<br>27/9/23                 |                                 | TLM2                            |                       |
| 37.       | Natural deduction                                                                 | 1                             | 30/9/23                            |                                 | TLM2                            |                       |
| 38.       | Representing knowledge using Rules:<br>Procedural verses declarative<br>knowledge | 1                             | 3/10/23                            |                                 | TLM2                            |                       |
| 39.       | Logic programming                                                                 | 1                             | 4/10/23                            |                                 | TLM2                            |                       |
| 40.       | Forward verses backward reasoning                                                 | 1                             | 5/10/23                            |                                 | TLM2                            |                       |
| 41.       | Matching                                                                          | 1                             | 7/10/23                            |                                 | TLM2                            |                       |
| 42.       | Control knowledge                                                                 | 1                             | 10/10/23                           |                                 | TLM2                            |                       |
| No.       | of classes required to complete                                                   | No. of clas                   | sses taker                         | 1:                              |                                 |                       |

### UNIT-V:

| S. No. | Topics to be covered                              | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|---------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
|        | Uncertain knowledge and                           |                               | 11/10/23                           |                                 | TLM2                            |                       |
| 43.    | Reasoning: Probability and Bayes theorem          | 2                             | 12/10/23                           |                                 |                                 |                       |
| 44.    | Certainty factors and rule-based                  | 2                             | 14/10/23<br>17/10/23               |                                 | TLM2                            |                       |
| 45.    | Bayesian networks                                 | 1                             | 18/10/23                           |                                 | TLM2                            |                       |
| 46.    | Dempster – Shafer Theory                          | 2                             | 19/10/23<br>21/10/23               |                                 | TLM2                            |                       |
| 47.    | Fuzzy logic                                       | 1                             | 24/10/23                           |                                 | TLM2                            |                       |
| 48.    | Learning: Overview of different forms of learning | 1                             | 25/10/23                           |                                 | TLM2                            |                       |
| 49.    | Learning Decision Trees                           | 1                             | 26/10/23                           |                                 | TLM2                            |                       |
| 50.    | Neural networks                                   | 1                             | 28/10/23                           |                                 | TLM2                            |                       |
| No. o  | f classes required to complet                     | No. of clas                   | sses taker                         | 1:                              |                                 |                       |

| Teaching | Teaching Learning Methods |      |                                    |  |  |  |  |  |  |
|----------|---------------------------|------|------------------------------------|--|--|--|--|--|--|
| TLM1     | Chalk and Talk            | TLM4 | Demonstration (Lab/Field Visit)    |  |  |  |  |  |  |
| TLM2     | РРТ                       | TLM5 | ICT (NPTEL/Swayam<br>Prabha/MOOCS) |  |  |  |  |  |  |
| TLM3     | Tutorial                  | TLM6 | Group Discussion/Project           |  |  |  |  |  |  |

# PART-C

# EVALUATION PROCESS (R20 Regulation):

| Evaluation Task                                                                      | Marks             |
|--------------------------------------------------------------------------------------|-------------------|
| Assignment-I (Units-I, II & UNIT-III (Half of the Syllabus))                         | A1=5              |
| I-Descriptive Examination (Units-I, II & UNIT-III (Half of the Syllabus))            | M1=15             |
| I-Quiz Examination (Units-I, II & UNIT-III (Half of the Syllabus))                   | Q1=10             |
| Assignment-II (Unit-III (Remaining Half of the Syllabus), IV & V)                    | A2=5              |
| II- Descriptive Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)      | M2=15             |
| II-Quiz Examination (UNIT-III (Remaining Half of the Syllabus), IV & V)              | Q2=10             |
| Mid Marks =80% of Max ((M1+Q1+A1), (M2+Q2+A2)) + 20% of Min ((M1+Q1+A1), (M2+Q2+A2)) | <mark>M=30</mark> |
| Cumulative Internal Examination (CIE): M                                             | <mark>30</mark>   |
| Semester End Examination (SEE)                                                       | <mark>70</mark>   |
| Total Marks = CIE + SEE                                                              | 100               |

# PART-D

# **PROGRAMME OUTCOMES (POs):**

| PO 1 | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                          |  |  |  |  |  |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| PO 2 | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                         |  |  |  |  |  |
| PO 3 | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations. |  |  |  |  |  |
| PO 4 | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                        |  |  |  |  |  |
| PO 5 | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                         |  |  |  |  |  |
| PO 6 | <b>The engineer and society</b> : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.                                                       |  |  |  |  |  |
| PO 7 | <b>Environment and sustainability</b> : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                           |  |  |  |  |  |
| PO 8 | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                            |  |  |  |  |  |

| <b>PO 9</b> | Individual and teamwork: Function effectively as an individual, and as a member or leader      |  |  |  |  |  |
|-------------|------------------------------------------------------------------------------------------------|--|--|--|--|--|
|             | in diverse teams, and in multidisciplinary settings.                                           |  |  |  |  |  |
| PO 10       | Communication: Communicate effectively on complex engineering activities with the              |  |  |  |  |  |
|             | engineering community and with society at large, such as, being able to comprehend and write   |  |  |  |  |  |
|             | effective reports and design documentation, make effective presentations, and give and receive |  |  |  |  |  |
|             | clear instructions.                                                                            |  |  |  |  |  |
| PO 11       | Project management and finance: Demonstrate knowledge and understanding of the                 |  |  |  |  |  |
|             | engineering and management principles and apply these to one's own work, as a member           |  |  |  |  |  |
|             | and leader in a team, to manage projects and in multidisciplinary environments.                |  |  |  |  |  |
| PO 12       | Life-long learning: Recognize the need for and have the preparation and ability to engage in   |  |  |  |  |  |
|             | independent and life-long learning in the broadest context of technological change.            |  |  |  |  |  |

# PROGRAMME SPECIFIC OUTCOMES (PSOs):

| PSO 1        | The ability to apply Software Engineering practices and strategies in software project development using open-source programming environment for the success of organization. |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| PSO 2        | The ability to design and develop computer programs in networking, web applications and IoT as per the society needs.                                                         |  |  |
| <b>PSO 3</b> | To inculcate an ability to analyze, design and implement database applications.                                                                                               |  |  |

| Title                  | Course<br>Instructor | Course<br>Coordinator | Module<br>Coordinator | Head of the<br>Department |
|------------------------|----------------------|-----------------------|-----------------------|---------------------------|
| Name of<br>the Faculty | Mrs.S.JYOTHI         | Mr.G.V.Suresh         | Mr.G.Rajendra         | Dr. B.Srinivasa Rao       |
| Signature              |                      |                       |                       |                           |



## DEPARTMENT OF ELECTRONICS AND COMMUNICATION

-----

# <u>COURSE HANDOUT</u> <u>PART-A</u>

Name of Course Instructor: Mr.V.V.Rama KrishnaCourse Name & Code: SATELLITE TECHNOLOGY - 20EC81L-T-P Structure: 3-0-0Credits : 3Program/Sem/Sec: B.Tech., IT., V-Sem.,PRE-REQUISITE:Basics related to Dynamics, Kinematics, Thermodynamics and Properties of an Ellipse.

**COURSE EDUCATIONAL OBJECTIVES (CEOs):**This course provides the knowledge on different laws associated with the motion of a satellite. The course gives the knowledge on launching a satellite into orbit with launch vehicles. The course also provides the knowledge on various subsystems, structures, thermal control, and applications of a satellite.

### COURSE OUTCOMES (COs): At the end of the course, students are able to

| CO 1        | List out the operational bands, Space craft control mechanisms, sensors and navigational |
|-------------|------------------------------------------------------------------------------------------|
|             | aids forsatellite applications(Remember-L1)                                              |
| CO 2        | Summarize the functions of satellite space segment, earth segment, Multiple access       |
|             | techniques and satellite services. (Understand-L2)                                       |
| CO 3        | <b>Illustrate</b> the operational principles of satellite power system and space craft   |
|             | Control mechanism. (Understand-L2)                                                       |
| <b>CO 4</b> | Outline the concepts of orbital mechanics & satellite communication and its              |
|             | application(Understand-L2)                                                               |
| 1           |                                                                                          |

|            |    |    |    |    | (  |    |    |    |    | ,  |    | /  |    |    |    |
|------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|
| COs        | PO | PS | PS | PS |
| COS        | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 | 01 | 02 | 03 |
| CO1        | 1  | -  | -  | -  | -  | 3  | 2  | -  | -  | -  | -  | 1  | 1  | -  | -  |
| CO2        | 1  | 1  | 1  | -  | -  | 2  | 1  | -  | -  | -  | -  | 1  | 2  | -  | -  |
| CO3        | 1  | 1  | 1  | -  | -  | 2  | 1  | -  | -  | -  | -  | 1  | 2  | -  | -  |
| <b>CO4</b> | 1  | 1  | 1  | -  | -  | 2  | 1  | -  | -  | -  | -  | 1  | 2  | -  | -  |

#### COURSE ARTICULATION MATRIX(Correlation between COs, POs & PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

## **TEXT BOOKS:**

**T1** Timothy Pratt, Charles Bostian, Jeremy Allnutt, "Satellite communications", John Wiley & Sons,2<sup>"d</sup> edition, 2003.

#### **REFERENCE BOOKS:**

- **R1** M. Richharia, "Satellite Communications Systems: Design principles", BS Publications, 2<sup>nd</sup> Edition, 2005.
- **R2** D.C Agarwal, "Satellite communications", Khanna Publications, 5<sup>th</sup>Edition,2006.
- **R3** Richard, Filipowsky Eugen 1 Muehllorf, 'Space Communication Systems', Prentice Hall 1995

## PART-B

## COURSE DELIVERY PLAN (LESSON PLAN):

| S.No. | Topics to be covered                                    | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|---------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Course Objectives                                       | 1                             | 10-07-2023                         |                                 | TLM2                            |                       |
| 2.    | Brief introduction about the course and its importance. | 1                             | 11-07-2023                         |                                 | TLM2                            |                       |
| 3.    | Need for Space Communications,.                         | 1                             | 13-07-2023                         |                                 | TLM2                            |                       |
| 4.    | Definition of a satellite and Orbit                     | 1                             | 15-07-2023                         |                                 | TLM2                            |                       |
| 5.    | General Structure of satellite<br>Communication         | 1                             | 17-07-2023                         |                                 | TLM2                            |                       |
| 6.    | Types of Spacecraft Orbits                              | 1                             | 18-07-2023                         |                                 | TLM2                            |                       |
| 7.    | Common satellite applications and missions              | 1                             | 20-07-2023                         |                                 | TLM2                            |                       |
| 8.    | Launch Vehicles and Launching of a satellite            | 1                             | 22-07-2023                         |                                 | TLM2                            |                       |
| 9.    | Satellite system and their functions-<br>(Structural,   | 1                             | 24-07-2023                         |                                 | TLM2                            |                       |
| 10.   | Thermal, power mechanisms, propulsion, etc)             | 1                             | 25-07-2023                         |                                 | TLM2                            |                       |
| 11.   | Revision                                                | 1                             | 27-07-2023                         |                                 | TLM2                            |                       |
| No. o | f classes required to complete UN                       |                               | No. of class                       | ses taken:                      |                                 |                       |

## **UNIT-I:** Introduction to Satellite Systems:

#### **UNIT-II: Orbital Mechanics:**

| S.No. | Topics to be covered                               | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|----------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Introduction and overview of Orbital Mechanics     | 1                             | 29-07-2023                         |                                 | TLM1                            | •                     |
| 2.    | Newton's laws of Force,                            | 1                             | 31-07-2023                         |                                 | TLM2                            |                       |
| 3.    | Fundamentals of Orbital Dynamics-<br>Kepler's laws | 1                             | 01-08-2023                         |                                 | TLM2                            |                       |
| 4.    | Orbital parameters                                 | 1                             | 03-08-2023                         |                                 | TLM2                            |                       |
| 5.    | Orbital determination                              | 1                             | 05-08-2023                         |                                 | TLM2                            |                       |
| 6.    | Orbital Perturbations-                             | 1                             | 07-08-2023                         |                                 | TLM1                            |                       |
| 7.    | Need for station keeping                           | 1                             | 08-08-2023                         |                                 | TLM2                            |                       |
| 8.    | GPS systems-Architecture of GPS,                   | 1                             | 10-08-2023                         |                                 | TLM2                            |                       |
| 9.    | Working Principle of GPS                           | 1                             | 12-08-2023                         |                                 | TLM2                            |                       |
| 10.   | Ground station or Earth station<br>Requirements    | 1                             | 14-08-2023                         |                                 | TLM1                            |                       |
| 11.   | Ground station or Earth station<br>Requirements    | 1                             | 17-08-2023                         |                                 | TLM2                            |                       |
| 12.   | Problems and Revision                              | 1                             | 19-08-2023                         |                                 | TLM1                            |                       |
| No. o | f classes required to complete UN                  | IT-II: 12                     |                                    | No. of clas                     | ses taken:                      |                       |

| S.No.  | Topics to be covered                                                   | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |  |  |
|--------|------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|--|
| 1.     | Introduction to Power system                                           | 1                             | 21-08-2023                         |                                 | TLM2                            |                       |  |  |
| 2.     | Bus electronics                                                        | 1                             | 22-08-2023<br>24-08-2023           |                                 | TLM2                            |                       |  |  |
| 3.     | Solar Panels: Silicon and Ga-As<br>Cells                               | 1                             | 26-08-2023                         |                                 | TLM2                            |                       |  |  |
| 4.     | Solar Panels: Silicon and Ga-As<br>Cells                               | 1                             | 04-09-2023                         |                                 | TLM2                            |                       |  |  |
| 5.     | Power generation capacity, efficiency                                  | 1                             | 05-09-2023                         |                                 | TLM1                            |                       |  |  |
| 6.     | Power generation capacity, efficiency                                  | 1                             | 07-09-2023                         |                                 | TLM2                            |                       |  |  |
| 7.     | Space Battery Systems                                                  | 1                             | 09-09-2023                         |                                 | TLM2                            |                       |  |  |
| 8.     | Battery Types, Characteristics ,                                       | 1                             | 11-09-2023                         |                                 | TLM2                            |                       |  |  |
| 9.     | Battery efficiency Parameters                                          | 1                             | 12-09-2023                         |                                 | TLM2                            |                       |  |  |
| 10.    | Telemetry of Satellite                                                 | 1                             | 14-09-2023                         |                                 | TLM2                            |                       |  |  |
| 11.    | Tracking of Satellite                                                  | 1                             | 16-09-2023                         |                                 | TLM2                            |                       |  |  |
| 12.    | Control (TT&C) functions                                               | 1                             | 18-09-2023                         |                                 | TLM2                            |                       |  |  |
| 13.    | Control (TT&C) functions                                               | 1                             | 19-09-2023                         |                                 | TLM2                            |                       |  |  |
| 14.    | Generally Employed<br>Communication Bands                              | 1                             | 21-09-2023                         |                                 | TLM2                            |                       |  |  |
| 15.    | Revision                                                               | 1                             | 23-09-2023                         |                                 |                                 |                       |  |  |
| No. of | No. of classes required to complete UNIT-III: 15 No. of classes taken: |                               |                                    |                                 |                                 |                       |  |  |

#### **UNIT-IV : Spacecraft Control:**

| S.No.                                           | Topics to be covered                                                     | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------------------------------------------------|--------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.                                              | Introduction to Spacecraft Control                                       | 1                             | 25-09-2023                         |                                 | TLM2                            |                       |
| 2.                                              | Control Requirements: Attitude<br>Control                                | 1                             | 26-09-2023                         |                                 | TLM2                            |                       |
| 3.                                              | Station keeping functions, type of control maneuvers                     | 1                             | 28-09-2023                         |                                 | TLM2                            |                       |
| 4.                                              | Stabilization Schemes: Spin stabilization                                | 1                             | 30-09-2023                         |                                 | TLM2                            |                       |
| 5.                                              | gravity gradient method,                                                 | 1                             | 02-10-2023                         |                                 | TLM2                            |                       |
| 6.                                              | 3 axis stabilization                                                     | 1                             | 03-10-2023                         |                                 | TLM2                            |                       |
| 7.                                              | Commonly Used Control Systems:<br>Mass expulsion systems,                | 1                             | 05-10-2023                         |                                 | TLM2                            |                       |
| 8.                                              | Momentum exchange systems.                                               | 1                             | 07-10-2023                         |                                 | TLM2                            |                       |
| 9.                                              | Gyro and Magnetic Torque -sensors,<br>Star and sun sensor, Earth sensor. | 1                             | 09-10-2023                         |                                 | TLM2                            |                       |
| 10.                                             | Magnetometers and Inertial Sensors.                                      | 1                             | 11-10-2023                         |                                 | TLM2                            |                       |
| 11.                                             | Revision                                                                 | 1                             | 12-10-2023                         |                                 | TLM2                            |                       |
| No. of classes required to complete UNIT-IV: 11 |                                                                          |                               |                                    | No. of class                    | sses taken:                     |                       |

| S.No. | Topics to be covered                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|-------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Introduction, GPS architecture      | 1                             | 14-10-2023                         |                                 | TLM2                            |                       |
| 2.    | Location principle                  | 1                             | 16-10-2023                         |                                 | TLM2                            |                       |
| 3.    | Location principle                  | 1                             | 17-10-2023                         |                                 | TLM2                            |                       |
| 4.    | Direct to home, home receiver       | 1                             | 19-10-2023                         |                                 | TLM2                            |                       |
| 5.    | Satellite mobile services           | 1                             | 21-10-2023                         |                                 | TLM2                            |                       |
| 6.    | VSAT, MSAT, RADARSAT                | 1                             | 23-10-2023                         |                                 | TLM2                            |                       |
| 7.    | IRNSS Constellation                 | 1                             | 24-10-2023                         |                                 | TLM2                            |                       |
| 8.    | IRNSS Constellation                 | 1                             | 02-10-2023                         |                                 | TLM2                            |                       |
| 9.    | Satellite structures and materials  | 1                             | 26-10-2023                         |                                 | TLM2                            |                       |
| 10.   | Latest Satellites                   | 1                             | 28-10-2023                         |                                 |                                 |                       |
| No. o | f classes required to complete UNIT | -V: 10                        |                                    | No. of clas                     | sses taken:                     |                       |

## **UNIT-V : Satellite Services and Applications:**

| Teaching Learning Methods |                |      |                                 |  |  |
|---------------------------|----------------|------|---------------------------------|--|--|
| TLM1                      | Chalk and Talk | TLM4 | Demonstration (Lab/Field Visit) |  |  |
| TLM2                      | PPT            | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |  |  |
| TLM3                      | Tutorial       | TLM6 | Group Discussion/Project        |  |  |

## PART-C

## EVALUATION PROCESS (R17 Regulations):

| Evaluation Task                                            | Marks |
|------------------------------------------------------------|-------|
| Assignment-I (Unit-I)                                      | A1=5  |
| Assignment-II (Unit-II)                                    | A2=5  |
| I-Mid Examination (Units-I & II)                           | M1=20 |
| I-Quiz Examination (Units-I & II)                          | Q1=10 |
| Assignment-III (Unit-III)                                  | A3=5  |
| Assignment-IV (Unit-IV)                                    | A4=5  |
| Assignment-V (Unit-V)                                      | A5=5  |
| II-Mid Examination (Units-III, IV & V)                     | M2=20 |
| II-Quiz Examination (Units-III, IV & V)                    | Q2=10 |
| Attendance                                                 | B=5   |
| Assignment Marks = Best Four Average of A1, A2, A3, A4, A5 | A=5   |
| Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)             | M=20  |
| Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)            | B=10  |
| Cumulative Internal Examination (CIE) : A+B+M+Q            | 40    |
| Semester End Examination (SEE)                             | 60    |
| Total Marks = CIE + SEE                                    | 100   |

## PART-D

### **PROGRAMME OUTCOMES (POs):**

| PO 1        | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering                                                                                                   |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | fundamentals, and an engineering specialization to the solution of complex engineering                                                                                                    |
|             | problems.                                                                                                                                                                                 |
| <b>PO 2</b> | Problem analysis: Identify, formulate, review research literature, and analyze complex                                                                                                    |
|             | engineering problems reaching substantiated conclusions using first principles of mathematics,                                                                                            |
|             | natural sciences, and engineering sciences.                                                                                                                                               |
| <b>PO 3</b> | Design/development of solutions: Design solutions for complex engineering problems and                                                                                                    |
|             | design system components or processes that meet the specified needs with appropriate                                                                                                      |
|             | consideration for the public health and safety, and the cultural, societal, and environmental                                                                                             |
|             | considerations.                                                                                                                                                                           |
| PO 4        | Conduct investigations of complex problems: Use research-based knowledge and research                                                                                                     |
|             | methods including design of experiments, analysis and interpretation of data, and synthesis of                                                                                            |
| DO 5        | the information to provide valid conclusions.                                                                                                                                             |
| PO 5        | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern                                                                                                |
|             | engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations                                                    |
| PO 6        | The engineer and society: Apply reasoning informed by the contextual knowledge to assess                                                                                                  |
| 100         | societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to                                                                                       |
|             | the professional engineering practice                                                                                                                                                     |
| <b>PO 7</b> | <b>Environment and sustainability</b> : Understand the impact of the professional engineering                                                                                             |
| 101         | solutions in societal and environmental contexts, and demonstrate the knowledge of, and need                                                                                              |
|             | for sustainable development.                                                                                                                                                              |
| <b>PO 8</b> | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and                                                                                               |
|             | norms of the engineering practice.                                                                                                                                                        |
| PO 9        | Individual and team work: Function effectively as an individual, and as a member or leader in                                                                                             |
|             | diverse teams, and in multidisciplinary settings.                                                                                                                                         |
| PO 10       | Communication: Communicate effectively on complex engineering activities with the                                                                                                         |
|             | engineering community and with society at large, such as, being able to comprehend and write                                                                                              |
|             | effective reports and design documentation, make effective presentations, and give and receive                                                                                            |
|             | clear instructions.                                                                                                                                                                       |
| PO 11       | Project management and finance: Demonstrate knowledge and understanding of the                                                                                                            |
|             | engineering and management principles and apply these to one's own work, as a member and                                                                                                  |
| DO 12       | leader in a team, to manage projects and in multidisciplinary environments.                                                                                                               |
| PO 12       | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to engage in independent and life long learning in the breadest context of technological change. |
|             | independent and life-long learning in the broadest context of technological change.                                                                                                       |

## PROGRAMME SPECIFIC OUTCOMES (PSOs):

| PSO 1 | Communication: Design and develop modern communication technologies for building the           |
|-------|------------------------------------------------------------------------------------------------|
|       | inter disciplinary skills to meet current and future needs of industry.                        |
| PSO 2 | VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or        |
|       | systems and Implement real time applications in the field of VLSI and Embedded Systems         |
|       | using relevant tools                                                                           |
| PSO 3 | Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues |
|       | related to real time applications                                                              |

Course Instructor Mr.V.V.Rama Krishna Course Coordinator Mr.V.V.Rama Krishna Module Coordinator Dr.M.V.Sudhakar HOD Dr. Y. Amar Babu



## DEPARTMENT OF ELECTRONICS AND COMMUNICATION

# **COURSE HANDOUT**

## PART-A

| Name of Course Instructor | : M. Sivasankara Rao                    |               |
|---------------------------|-----------------------------------------|---------------|
| Course Name & Code        | : SATELLITE TECHNOLOGY - 20EC81         |               |
| L-T-P Structure           | : 3-0-0                                 | Credits : 3   |
| Program/Sem/Sec           | : B.Tech., IT., V-Sem. B.Sec.           | A.Y : 2023-24 |
| PRE-REQUISITE             | : Dynamics, Kinematics, Thermodynamics. |               |

**COURSE EDUCATIONAL OBJECTIVES (CEOs):** This course provides the knowledge on different laws associated with the motion of a satellite, launching a satellite into orbit with launch vehicles, subsystems, structures, thermal control and applications.

#### COURSE OUTCOMES (COs): At the end of the course, students are able to

| CO 1 | List out the operational bands, space craft control mechanisms, sensors and navigational aids                                         |
|------|---------------------------------------------------------------------------------------------------------------------------------------|
|      | for satellite applications (Remember-L1)                                                                                              |
| CO 2 | Summarize the functions of satellite space segment, earth segment, multiple access techniques and satellite services. (Understand-L2) |
| CO 3 | Illustrate the operational principles of satellite power system and space craft control mechanism. (Understand-L2)                    |
| CO 4 | Outline the concepts of orbital mechanics & satellite communication and its applications (Understand-L2)                              |

| COs | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | 1   | -   | -   | -   | -   | 3   | 2   | -   | -   | -    | -    | 1    | 1    | -    | -    |
| CO2 | 1   | 1   | 1   | -   | -   | 2   | 1   | -   | -   | -    | -    | 1    | 2    | -    | -    |
| CO3 | 1   | 1   | 1   | -   | -   | 2   | 1   | -   | -   | -    | -    | 1    | 2    | -    | -    |
| CO4 | 1   | 1   | 1   | I   | -   | 2   | 1   | -   | -   | -    | -    | 1    | 2    | I    | -    |

#### COURSE ARTICULATION MATRIX (Correlation between COs, POs & PSOs):

Note: Enter Correlation Levels 1 or 2 or 3. If there is no correlation, put '-'

1- Slight (Low), 2 – Moderate (Medium), 3 - Substantial (High).

## **TEXT BOOKS:**

- **T1** Timothy Pratt, Charles Bostian, Jeremy Allnutt, "Satellite communications", John Wiley & Sons,2<sup>"d</sup> edition, 2003.
- T2 Dennis Roddy, "Satellite communications", Tata McGraw Hills, 4th Edition, 2009.

#### **REFERENCE BOOKS:**

- **R1** M. Richharia, "Satellite Communications Systems: Design principles", BS Publications, 2' <sup>d</sup> Edition, 2005.
- R2 D.C Agarwal, "Satellite communications", Khanna Publications, 5\* Edition, 2006.

## PART-B

## COURSE DELIVERY PLAN (LESSON PLAN): UNIT-I: Introduction to Satellite Systems:

| S.No. | Topics to be covered                                                           | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |  |
|-------|--------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|--|
| 1.    | Course Objectives                                                              | 1                             | 11-07-2023                         |                                 | TLM2                            |                       |  |
| 2.    | Brief introduction about the course and its importance.                        | 1                             | 13-07-2023                         |                                 | TLM2                            |                       |  |
| 3.    | Need of Space Communication,<br>Common satellite applications<br>and missions. | 1                             | 14-07-2023                         |                                 | TLM2                            |                       |  |
| 4.    | General Structure of satellite<br>Communication system.                        | 1                             | 15-07-2023                         |                                 | TLM2                            |                       |  |
| 5.    | Types of Spacecraft Orbits, Launch vehicles.                                   | 1                             | 18-07-2023                         |                                 | TLM2                            |                       |  |
| 6.    | Satellite subsystems and their functions – structure.                          | 1                             | 20-07-2023                         |                                 | TLM2                            |                       |  |
| 7.    | Satellite subsystems and their functions – thermal mechanisms.                 | 1                             | 21-07-2023                         |                                 | TLM2                            |                       |  |
| 8.    | Satellite subsystems and their functions – power, propulsion.                  | 1                             | 22-07-2023                         |                                 | TLM2                            |                       |  |
| 9.    | Satellite subsystems and their functions – Guidance and control.               | 1                             | 25-07-2023                         |                                 | TLM2                            |                       |  |
| 10.   | Satellite subsystems and their functions – bus electronics.                    | 1                             | 27-07-2023                         |                                 | TLM2                            |                       |  |
| 11.   | Revision of Unit -1                                                            | 1                             | 28-07-2023                         |                                 | TLM2                            |                       |  |
| No. o | No. of classes required to complete UNIT-I:11 No. of classes taken:            |                               |                                    |                                 |                                 |                       |  |

#### **UNIT-II: Orbital Mechanics:**

| S.No. | Topics to be covered                                          | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|---------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Introduction and overview of Orbital<br>Mechanics             | 1                             | 29-07-2023                         |                                 | TLM2                            |                       |
| 2.    | Fundamentals of Orbital Dynamics –<br>Kepler's laws.          | 1                             | 01-08-2023                         |                                 | TLM2                            |                       |
| 3.    | Fundamentals of Orbital Dynamics –<br>Kepler's laws           | 1                             | 03-08-2023                         |                                 | TLM2                            |                       |
| 4.    | Orbital parameters                                            | 1                             | 04-08-2023                         |                                 | TLM2                            |                       |
| 5.    | Orbital parameters                                            | 1                             | 05-08-2023                         |                                 | TLM2                            |                       |
| 6.    | Orbital Perturbations                                         | 1                             | 08-08-2023                         |                                 | TLM2                            |                       |
| 7.    | Need for station keeping.                                     | 1                             | 10-08-2023                         |                                 | TLM2                            |                       |
| 8.    | Need for Co-ordinate systems.                                 | 1                             | 11-08-2023                         |                                 | TLM2                            |                       |
| 9.    | GPS System – architecture of GPS                              | 1                             | 17-08-2023                         |                                 | TLM2                            |                       |
| 10.   | working principle of GPS , merits, demerits and applications, | 1                             | 18-08-2023                         |                                 | TLM2                            |                       |
| 11.   | Ground/Earth station network requirements.                    | 1                             | 19-08-2023                         |                                 | TLM2                            |                       |
| 12.   | Revision of Unit -2                                           | 1                             | 22-08-2023                         |                                 | TLM2                            |                       |
| No. o | f classes required to complete UN                             | IT-II: 12                     |                                    | No. of clas                     | ses taken:                      |                       |

#### UNIT-III: Power System and Bus Electronics:

| S.No. | Topics to be covered         | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Introduction to Power system | 1                             | 24-08-2023                         |                                 | TLM2                            |                       |
| 2.    | Bus electronics              | 1                             | 25-08-2023                         |                                 | TLM2                            |                       |

| 3.    | Solar Panels: Silicon and Ga-As Cells.            | 1 | 26-08-2023            | TLM2 |  |
|-------|---------------------------------------------------|---|-----------------------|------|--|
| 4.    | Power generation capacity, efficiency.            | 1 | 05-09-2023            | TLM2 |  |
| 5.    | Space Battery Systems.                            | 1 | 07-09-2023            | TLM2 |  |
| 6.    | Battery Types, Characteristics.                   | 1 | 08-09-2023            | TLM2 |  |
| 7.    | Battery efficiency Parameters, power electronics. | 1 | 12-09-2023            | TLM2 |  |
| 8.    | Telemetry of satellite                            | 1 | 14-09-2023            | TLM2 |  |
| 9.    | Command Control and monitoring functions.         | 1 | 15-09-2023            | TLM2 |  |
| 10.   | Communication bands - and applications.           | 1 | 16-09-2023            | TLM2 |  |
| 11.   | Revision of Unit -3                               | 1 | 21-09-2023            | TLM2 |  |
| No. o | f classes required to complete UN                 | l | No. of classes taken: |      |  |

#### **UNIT-IV : Spacecraft Control:**

| S.No.  | Topics to be covered                                                     | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|--------|--------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.     | Introduction to Spacecraft Control                                       | 1                             | 22-09-2023                         |                                 | TLM2                            |                       |
| 2.     | Control Requirements: Attitude<br>Control                                | 1                             | 23-09-2023                         |                                 | TLM2                            |                       |
| 3.     | Station keeping functions, type of control maneuvers.                    | 1                             | 26-09-2023                         |                                 | TLM2                            |                       |
| 4.     | Stabilization Schemes: Spin stabilization.                               | 1                             | 28-09-2023                         |                                 | TLM2                            |                       |
| 5.     | Stabilization Schemes: gravity gradient method, 3 axis stabilization.    | 1                             | 29-09-2023                         |                                 | TLM2                            |                       |
| 6.     | Control Systems: Mass expulsion systems.                                 | 1                             | 30-09-2023                         |                                 | TLM2                            |                       |
| 7.     | Control Systems: Momentum<br>exchange systems.                           | 1                             | 03-10-2023                         |                                 | TLM2                            |                       |
| 8.     | Gyro and Magnetic Torque -sensors,<br>Star and sun sensor, Earth sensor. | 1                             | 05-10-2023                         |                                 | TLM2                            |                       |
| 9.     | Magnetometers and Inertial Sensors.                                      | 1                             | 06-10-2023                         |                                 | TLM2                            |                       |
| 10.    | Revision of Unit -4                                                      | 1                             | 07-10-2023                         |                                 |                                 |                       |
| No. of | f classes required to complete UNI                                       | T-IV: 10                      |                                    | No. of class                    | ses taken:                      |                       |

## UNIT-V : Satellite services and applications:

| S.No. | Topics to be covered                                | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|-----------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Introduction to Satellite services and applications | 1                             | 10-10-2023                         |                                 | TLM2                            |                       |
| 2.    | GPS location and principle.                         | 1                             | 12-10-2023                         |                                 | TLM2                            |                       |
| 3.    | GPS location and principle.                         | 1                             | 13-10-2023                         |                                 | TLM2                            |                       |
| 4.    | Direct to Home, Home receiver                       |                               | 17-10-2023                         |                                 | TLM2                            |                       |
| 5.    | Satellite Mobile Services: VSAT.                    | 1                             | 19-10-2023                         |                                 | TLM2                            |                       |
| 6.    | Satellite Mobile Services: MSAT,<br>RADARSAT.       | 1                             | 20-10-2023                         |                                 | TLM2                            |                       |
| 7.    | IRNSS constellation.                                | 1                             | 21-10-2023                         |                                 | TLM2                            |                       |
| 8.    | Satellite structures and materials.                 | 1                             | 26-10-2023                         |                                 | TLM2                            |                       |
| 9.    | Revision of Unit -5                                 | 1                             | 27-10-2023                         |                                 | TLM2                            |                       |
| No. o | f classes required to complete UNIT                 | -V: 9                         |                                    | No. of class                    | sses taken:                     |                       |

# Contents beyond the Syllabus:

| S.No. | Topics to be covered                                                     | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|--------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | Information about NaviC & some recently launched satellites information. | 1                             | 28-10-2023                         |                                 | TLM2                            |                       |

| Teaching I | Teaching Learning Methods |      |                                 |  |  |  |  |
|------------|---------------------------|------|---------------------------------|--|--|--|--|
| TLM1       | Chalk and Talk            | TLM4 | Demonstration (Lab/Field Visit) |  |  |  |  |
| TLM2       | PPT                       | TLM5 | ICT (NPTEL/Swayam Prabha/MOOCS) |  |  |  |  |
| TLM3       | Tutorial                  | TLM6 | Group Discussion/Project        |  |  |  |  |

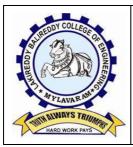
# PART-C

# EVALUATION PROCESS (R17 Regulations):

| Evaluation Task                                            | Marks |
|------------------------------------------------------------|-------|
| Assignment-I (Unit-I)                                      | A1=5  |
| Assignment-II (Unit-II)                                    | A2=5  |
| I-Mid Examination (Units-I & II)                           | M1=20 |
| I-Quiz Examination (Units-I & II)                          | Q1=10 |
| Assignment-III (Unit-III)                                  | A3=5  |
| Assignment-IV (Unit-IV)                                    | A4=5  |
| Assignment-V (Unit-V)                                      | A5=5  |
| II-Mid Examination (Units-III, IV & V)                     | M2=20 |
| II-Quiz Examination (Units-III, IV & V)                    | Q2=10 |
| Attendance                                                 | B=5   |
| Assignment Marks = Best Four Average of A1, A2, A3, A4, A5 | A=5   |
| Mid Marks =75% of Max(M1,M2)+25% of Min(M1,M2)             | M=20  |
| Quiz Marks =75% of Max(Q1,Q2)+25% of Min(Q1,Q2)            | B=10  |
| Cumulative Internal Examination (CIE) : A+B+M+Q            | 40    |
| Semester End Examination (SEE)                             | 60    |
| Total Marks = CIE + SEE                                    | 100   |

## PART-D

### **PROGRAMME OUTCOMES (POs):**


| PO 1        | <b>Engineering knowledge</b> : Apply the knowledge of mathematics, science, engineering                                                      |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------|
|             | fundamentals, and an engineering specialization to the solution of complex engineering                                                       |
|             | problems.                                                                                                                                    |
| <b>PO 2</b> | Problem analysis: Identify, formulate, review research literature, and analyze complex                                                       |
|             | engineering problems reaching substantiated conclusions using first principles of mathematics,                                               |
|             | natural sciences, and engineering sciences.                                                                                                  |
| <b>PO 3</b> | Design/development of solutions: Design solutions for complex engineering problems and                                                       |
|             | design system components or processes that meet the specified needs with appropriate                                                         |
|             | consideration for the public health and safety, and the cultural, societal, and environmental                                                |
|             | considerations.                                                                                                                              |
| PO 4        | Conduct investigations of complex problems: Use research-based knowledge and research                                                        |
|             | methods including design of experiments, analysis and interpretation of data, and synthesis of                                               |
| DO 5        | the information to provide valid conclusions.                                                                                                |
| PO 5        | Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern                                                   |
|             | engineering and IT tools including prediction and modelling to complex engineering activities                                                |
| <b>PO 6</b> | with an understanding of the limitations<br><b>The engineer and society</b> : Apply reasoning informed by the contextual knowledge to assess |
| 100         | societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to                                          |
|             | the professional engineering practice                                                                                                        |
| <b>PO 7</b> | <b>Environment and sustainability</b> : Understand the impact of the professional engineering                                                |
| 107         | solutions in societal and environmental contexts, and demonstrate the knowledge of, and need                                                 |
|             | for sustainable development.                                                                                                                 |
| <b>PO 8</b> | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and                                                  |
|             | norms of the engineering practice.                                                                                                           |
| <b>PO 9</b> | Individual and team work: Function effectively as an individual, and as a member or leader in                                                |
|             | diverse teams, and in multidisciplinary settings.                                                                                            |
| PO 10       | Communication: Communicate effectively on complex engineering activities with the                                                            |
|             | engineering community and with society at large, such as, being able to comprehend and write                                                 |
|             | effective reports and design documentation, make effective presentations, and give and receive                                               |
|             | clear instructions.                                                                                                                          |
| PO 11       | Project management and finance: Demonstrate knowledge and understanding of the                                                               |
|             | engineering and management principles and apply these to one's own work, as a member and                                                     |
| <b>DO 1</b> | leader in a team, to manage projects and in multidisciplinary environments.                                                                  |
| PO 12       | Life-long learning: Recognize the need for, and have the preparation and ability to engage in                                                |
|             | independent and life-long learning in the broadest context of technological change.                                                          |

## **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

| PSO 1 | Communication: Design and develop modern communication technologies for building the           |
|-------|------------------------------------------------------------------------------------------------|
|       | inter disciplinary skills to meet current and future needs of industry.                        |
| PSO 2 | VLSI and Embedded Systems: Design and Analyze Analog and Digital Electronic Circuits or        |
|       | systems and Implement real time applications in the field of VLSI and Embedded Systems         |
|       | using relevant tools                                                                           |
| PSO 3 | Signal Processing: Apply the Signal processing techniques to synthesize and realize the issues |
|       | related to real time applications                                                              |

Course Instructor (M.SivasankaraRao) Course Coordinator (V V Ramakrishna) Module CoordinatorHOD(Dr.M.V.Sudhakara Reddy)(Dr.Y.Amara Babu)

## LAKIREDDY BALI REDDY COLLEGE OF ENGINEERING



(AUTONOMOUS) Accredited by NAAC with 'A' Grade & NBA (Under Tier - I), An ISO 21001:2018,14001:2015,50001:2018 Certified Institution Approved by AICTE, New Delhi and Affiliated to JNTUK, Kakinada L.B. REDDY NAGAR, MYLAVARAM, KRISHNA DIST., A.P.-521 230. http://lbrce.ac.in/it/index.php\_hodit@lbrce.ac.in , Phone: 08659-222933, Fax: 08659-222931

**DEPARTMENT OF INFORMATION TECHNOLOGY** 

## **COURSE HANDOUT**

## PART-A

Name of Course Instructor: A.Sarvani

| Course Name & Code | : Machine Learning & 20AD04 |                      |
|--------------------|-----------------------------|----------------------|
| L-T-P Structure    | : 3-0-0                     | Credits: 3           |
| Program/Sem/Sec    | : B.Tech/V Sem/Sec-A        | <b>A.Y.:</b> 2023-24 |
|                    |                             |                      |

PREREQUISITE : Probability and Statistics, Data Warehousing and Data Mining

**Course Educational Objective:** The objective of this lab is to make use of Data sets in implementing the machine learning algorithms in any suitable language of choice.

Course Outcomes (CO): At the end of this course, the student will be able to:

- **CO1:** Apply the appropriate pre-processing techniques on data set. (**Apply L3**)
- **CO2:** Implement supervised Machine Learning algorithms. (Apply L3)
- **CO3:** Implement unsupervised Machine Learning algorithms (**Apply L3**)
- **CO 4:** Improve individual / teamwork skills, communication & report writing skills with ethical values.

| COs | PO<br>1 | PO<br>2 | РО<br>3 | РО<br>4 | PO<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | РО<br>9 | PO<br>10 | PO<br>11 | PO<br>12 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|----------|----------|----------|----------|----------|
| CO1 | -       | 2       | -       | 2       | 3       | -       | -       | -       | -       | -        | -        | -        | -        | -        | -        |
| CO2 | -       | 2       | -       | 2       | 3       | -       | -       | -       | -       | -        | -        | -        | -        | -        | -        |
| CO3 | 2       | 2       | -       | -       | 3       | -       | -       | -       | -       | -        | -        | -        | -        | -        | -        |
| CO4 | -       | -       | -       | -       | -       | -       | -       | -       | -       | 2        | -        | -        | -        | -        | -        |

1- Slight(Low), 2 - Moderate(Medium), 3 - Substantial (High).

## COURSE DELIVERY PLAN (LESSON PLAN): Section-A

| S.N | CYCLE | Date       | List Of Programmes                                                                 | Signature |
|-----|-------|------------|------------------------------------------------------------------------------------|-----------|
| 0   |       |            |                                                                                    | 0         |
| 1   | -     | 10-07-2023 | Introduction of lab                                                                |           |
| 2   | 1     | 17-07-2023 | Basic statistical functions for data exploration                                   |           |
| 3   | 2     | 24-07-2023 | Data Visualization: Box plot, scatter plot, histogram                              |           |
| 4   | 3     | 31-07-2023 | Data Pre-processing: Handling missing values, outliers, normalization, Scaling     |           |
| 5   | 4     | 07-08-2023 | Principal Component Analysis (PCA)                                                 |           |
| 6   | 5     | 07-08-2023 | Singular Value Decomposition (SVD)                                                 |           |
| 7   | 6     | 14-08-2023 | Linear Discriminant Analysis (LDA)                                                 |           |
| 8   | 7     | 21-08-2023 | Regression Analysis: Linear regression, Logistic regression, Polynomial regression |           |
| 9   | 8     | 04-09-2023 | Regularized Regression                                                             |           |
| 10  | 9     | 04-09-2023 | K-Nearest Neighbour (kNN) Classifier                                               |           |
| 11  | 10    | 18-09-2023 | Support Vector Machines (SVMs)                                                     |           |
| 12  | 11    | 25-09-2023 | Random Forest model                                                                |           |
| 13  | -     | 09-10-2023 | Revision and practice                                                              |           |
| 14  | -     | 16-10-2023 | Internal Exam                                                                      |           |

# ACADEMIC CALENDAR:

| Description                            | From       | То         | Weeks |
|----------------------------------------|------------|------------|-------|
| Commencement of Class Work             |            | 18-07-2022 |       |
| I Phase of Instructions                | 18-07-2022 | 10-09-2022 | 8W    |
| Technical Training/Value added courses | 12-09-2022 | 24-09-2022 | 2W    |
| I Mid Examinations                     | 26-09-2022 | 01-10-2022 | 1W    |
| II Phase of Instructions               | 03-10-2022 | 26-11-2022 | 8W    |
| II Mid Examinations                    | 28-11-2022 | 03-12-2022 | 1W    |
| Preparation and Practicals             | 05-12-2022 | 10-12-2022 | 1W    |
| Semester End Examinations              | 12-12-2022 | 24-12-2022 | 2W    |

## ACADEMIC CALENDAR

| Description                | From              | То         | Weeks |
|----------------------------|-------------------|------------|-------|
| B.                         | Tech (V Semester) |            |       |
| Commencement of Class Work |                   | 03-07-2023 |       |
| I Phase of Instructions    | 03-07-2023        | 26-08-2023 | 8 W   |
| I MID Examinations         | 28-08-2023        | 02-09-2023 | 1 W   |
| II Phase of Instructions   | 04-09-2023        | 28-10-2023 | 8 W   |
| II MID Examinations        | 30-10-2023        | 04-11-2023 | 1 W   |
| Preparation and Practical  | 06-11-2023        | 11-11-2023 | 1 VV  |
| Semester End Examinations  | 13-11-2023        | 25-11-2023 | 2 W   |

## **PROGRAMME OUTCOMES (POs):**

| <b>DO 4</b> | Engineering knowledge: Apply the knowledge of mathematics, science, engineering                                                                                                                                                                                                                           |
|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PO 1        | fundamentals, and an engineering specialization to the solution of complex engineering problems.                                                                                                                                                                                                          |
| PO 2        | <b>Problem analysis</b> : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.                                                                 |
|             | <b>Design/development of solutions</b> : Design solutions for complex engineering problems and                                                                                                                                                                                                            |
| PO 3        | design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental                                                                                                                        |
|             | considerations.                                                                                                                                                                                                                                                                                           |
| PO 4        | <b>Conduct investigations of complex problems</b> : Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.                                                                |
| PO 5        | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.                                                                 |
| PO 6        | <b>The engineer and society</b> : Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant                                                                                                         |
|             | to the professional engineering practice.                                                                                                                                                                                                                                                                 |
| PO 7        | <b>Environment and sustainability</b> : Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.                                                                                   |
| PO 8        | <b>Ethics</b> : Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.                                                                                                                                                                    |
| PO 9        | <b>Individual and team work</b> : Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.                                                                                                                                                   |
| P010        | <b>Communication</b> : Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions. |
|             | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the                                                                                                                                                                                                                    |
| P011        | engineering and management principles and apply these to one's own work, as a member<br>and leader in a team, to manage projects and in multidisciplinary environments.                                                                                                                                   |
|             | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to engage                                                                                                                                                                                                        |
| P012        | in independent and life-long learning in the broadest context of technological change                                                                                                                                                                                                                     |

# **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

| PSO 1 | Organize, Analyze and interpret the data to extract meaningful conclusions.           |
|-------|---------------------------------------------------------------------------------------|
| PSO 2 | Design, Implement and Evaluate a computer-based system to meet desired needs          |
| PSO 3 | Develop IT application services with the help of different current engineering tools. |

| Title                  | Course Instructor | Course Instructor Course M |                    | Head of the<br>Department |  |  |
|------------------------|-------------------|----------------------------|--------------------|---------------------------|--|--|
| Name of<br>the Faculty | A.Sarvani         | Dr. K. Devi Priya          | Mrs. M. Hema Latha | Dr.B.Srinivasa Rao        |  |  |
| Signature              |                   |                            |                    |                           |  |  |



### **DEPARTMENT OF INFORMATION TECHNOLOGY**

#### **COURSE HANDOUT**

| PROGRAM            | : B.Tech., V-Sem., IT – R20 Regulation (B-sec) |
|--------------------|------------------------------------------------|
| ACADEMIC YEAR      | : 2022-23                                      |
| COURSE NAME & CODE | : Computer Networks Lab–20CS12                 |
| L-T-P STRUCTURE    | <b>: 0</b> -0-3                                |
| COURSE CREDITS     | :1                                             |
| COURSE INSTRUCTOR  | : R Pavitra                                    |
| PRE-REQUISITE      | : Network Simulation -2,Python,C++             |

**COURSE OBJECTIVE:** In this course student will learn about how to build and understanding the fundamental concepts of computer networking and gain expertise in some specific areas of networking such as the design and maintenance of individual networks.

#### COURSE OUTCOMES (CO)

CO1: Implement Network layer functionalities using NS3 simulator. (Apply-L3)

CO2: Demonstrate Transport Layer functionalities. (Understand-L2)

CO3: Analyze Application layer protocols using Wireshark. (Analyze – L4)

CO 4: Improve individual / teamwork skills, communication & report writing skills with ethical values.

COURSE ARTICULATION MATRIX (Correlation between COs&POs,PSOs):

| COs | PO<br>1 | PO<br>2 | PO<br>3 | PO<br>4 | РО<br>5 | PO<br>6 | PO<br>7 | PO<br>8 | РО<br>9 | PO<br>10       | PO<br>11 | PO<br>12 | PSO<br>1 | PSO<br>2 | PSO<br>3 |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------------|----------|----------|----------|----------|----------|
| CO1 | 2       | 2       | 2       |         |         |         |         |         |         |                |          | 1        | 2        | 2        | 2        |
| CO2 | 2       | 3       | 2       |         |         |         |         |         |         |                |          | 1        | 2        | 3        | 3        |
| CO3 | 2       | 2       | 2       |         |         |         |         |         |         |                |          | 1        | 3        | 2        | 2        |
| CO4 | -       | -       | -       | -       | -       | -       | -       | 2       | 2       | 2              | -        | -        | -        | -        | -        |
|     | •       | ]       | I- Slig | tht (Lo | w), 2   | - Mod   | lerate  | (Medi   | um), 3  | <b>3 -</b> Sut | stanti   | al (Hi   | gh).     |          | •        |

### **BOS APPROVED TEXT BOOKS:**

- **T1** B. A. Frouzan, Data Communication, Tata Mc Graw Hill.
- **T2** A. S. Tanenbaum –Computer Network: Second Ed. Prentice Hall, India (tan).

## **BOS APPROVED REFERENCE BOOKS:**

- **R1** William Stallings, "Data and Computer Communication", Pearson Prentice Hall India, 8 th Edition.
- **R2** Douglas Comer, Internetworking with TCP/IP, Prentice Hall of India, Volume 1, 6th Edition, 2009.
- **R3** Richard Stevens, "TCP/IP Illustrated", Addison-Wesley, Volume 1, 2001.
- R4 http://www.cse.iitk.ac.in/users/dheeraj/cs425/.
- **R5** http://www.tcpipguide.com/free/t\_OSIReferenceModelLayers.htm

### **COURSE DELIVERY PLAN (LESSON PLAN): Section-A**

| S.No. | Programs to be covered                                                                                     | No. of<br>Classes<br>Required | Tentative<br>Date of<br>Completion | Actual<br>Date of<br>Completion | Teaching<br>Learning<br>Methods | HOD<br>Sign<br>Weekly |
|-------|------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------|---------------------------------|---------------------------------|-----------------------|
| 1.    | To gain familiarity with<br>the basic network<br>commands & utilities<br>available in the Linux OS         | 3                             | 5-07-2023                          |                                 | TLM8/TLM5                       |                       |
| 2.    | To learn about network<br>layer tools and analyze<br>captures for congestion.                              | 3                             | 12-07-2023                         |                                 | TLM8/TLM5                       |                       |
| 3.    | To learn about queue<br>management techniques,<br>and global routing in ns3.                               | 6                             | 19-07-2023<br>26-07-2023           |                                 | TLM8/TLM5/TLM4                  |                       |
| 4.    | To learn about<br>broadcasting,<br>multicasting, and bridging<br>in a Local Area Network<br>using ns3.     | 6                             | 02-08-2023<br>9-08-2023            |                                 | TLM8/TLM5/TLM4                  |                       |
| 5.    | To learn about Wi-Fi and<br>Mobile Adhoc topologies<br>with ns3.                                           | 3                             | 16-08-2023                         |                                 | TLM8/TLM5/TLM4                  |                       |
| 6.    | To introduce Socket<br>Programming in TCP and<br>UDP.                                                      | 3                             | 23-08-2023                         |                                 | TLM8/TLM5                       |                       |
| 7.    | Observations of<br>Transmission Control<br>Protocol (TCP)<br>Connection states, Flags<br>and Flow Control. | 3                             | 13-9-2023                          |                                 | TLM8/TLM5                       |                       |
| 8.    | To learn Transmission<br>Control Protocol (TCP)<br>Flow Control, Error                                     | 6                             | 20-9-2023<br>27-9-2023             |                                 | TLM8/TLM5                       |                       |

|     | Control, and Congestion.                                                                                    |   |            |           |  |
|-----|-------------------------------------------------------------------------------------------------------------|---|------------|-----------|--|
| 9.  | To introduce Wireshark & tcpdump, and                                                                       | 6 | 4-10-2023  | TLM8/TLM5 |  |
| 9.  | observation of packets in a LAN network.                                                                    | 6 | 11-10-2023 |           |  |
| 10. | To analyze HTTP packets<br>using Wireshark tool, and<br>understand the records<br>returned by a DNS server. | 3 | 18-10-2023 | TLM8/TLM5 |  |
| 11. | Lab-Internal-                                                                                               | 3 | 25-10-2023 |           |  |

| Teaching Learning Methods |                |      |                    |      |                |
|---------------------------|----------------|------|--------------------|------|----------------|
| TLM1                      | Chalk and Talk | TLM4 | Problem Solving    | TLM7 | Seminars or GD |
| TLM2                      | PPT            | TLM5 | Programming        | TLM8 | Lab Demo       |
| TLM3                      | Tutorial       | TLM6 | Assignment or Quiz | TLM9 | Case Study     |

## ACADEMIC CALENDAR:

| Description                            | From       | То         | Weeks |
|----------------------------------------|------------|------------|-------|
| I Phase of Instructions                | 18-07-2022 | 10-9-2022  | 8W    |
| Technical Training/Value Added Courses | 12-09-2022 | 24-09-2022 | 2W    |
| I Mid Examinations                     | 26-09-2022 | 01-10-2022 | 1W    |
| II Phase of Instructions               | 03-10-2022 | 26-11-2022 | 8W    |
| II Mid Examinations                    | 28-11-2022 | 03-12-2022 | 1W    |
| Preparation and Practical's            | 05-12-2022 | 10-12-2022 | 1W    |
| Semester End Examinations              | 12-12-2022 | 24-12-2022 | 2W    |

## **EVALUATION PROCESS:**

| Evaluation Task                                    | COs   | Marks        |
|----------------------------------------------------|-------|--------------|
| Internal Lab Exam-I                                | 1,2,3 | A1= 5        |
| Internal Lab Exam-II                               | 1,2,3 | A2= 5        |
| Day to Day Evaluation                              | 1,2,3 | B= 5         |
| Record                                             | 1,2,3 | C= 5         |
| Evaluation of Internal Lab Exam Marks: A=(A1+A2)/2 | 1,2,3 | A= 5         |
| Cumulative Internal Examination: A+B+C             | 1,2,3 | A+B+C<br>=15 |
| Semester End Examinations                          | 1,2,3 | E=35         |
| Total Marks: A+B+C+D                               | 1,2,3 | 50           |

## **PROGRAMME OUTCOMES (POs):**

| <b>PO 1</b> | Engineering knowledge: Apply the knowledge of mathematics, science, engineering                                                                                                                  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|             | fundamentals, and an engineering specialization to the solution of complex engineering                                                                                                           |  |  |  |  |
|             | problems.                                                                                                                                                                                        |  |  |  |  |
| <b>PO 2</b> | Problem analysis: Identify, formulate, review research literature, and analyze complex                                                                                                           |  |  |  |  |
|             | engineering problems reaching substantiated conclusions using first principles of mathematics,                                                                                                   |  |  |  |  |
|             | natural sciences, and engineering sciences.                                                                                                                                                      |  |  |  |  |
| <b>PO 3</b> | Design/development of solutions: Design solutions for complex engineering problems and                                                                                                           |  |  |  |  |
|             | design system components or processes that meet the specified needs with appropriate                                                                                                             |  |  |  |  |
|             | consideration for the public health and safety, and the cultural, societal, and environmental                                                                                                    |  |  |  |  |
| <b>DO</b> 4 | considerations.                                                                                                                                                                                  |  |  |  |  |
| PO 4        | Conduct investigations of complex problems: Use research-based knowledge and research                                                                                                            |  |  |  |  |
|             | methods including design of experiments, analysis and interpretation of data, and synthesis of                                                                                                   |  |  |  |  |
| PO 5        | the information to provide valid conclusions.                                                                                                                                                    |  |  |  |  |
| PU 5        | <b>Modern tool usage</b> : Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities |  |  |  |  |
|             | with an understanding of the limitations                                                                                                                                                         |  |  |  |  |
| PO 6        | The engineer and society: Apply reasoning informed by the contextual knowledge to assess                                                                                                         |  |  |  |  |
| 100         | societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to                                                                                              |  |  |  |  |
|             | the professional engineering practice                                                                                                                                                            |  |  |  |  |
| <b>PO 7</b> | <b>Environment and sustainability</b> : Understand the impact of the professional engineerin                                                                                                     |  |  |  |  |
|             | solutions in societal and environmental contexts, and demonstrate the knowledge of, and need                                                                                                     |  |  |  |  |
|             | for sustainable development.                                                                                                                                                                     |  |  |  |  |
| <b>PO 8</b> | Ethics: Apply ethical principles and commit to professional ethics and responsibilities and                                                                                                      |  |  |  |  |
|             | norms of the engineering practice.                                                                                                                                                               |  |  |  |  |
| PO 9        | Individual and team work: Function effectively as an individual, and as a member or leader in                                                                                                    |  |  |  |  |
|             | diverse teams, and in multidisciplinary settings.                                                                                                                                                |  |  |  |  |
| PO 10       | Communication: Communicate effectively on complex engineering activities with the                                                                                                                |  |  |  |  |
|             | engineering community and with society at large, such as, being able to comprehend and write                                                                                                     |  |  |  |  |
|             | effective reports and design documentation, make effective presentations, and give and receive                                                                                                   |  |  |  |  |
| DO 11       | clear instructions.                                                                                                                                                                              |  |  |  |  |
| PO 11       | <b>Project management and finance</b> : Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and                  |  |  |  |  |
|             | leader in a team, to manage projects and in multidisciplinary environments.                                                                                                                      |  |  |  |  |
| PO 12       | <b>Life-long learning</b> : Recognize the need for, and have the preparation and ability to engage in                                                                                            |  |  |  |  |
| 1012        | independent and life-long learning in the broadest context of technological change.                                                                                                              |  |  |  |  |
|             | Independent and me forg fearing in the broadest context of technological change.                                                                                                                 |  |  |  |  |

## **PROGRAMME SPECIFIC OUTCOMES (PSOs):**

| PSO 1 | Organize, Analyze and Interpret the data to extract meaningful conclusions.           |
|-------|---------------------------------------------------------------------------------------|
| PSO 2 | Design, Implement and Evaluate a computer-based system to meet desired needs.         |
| PSO 3 | Develop IT application services with the help of different current engineering tools. |

| R Pavitra         |                    |                    | DrB. Srinivasa Rao |
|-------------------|--------------------|--------------------|--------------------|
| Course Instructor | Course Coordinator | Module Coordinator | HOD                |